首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
According to international guidelines, the assessment of biophysical effects of exposure to electromagnetic fields (EMF) generated by hand-operated sources needs the evaluation of induced electric field (E in) or specific energy absorption rate (SAR) caused by EMF inside a worker's body and is usually done by the numerical simulations with different protocols applied to these two exposure cases. The crucial element of these simulations is the numerical phantom of the human body. Procedures of E in and SAR evaluation due to compliance analysis with exposure limits have been defined in Institute of Electrical and Electronics Engineers standards and International Commission on Non-Ionizing Radiation Protection guidelines, but a detailed specification of human body phantoms has not been described. An analysis of the properties of over 30 human body numerical phantoms was performed which has been used in recently published investigations related to the assessment of EMF exposure by various sources. The differences in applicability of these phantoms in the evaluation of E in and SAR while operating industrial devices and SAR while using mobile communication handsets are discussed. The whole human body numerical phantom dimensions, posture, spatial resolution and electric contact with the ground constitute the key parameters in modeling the exposure related to industrial devices, while modeling the exposure from mobile communication handsets, which needs only to represent the exposed part of the human body nearest to the handset, mainly depends on spatial resolution of the phantom. The specification and standardization of these parameters of numerical human body phantoms are key requirements to achieve comparable and reliable results from numerical simulations carried out for compliance analysis against exposure limits or within the exposure assessment in EMF-related epidemiological studies.  相似文献   

2.
This article presents measurement methods used to determine the human exposure to electromagnetic fields radiated from operating base stations. In Korea, when evaluating the human exposure to electromagnetic fields from operating base stations, the measurement procedure is different between the following cases: in situ measurement and electromagnetic environment measurement. When performing an in situ measurement, compliance with human exposure limits is determined by the spatially averaged field value obtained within the space occupied by humans at one arbitrary position, but when performing an electromagnetic environment measurement, it is determined by the maximum value at the highest field position selected from several places.  相似文献   

3.
In an hypothesis-generating case-control study of amyotrophic lateral sclerosis, lifetime occupational histories were obtained. The patients (n = 28) were clinic based. The occupational exposure of interest in this report is electromagnetic fields (EMFs). This is the first and so far the only exposure analyzed in this study. Occupational exposure up to 2 years prior to estimated disease symptom onset was used for construction of exposure indices for cases. Controls (n = 32) were blood and nonblood relatives of cases. Occupational exposure for controls was through the same age as exposure for the corresponding cases. Twenty (71%) cases and 28 (88%) controls had at least 20 years of work experience covering the exposure period. The occupational history and task data were used to classify blindly each occupation for each subject as having high, medium/high, medium, medium/low, or low EMF exposure, based primarily on data from an earlier and unrelated study designed to obtain occupational EMF exposure information on workers in “electrical” and “nonelectrical” jobs. By using the length of time each subject spent in each occupation through the exposure period, two indices of exposure were constructed: total occupational exposure (E1) and average occupational exposure (E2). For cases and controls with at least 20 years of work experience, the odds ratio (OR) for exposure at the 75th percentile of the E1 case exposure data relative to minimum exposure was 7.5 (P < 0.02; 95% Cl, 1.4–38.1) and the corresponding OR for E2 was 5.5 (P < 0.02; 95% CI, 1.3–22.5). For all cases and controls, the ORs were 2.5 (P < 0.1; 95% CI, 0.9–8.1) for E1 and 2.3 (P = 0.12; 95% CI, 0.8–6.6) for E2. This study should be considered an hypothesis-generating study. Larger studies, using incident cases and improved exposure assessment, should be undertaken. Bioelectromagnetics 18:28–35, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
From 2013 to 2018, in‐situ measurements of radiofrequency (RF) electromagnetic fields (EMF) and extremely low‐frequency (ELF) electric and magnetic fields in 317 existing and under‐construction children's playground facilities, in 16 municipalities all over Greece, were carried out by the Greek Atomic Energy Commission (EEAE). These measurements were conducted following legislative framework established in 2009, which requires that compliance with the established exposure limits for EMFs should be verified in playground areas. The results are presented by the value of the electric field (E) and exposure ratio (Λ) for the RF EMF, as well as the value of the electric field (E) and magnetic flux density (B) for the ELF electric and magnetic fields. Statistical analysis tools were applied on measurement data and conclusions have been made, taking into consideration: (i) environment type (urban/suburban), and (ii) vicinity to any transmitting installations. Measurement results correspond to the typical EMF background levels for each environment type. Concerning the environment type, RF EMF, and ELF electric/magnetic field measurements reveal no differentiation between urban and suburban environments. Bioelectromagnetics. 2019;40:602–605. © 2019 Bioelectromagnetics Society.  相似文献   

5.
