首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The rapid development of new biotechnologies allows us to deeply understand biomedical dynamic systems in more detail and at a cellular level. Many of the subject‐specific biomedical systems can be described by a set of differential or difference equations that are similar to engineering dynamic systems. In this article, motivated by HIV dynamic studies, we propose a class of mixed‐effects state‐space models based on the longitudinal feature of dynamic systems. State‐space models with mixed‐effects components are very flexible in modeling the serial correlation of within‐subject observations and between‐subject variations. The Bayesian approach and the maximum likelihood method for standard mixed‐effects models and state‐space models are modified and investigated for estimating unknown parameters in the proposed models. In the Bayesian approach, full conditional distributions are derived and the Gibbs sampler is constructed to explore the posterior distributions. For the maximum likelihood method, we develop a Monte Carlo EM algorithm with a Gibbs sampler step to approximate the conditional expectations in the E‐step. Simulation studies are conducted to compare the two proposed methods. We apply the mixed‐effects state‐space model to a data set from an AIDS clinical trial to illustrate the proposed methodologies. The proposed models and methods may also have potential applications in other biomedical system analyses such as tumor dynamics in cancer research and genetic regulatory network modeling.  相似文献   

2.
Variance-component methods are popular and flexible analytic tools for elucidating the genetic mechanisms of complex quantitative traits from pedigree data. However, variance-component methods typically assume that the trait of interest follows a multivariate normal distribution within a pedigree. Studies have shown that violation of this normality assumption can lead to biased parameter estimates and inflations in type-I error. This limits the application of variance-component methods to more general trait outcomes, whether continuous or categorical in nature. In this paper, we develop and apply a general variance-component framework for pedigree analysis of continuous and categorical outcomes. We develop appropriate models using generalized-linear mixed model theory and fit such models using approximate maximum-likelihood procedures. Using our proposed method, we demonstrate that one can perform variance-component pedigree analysis on outcomes that follow any exponential-family distribution. Additionally, we also show how one can modify the method to perform pedigree analysis of ordinal outcomes. We also discuss extensions of our variance-component framework to accommodate pedigrees ascertained based on trait outcome. We demonstrate the feasibility of our method using both simulated data and data from a genetic study of ovarian insufficiency.  相似文献   

3.
We study a linear mixed effects model for longitudinal data, where the response variable and covariates with fixed effects are subject to measurement error. We propose a method of moment estimation that does not require any assumption on the functional forms of the distributions of random effects and other random errors in the model. For a classical measurement error model we apply the instrumental variable approach to ensure identifiability of the parameters. Our methodology, without instrumental variables, can be applied to Berkson measurement errors. Using simulation studies, we investigate the finite sample performances of the estimators and show the impact of measurement error on the covariates and the response on the estimation procedure. The results show that our method performs quite satisfactory, especially for the fixed effects with measurement error (even under misspecification of measurement error model). This method is applied to a real data example of a large birth and child cohort study.  相似文献   

4.
Linear mixed effects models have been widely used in analysis of data where responses are clustered around some random effects, so it is not reasonable to assume independence between observations in the same cluster. In most biological applications, it is assumed that the distributions of the random effects and of the residuals are Gaussian. This makes inferences vulnerable to the presence of outliers. Here, linear mixed effects models with normal/independent residual distributions for robust inferences are described. Specific distributions examined include univariate and multivariate versions of the Student‐ t, the slash and the contaminated normal. A Bayesian framework is adopted and Markov chain Monte Carlo is used to carry out the posterior analysis. The procedures are illustrated using birth weight data on rats in a toxicological experiment. Results from the Gaussian and robust models are contrasted, and it is shown how the implementation can be used for outlier detection. The thick‐tailed distributions provide an appealing robust alternative to the Gaussian process in linear mixed models, and they are easily implemented using data augmentation and MCMC techniques.  相似文献   

5.
He W  Lawless JF 《Biometrics》2003,59(4):837-848
This article presents methodology for multivariate proportional hazards (PH) regression models. The methods employ flexible piecewise constant or spline specifications for baseline hazard functions in either marginal or conditional PH models, along with assumptions about the association among lifetimes. Because the models are parametric, ordinary maximum likelihood can be applied; it is able to deal easily with such data features as interval censoring or sequentially observed lifetimes, unlike existing semiparametric methods. A bivariate Clayton model (1978, Biometrika 65, 141-151) is used to illustrate the approach taken. Because a parametric assumption about association is made, efficiency and robustness comparisons are made between estimation based on the bivariate Clayton model and "working independence" methods that specify only marginal distributions for each lifetime variable.  相似文献   

6.
A method is proposed that aims at identifying clusters of individuals that show similar patterns when observed repeatedly. We consider linear‐mixed models that are widely used for the modeling of longitudinal data. In contrast to the classical assumption of a normal distribution for the random effects a finite mixture of normal distributions is assumed. Typically, the number of mixture components is unknown and has to be chosen, ideally by data driven tools. For this purpose, an EM algorithm‐based approach is considered that uses a penalized normal mixture as random effects distribution. The penalty term shrinks the pairwise distances of cluster centers based on the group lasso and the fused lasso method. The effect is that individuals with similar time trends are merged into the same cluster. The strength of regularization is determined by one penalization parameter. For finding the optimal penalization parameter a new model choice criterion is proposed.  相似文献   

7.
Summary In recent years, nonlinear mixed‐effects (NLME) models have been proposed for modeling complex longitudinal data. Covariates are usually introduced in the models to partially explain intersubject variations. However, one often assumes that both model random error and random effects are normally distributed, which may not always give reliable results if the data exhibit skewness. Moreover, some covariates such as CD4 cell count may be often measured with substantial errors. In this article, we address these issues simultaneously by jointly modeling the response and covariate processes using a Bayesian approach to NLME models with covariate measurement errors and a skew‐normal distribution. A real data example is offered to illustrate the methodologies by comparing various potential models with different distribution specifications. It is showed that the models with skew‐normality assumption may provide more reasonable results if the data exhibit skewness and the results may be important for HIV/AIDS studies in providing quantitative guidance to better understand the virologic responses to antiretroviral treatment.  相似文献   

8.
Li M  Boehnke M  Abecasis GR  Song PX 《Genetics》2006,173(4):2317-2327
Mapping and identifying variants that influence quantitative traits is an important problem for genetic studies. Traditional QTL mapping relies on a variance-components (VC) approach with the key assumption that the trait values in a family follow a multivariate normal distribution. Violation of this assumption can lead to inflated type I error, reduced power, and biased parameter estimates. To accommodate nonnormally distributed data, we developed and implemented a modified VC method, which we call the "copula VC method," that directly models the nonnormal distribution using Gaussian copulas. The copula VC method allows the analysis of continuous, discrete, and censored trait data, and the standard VC method is a special case when the data are distributed as multivariate normal. Through the use of link functions, the copula VC method can easily incorporate covariates. We use computer simulations to show that the proposed method yields unbiased parameter estimates, correct type I error rates, and improved power for testing linkage with a variety of nonnormal traits as compared with the standard VC and the regression-based methods.  相似文献   

9.
Joint regression analysis of correlated data using Gaussian copulas   总被引:2,自引:0,他引:2  
Song PX  Li M  Yuan Y 《Biometrics》2009,65(1):60-68
Summary .  This article concerns a new joint modeling approach for correlated data analysis. Utilizing Gaussian copulas, we present a unified and flexible machinery to integrate separate one-dimensional generalized linear models (GLMs) into a joint regression analysis of continuous, discrete, and mixed correlated outcomes. This essentially leads to a multivariate analogue of the univariate GLM theory and hence an efficiency gain in the estimation of regression coefficients. The availability of joint probability models enables us to develop a full maximum likelihood inference. Numerical illustrations are focused on regression models for discrete correlated data, including multidimensional logistic regression models and a joint model for mixed normal and binary outcomes. In the simulation studies, the proposed copula-based joint model is compared to the popular generalized estimating equations, which is a moment-based estimating equation method to join univariate GLMs. Two real-world data examples are used in the illustration.  相似文献   

10.
Multivariate recurrent event data are usually encountered in many clinical and longitudinal studies in which each study subject may experience multiple recurrent events. For the analysis of such data, most existing approaches have been proposed under the assumption that the censoring times are noninformative, which may not be true especially when the observation of recurrent events is terminated by a failure event. In this article, we consider regression analysis of multivariate recurrent event data with both time‐dependent and time‐independent covariates where the censoring times and the recurrent event process are allowed to be correlated via a frailty. The proposed joint model is flexible where both the distributions of censoring and frailty variables are left unspecified. We propose a pairwise pseudolikelihood approach and an estimating equation‐based approach for estimating coefficients of time‐dependent and time‐independent covariates, respectively. The large sample properties of the proposed estimates are established, while the finite‐sample properties are demonstrated by simulation studies. The proposed methods are applied to the analysis of a set of bivariate recurrent event data from a study of platelet transfusion reactions.  相似文献   