In this article, the exposure to radio frequency electromagnetic fields was studied in close proximity (distances of 10, 100, 300, and 600 mm) to six base station antennas. The specific absorption rate (SAR) in 800 mm × 500 mm × 200 mm box phantom as well as unperturbed electric field (E) in air was measured. The results were used to determine whether the measurement of local maximum of unperturbed electric field can be used as a compliance check for local exposure. Also, the conservativeness of this assessment method compared to the ICNIRP basic restriction was studied. Moreover, the assessment of whole‐body exposure was discussed and the distance ranges presented in which the ICNIRP limit for local exposure could be exceeded before the limit for whole‐body SAR. These results show that the electric field measurement alone can be used for easy compliance check for the local exposure at all distances and for all antenna types studied. However, in some cases when the local peak value of E was compared directly to the ICNIRP reference level for unperturbed E, the exposure was overestimated only very slightly (by factor 1.1) compared to the basic restriction for localized SAR in a human, and hence these results can not be generalized to all antenna types. Moreover, it was shown that the limit for localized exposure could be exceeded before the limit for the whole‐body average SAR, if the distance to the antenna was less than 240 mm. Bioelectromagnetics 30:307–312, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
7.
To improve the assessment of magnetic field exposures for occupational health studies, the Multiwave® System III (MW3) was developed to capture personal exposures to the three‐dimensional magnetic field vector B (t) in the 0–3000 Hz band. To process hundreds of full‐shift MW3 measurements from epidemiologic studies, new computer programs were developed to calculate the magnetic field's physical properties and its interaction with biological systems through various mechanisms (magnetic induction, radical pair interactions, ion resonance, etc.). For automated calculations in the frequency domain, the software uses new algorithms that remove artifacts in the magnetic field's Fourier transform due to electronic noise and the person's motion through perturbations in the geomagnetic field from steel objects. These algorithms correctly removed the Fourier transform artifacts in 92% of samples and have improved the accuracy of frequency‐dependent metrics by as much as 3300%. The output of the MwBatch software is a matrix of 41 exposure metrics calculated for each 2/15 s sample combined with 8 summary metrics for the person's full‐period exposure, giving 294 summary‐exposure metrics for each person monitored. In addition, the MwVisualizer software graphically explores the magnetic field's vector trace, its component waveforms, and the metrics over time. The output was validated against spreadsheet calculations with pilot data. This software successfully analyzed full‐shift MW3 monitoring with 507 electric utility workers, comprising over 1 million vector waveforms. The software's output can be used to test hypotheses about magnetic field biology and disease with biophysical models and also assess compliance with exposure limits. Bioelectromagnetics 31:391–405, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
The viability of the microbes Saccharomyces cerevisiae, Bacillus circulans, Escherichia coli, Micrococcus luteus, Pseudomonas fluorescens, Salmonella enteritidis, Serratia marcescens, and Staphylococcus aureus was tested under static magnetic field exposure up to 24 h in either a homogeneous (159.2 ± 13.4 mT) or three types of inhomogeneous static magnetic fields: (i) peak‐to‐peak magnetic flux density 476.7 ± 0.1 mT with a lateral magnetic flux density gradient of 47.7 T/m, (ii) 12.0 ± 0.1 mT with 1.2 T/m, or (iii) 2.8 ± 0.1 mT with 0.3 T/m. Even the longest period of exposure failed to produce any effect in the growth of bacteriae that could be correlated with static magnetic field exposure. Bioelectromagnetics 31:220–225, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
This is the second of the two articles that present modeling data and reasoned arguments for specifying the appropriate crossover frequency at which incident power flux density (Sinc) replaces the peak 10 g averaged value of the specific energy absorption rate (SAR) as the designated basic restriction for protecting against radiofrequency electromagnetic heating effects in the 1–10 GHz range. In our first study, we compared the degree of correlation between these basic restrictions and the peak‐induced tissue temperature rise (ΔT) for a representative range of population/exposure scenarios using simple multi‐planar models exposed to plane wave conditions. In this complementary study, complex heterogeneous head models for an adult and 12‐year‐old child were analyzed at 1, 3, 6, 8, and 10 GHz for a variety of exposure conditions. The complex models indicate that peak ΔT is better correlated with peak 10 g SAR than Sinc at 1 and 3 GHz and with Sinc at 6–10 GHz, in contrast to the results from Part I. Considering the planar and complex body modeling results together, and given the equivocal indications of the two metrics in the 6–10 GHz range, we recommend that the breakpoint be set at 6 GHz. This choice is also based on other considerations such as ease of assessment. We also recommend that the limit level of Sinc should be adjusted to provide a better match with 10 g SAR in the induced tissue temperature rise. Bioelectromagnetics 31:467–478, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
For in vitro studies on the effect of extremely low frequency (ELF) magnetic field exposures in different laboratories, a programmable, high precision exposure system enabling blinded exposures has been developed and fully characterized. It is based on two shielded 4 coil systems that fit inside a commercial incubator. The volume of uniform B field exposure with 1% field tolerance is 50% larger compared to a Merrit 4 coil system with the same coil volume. The uncertainties for the applied magnetic fields have been specified to be less than 4%. The computer controlled apparatus allows signal waveforms that are composed of several harmonics, blind protocols, monitoring of exposure and environmental conditions and the application of B fields up to 3.6 mT root-mean-square amplitude. Sources of artifacts have been characterized: sham isolation >43 dB, parasitic incident E fields <1 V/m, no recognizable temperature differences in the media for exposure or sham state, and vibrations of the mechanically decoupled dish holder <0.1 m/s(2) (= 0.01 g), which is only twice the sham acceleration background level produced by the incubator and fan vibrations.  相似文献   

11.
Two types of dosimeters for measuring human exposure to 60 Hz magnetic fields were compared. Fifty adults wore the single-axis, wrist model AMEX (average magnetic field exposure system) and the triple axis, hip-pocket or pouch model AMEX-3D meters for 2 days. Ninety-six percent of the tests were accomplished without apparent dosimeter failure. The average root mean square magnetic flux density measurements with the AMEX3D (mean = 0.10 μT, S.D. = 0.07, range = 0.03 ? 0.31) were significantly higher than with the AMEX meter (mean = 0.07 μT, S.D. 0.05, range = 0.02 ? 0.27 μT) (t test, P < 0.01). There was substantial correlation between the AMEX and the AMEX-3D measurements (Pearson's correlation coefficient = 0.65, P < 0.01) but poor concordance (Intraclass correlation coefficient = ? 0.25). These results suggest that there is a wide variation in exposure to extremely low frequency magnetic fields in the population. Magnetic field measurements with the AMEX-3D are nearly always higher than with the AMEX dosimeters. Caution is advised when comparing magnetic field measurements made with different types of dosimeters. © 1994 Wiley-Liss, Inc.  相似文献   

12.
In the c‐ring rotor of ATP synthases ions are shuttled across the membrane during ATP synthesis by a unique rotary mechanism. We investigated characteristics of the c‐ring from the alkaliphile Bacillus pseudofirmus OF4 with respect to evolutionary adaptations to operate with protons at high environmental pH. The X‐ray structures of the wild‐type c13 ring at pH 9.0 and a ‘neutralophile‐like’ mutant (P51A) at pH 4.4, at 2.4 and 2.8 Å resolution, respectively, reveal a dependency of the conformation and protonation state of the proton‐binding glutamate (E54) on environmental hydrophobicity. Faster labelling kinetics with the inhibitor dicyclohexylcarbodiimide (DCCD) demonstrate a greater flexibility of E54 in the mutant due to reduced water occupancy within the H+ binding site. A second ‘neutralophile‐like’ mutant (V21N) shows reduced growth at high pH, which is explained by restricted conformational freedom of the mutant's E54 carboxylate. The study directly connects subtle structural adaptations of the c‐ring ion binding site to in vivo effects of alkaliphile cell physiology.  相似文献   

13.