11.
In a linear mixed effects model, it is common practice to assume that the random effects follow a parametric distribution such as a normal distribution with mean zero. However, in the case of variable selection, substantial violation of the normality assumption can potentially impact the subset selection and result in poor interpretation and even incorrect results. In nonparametric random effects models, the random effects generally have a nonzero mean, which causes an identifiability problem for the fixed effects that are paired with the random effects. In this article, we focus on a Bayesian method for variable selection. We characterize the subject‐specific random effects nonparametrically with a Dirichlet process and resolve the bias simultaneously. In particular, we propose flexible modeling of the conditional distribution of the random effects with changes across the predictor space. The approach is implemented using a stochastic search Gibbs sampler to identify subsets of fixed effects and random effects to be included in the model. Simulations are provided to evaluate and compare the performance of our approach to the existing ones. We then apply the new approach to a real data example, cross‐country and interlaboratory rodent uterotrophic bioassay.  相似文献   

12.
Disease mapping of a single disease has been widely studied in the public health setup. Simultaneous modeling of related diseases can also be a valuable tool both from the epidemiological and from the statistical point of view. In particular, when we have several measurements recorded at each spatial location, we need to consider multivariate models in order to handle the dependence among the multivariate components as well as the spatial dependence between locations. It is then customary to use multivariate spatial models assuming the same distribution through the entire population density. However, in many circumstances, it is a very strong assumption to have the same distribution for all the areas of population density. To overcome this issue, we propose a hierarchical multivariate mixture generalized linear model to simultaneously analyze spatial Normal and non‐Normal outcomes. As an application of our proposed approach, esophageal and lung cancer deaths in Minnesota are used to show the outperformance of assuming different distributions for different counties of Minnesota rather than assuming a single distribution for the population density. Performance of the proposed approach is also evaluated through a simulation study.  相似文献   

13.
Hierarchical models are recommended for meta-analyzing diagnostic test accuracy (DTA) studies. The bivariate random-effects model is currently widely used to synthesize a pair of test sensitivity and specificity using logit transformation across studies. This model assumes a bivariate normal distribution for the random-effects. However, this assumption is restrictive and can be violated. When the assumption fails, inferences could be misleading. In this paper, we extended the current bivariate random-effects model by assuming a flexible bivariate skew-normal distribution for the random-effects in order to robustly model logit sensitivities and logit specificities. The marginal distribution of the proposed model is analytically derived so that parameter estimation can be performed using standard likelihood methods. The method of weighted-average is adopted to estimate the overall logit-transformed sensitivity and specificity. An extensive simulation study is carried out to investigate the performance of the proposed model compared to other standard models. Overall, the proposed model performs better in terms of confidence interval width of the average logit-transformed sensitivity and specificity compared to the standard bivariate linear mixed model and bivariate generalized linear mixed model. Simulations have also shown that the proposed model performed better than the well-established bivariate linear mixed model in terms of bias and comparable with regards to the root mean squared error (RMSE) of the between-study (co)variances. The proposed method is also illustrated using a published meta-analysis data.  相似文献   

14.
In this article, we propose a two-stage approach to modeling multilevel clustered non-Gaussian data with sufficiently large numbers of continuous measures per cluster. Such data are common in biological and medical studies utilizing monitoring or image-processing equipment. We consider a general class of hierarchical models that generalizes the model in the global two-stage (GTS) method for nonlinear mixed effects models by using any square-root-n-consistent and asymptotically normal estimators from stage 1 as pseudodata in the stage 2 model, and by extending the stage 2 model to accommodate random effects from multiple levels of clustering. The second-stage model is a standard linear mixed effects model with normal random effects, but the cluster-specific distributions, conditional on random effects, can be non-Gaussian. This methodology provides a flexible framework for modeling not only a location parameter but also other characteristics of conditional distributions that may be of specific interest. For estimation of the population parameters, we propose a conditional restricted maximum likelihood (CREML) approach and establish the asymptotic properties of the CREML estimators. The proposed general approach is illustrated using quartiles as cluster-specific parameters estimated in the first stage, and applied to the data example from a collagen fibril development study. We demonstrate using simulations that in samples with small numbers of independent clusters, the CREML estimators may perform better than conditional maximum likelihood estimators, which are a direct extension of the estimators from the GTS method.  相似文献   

15.
Varying‐coefficient models have become a common tool to determine whether and how the association between an exposure and an outcome changes over a continuous measure. These models are complicated when the exposure itself is time‐varying and subjected to measurement error. For example, it is well known that longitudinal physical fitness has an impact on cardiovascular disease (CVD) mortality. It is not known, however, how the effect of longitudinal physical fitness on CVD mortality varies with age. In this paper, we propose a varying‐coefficient generalized odds rate model that allows flexible estimation of age‐modified effects of longitudinal physical fitness on CVD mortality. In our model, the longitudinal physical fitness is measured with error and modeled using a mixed‐effects model, and its associated age‐varying coefficient function is represented by cubic B‐splines. An expectation‐maximization algorithm is developed to estimate the parameters in the joint models of longitudinal physical fitness and CVD mortality. A modified pseudoadaptive Gaussian‐Hermite quadrature method is adopted to compute the integrals with respect to random effects involved in the E‐step. The performance of the proposed method is evaluated through extensive simulation studies and is further illustrated with an application to cohort data from the Aerobic Center Longitudinal Study.  相似文献   

16.
Summary Continuous‐time multistate models are widely used for categorical response data, particularly in the modeling of chronic diseases. However, inference is difficult when the process is only observed at discrete time points, with no information about the times or types of events between observation times, unless a Markov assumption is made. This assumption can be limiting as rates of transition between disease states might instead depend on the time since entry into the current state. Such a formulation results in a semi‐Markov model. We show that the computational problems associated with fitting semi‐Markov models to panel‐observed data can be alleviated by considering a class of semi‐Markov models with phase‐type sojourn distributions. This allows methods for hidden Markov models to be applied. In addition, extensions to models where observed states are subject to classification error are given. The methodology is demonstrated on a dataset relating to development of bronchiolitis obliterans syndrome in post‐lung‐transplantation patients.  相似文献   

17.
A multiple parametric test procedure is proposed, which considers tests of means of several variables. The single variables or subsets of variables are ordered according to a data‐dependent criterion and tested in this succession without alpha‐adjustment until the first non‐significant test. The test procedure needs the assumption of a multivariate normal distribution and utilizes the theory of spherical distributions. The basic version is particularly suited for variables with approximately equal variances. As a typical example, the procedure is applied to gene expression data from a commercial array.  相似文献   

18.
In the development of structural equation models (SEMs), observed variables are usually assumed to be normally distributed. However, this assumption is likely to be violated in many practical researches. As the non‐normality of observed variables in an SEM can be obtained from either non‐normal latent variables or non‐normal residuals or both, semiparametric modeling with unknown distribution of latent variables or unknown distribution of residuals is needed. In this article, we find that an SEM becomes nonidentifiable when both the latent variable distribution and the residual distribution are unknown. Hence, it is impossible to estimate reliably both the latent variable distribution and the residual distribution without parametric assumptions on one or the other. We also find that the residuals in the measurement equation are more sensitive to the normality assumption than the latent variables, and the negative impact on the estimation of parameters and distributions due to the non‐normality of residuals is more serious. Therefore, when there is no prior knowledge about parametric distributions for either the latent variables or the residuals, we recommend making parametric assumption on latent variables, and modeling residuals nonparametrically. We propose a semiparametric Bayesian approach using the truncated Dirichlet process with a stick breaking prior to tackle the non‐normality of residuals in the measurement equation. Simulation studies and a real data analysis demonstrate our findings, and reveal the empirical performance of the proposed methodology. A free WinBUGS code to perform the analysis is available in Supporting Information.  相似文献   

19.
Individual‐based, spatially explicit models provide a mechanism to understand distributions of individuals on the landscape; however, few models have been coupled with population genetics. The primary benefits of such a combination is to assess performance of population‐genetic estimators in realistic situations. kernelpop represents a flexible framework to implement almost any arbitrary population‐genetic and demographic model in a spatially explicit context using a variety of dispersal kernels. Estimates of type I error associated with genome scans in metapopulations are provided as an illustration of this software's utility.  相似文献   

20.
Best linear unbiased prediction is well known for its wide rangeof applications including small area estimation. While the theoryis well established for mixed linear models and under normalityof the error and mixing distributions, the literature is sparsefor nonlinear mixed models under nonnormality of the error distributionor of the mixing distributions. We develop a resampling-basedunified approach for predicting mixed effects under a generalizedmixed model set-up. Second-order-accurate nonnegative estimatorsof mean squared prediction errors are also developed. Giventhe parametric model, the proposed methodology automaticallyproduces estimators of the small area parameters and their meansquared prediction errors, without requiring explicit analyticalexpressions for the mean squared prediction errors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号