Electrosurgical units (ESU) are widely used in medical health services. By applying sinusoidal or pulsed voltage in the frequency range of 0.3–5 MHz to the electrode tip, the desired mixture of coagulation and cutting are achieved. Due to the high voltage and current in the cable, strong electromagnetic fields appear near the ESU. The surgeon and others inside the operating room such as nurses, anesthesiologists, etc., will be highly exposed to these fields. The stray fields surrounding the ESU have previously been measured, but now a deeper analysis has been made of the curve shape of the field and the implication of this when assessing exposure from a commonly used ESU in accordance with the International Commission on Non‐Ionizing Radiation Protection (ICNIRP) guidelines. The result showed that for some of the modes, especially those using high‐pulsed voltage with only a few sinusoidal periods, the E‐field close to the cable could reach linear spatially averaged values of 20 kV/m compared to the 2.1 kV/m stated in ICNIRP guidelines. Assessing the E‐ and B‐field from ESU is not straightforward since in this frequency range, both induced current density and specific absorption rate are restricted by the ICNIRP guidelines. Nevertheless, work needs to be done to reduce the stray fields from ESU. Bioelectromagnetics 31:513–518, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
In occupational environments, an increasing number of electromagnetic sources emitting complex magnetic field waveforms in the range of intermediate frequencies is present, requiring an accurate exposure risk assessment with both in vitro and in vivo experiments. In this article, an in vitro exposure system able to generate complex magnetic flux density B‐fields, reproducing signals from actual intermediate frequency sources such as magnetic resonance imaging (MRI) scanners, for instance, is developed and validated. The system consists of a magnetic field generation system and an exposure apparatus realized with a couple of square coils. A wide homogeneity (99.9%) volume of 210 × 210 × 110 mm3 was obtained within the coils, with the possibility of simultaneous exposure of a large number of standard Petri dishes. The system is able to process any numerical input sequence through a filtering technique aimed at compensating the coils' impedance effect. The B‐field, measured in proximity to a 1.5 T MRI bore during a typical examination, was excellently reproduced (cross‐correlation index of 0.99). Thus, it confirms the ability of the proposed setup to accurately simulate complex waveforms in the intermediate frequency band. Suitable field levels were also attained. Moreover, a dosimetry index based on the weighted‐peak method was evaluated considering the induced E‐field on a Petri dish exposed to the reproduced complex B‐field. The weighted‐peak index was equal to 0.028 for the induced E‐field, indicating an exposure level compliant with the basic restrictions of the International Commission on Non‐Ionizing Radiation Protection. Bioelectromagnetics 34:211–219, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
A head exposure setup for efficient and precisely defined exposure of human subjects equipped with a near‐infrared imaging (NIRI) sensor is presented. In a partially shielded anechoic chamber the subjects were exposed to Universal Mobile Telecommunications System (UMTS)‐like electromagnetic fields (EMF) by using a patch antenna at a distance of 4 cm from the head. The non‐contact design of the exposure setup enabled NIRI sensors to easily attach to the head. Moreover, different regions of the head were chosen for localised exposure and simultaneous NIRI investigation. The control software enabled the simple adaptation of the test parameters during exploratory testing as well as the performance of controlled, randomised, crossover and double‐blind provocation studies. Four different signals with a carrier frequency of 1900 MHz were chosen for the exposure: a simple continuous wave signal and three different UMTS signals. Furthermore, three exposure doses were available: sham, low (spatial peak specific absorption rate (SAR) = 0.18 W/kg averaged over 10 g) and high (spatial peak SAR = 1.8 W/kg averaged over 10 g). The SAR assessment was performed by measurement and simulation. Direct comparison of measurement and numerical results showed good agreement in terms of spatial peak SAR and SAR distribution. The variability analysis of the spatial peak SAR over 10 g was assessed by numerical simulations. Maximal deviations of ?22% and +32% from the nominal situation were observed. Compared to other exposure setups, the present setup allows for low exposure uncertainty, combined with high SAR efficiency, easy access for the NIRI sensor and minimal impairment of test subjects. Bioelectromagnetics 33:124–133, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

16.
The effect of static magnetic fields on the budding of single yeast cells was investigated using a magnetic circuit that was capable of generating a strong magnetic field (2.93 T) and gradient (6100 T2 m?1). Saccharomyces cerevisiae yeast cells were grown in an aqueous YPD agar in a silica capillary under either a homogeneous or inhomogeneous static magnetic field. Although the size of budding yeast cells was only slightly affected by the magnetic fields after 4 h, the budding angle was clearly affected by the direction of the homogeneous and inhomogeneous magnetic fields. In the homogeneous magnetic field, the budding direction of daughter yeast cells was mainly oriented in the direction of magnetic field B. However, when subjected to the inhomogeneous magnetic field, the daughter yeast cells tended to bud along the axis of capillary flow in regions where the magnetic gradient, estimated by B(dB/dx), were high. Based on the present experimental results, the possible mechanism for the magnetic effect on the budding direction of daughter yeast cells is theoretically discussed. Bioelectromagnetics 31:622–629, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
The effects of long‐term extremely low‐frequency magnetic field (ELF‐MF) exposure on bone formation and biochemical markers were investigated in ovariectomized rats. Sixty mature female Sprague–Dawley rats were randomly divided into four different groups (n = 15): (i) unexposed control (CTL); (ii) ovariectomized only (OVX); (iii) non‐ovariectomized, exposed (SHAM + ELF‐MF); and (iv) ovariectomized, exposed (OVX + ELF‐MF). The third and fourth groups were exposed to 1.5 mT ELF‐MF for 4 h a day for 6 months. Bone mineral density (BMD) was determined using dual energy X‐ray absorption (DEXA) measurements. The formation and resorption of bone were evaluated using bone‐specific alkaline phosphatase (BAP), osteocalcin, osteoprotogerin, and N‐telopeptide. After 6 months of ELF‐MF therapy, BMD values were significantly lower in the OVX group and higher in the OVX + ELF‐MF and SHAM + ELF‐MF groups than they were before therapy (P < 0.001). Although there was no significant difference in BMD values among the groups before therapy, the BMD values increased significantly after 6 months in the OVX + ELF‐MF and SHAM + ELF‐MF groups and were reduced in the OVX group compared to the CTL group (P < 0.001). The concentrations of BAP, osteocalcin, osteoprotogerin, and N‐telopeptide in the three experimental groups also changed in a significant way compared to the CTL group. The results of the present study suggest that osteoporosis can be inhibited by ELF‐MF stimulation treatments. It was also concluded that ELF‐MF may be useful in the prevention of osteoporosis in ovariectomized rats. Bioelectromagnetics 33:543–549, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Static magnetic fields (SMFs) and time-varying electromagnetic fields exposure is necessary to obtain the diagnostic information regarding the structure of patient's tissues, by the use of magnetic resonance imaging (MRI) scanners. A diagnostic procedure may also include the administration of pharmaceuticals called contrast, which are to be applied to a patient during the examination. The nurses involved in administering contrast into a patient during the pause in examination are approaching permanently active magnets of MRI scanners and are exposed to SMF. There were performed measurements of spatial distribution of SMF in the vicinity of MRI magnets and parameters of personal exposure of nurses (i.e. individual exposimetric profiles of variability in time of SMF affecting the nurse who is performing tasks in the vicinity of magnet, characterized by statistical parameters of recorded magnetic flux density affecting the nurse). The SMF exposure in the vicinity of various MRI magnets depends on both magnetic flux density of the main field B 0 (applicable to a patient) and the construction of the scanner, but the most important factor determining the workers' exposure is the work practice. In the course of a patient's routine examination in scanners of B 0 = 1.5 T, the nurses are present over ~0.4–2.9 min in SMF exceeding 0.03% of B 0 (i.e. 0.5 mT), but only sometimes they are present in SMF exceeding 5% of B 0 (i.e. 75 mT). When patients need more attention because of their health status/condition, the nurses' exposure may be significantly longer – it may even exceed 10 min and 30% of B 0 (i.e. 500 mT). We have found that the level of exposure of nurses to SMF may vary from < 5% of the main field (a median value: 0.5–1.5%; inter-quartile range: 0.04–8.8%; max value: 1.3–12% of B 0) when a patient is moved from the magnets bore before contrast administration, up to the main field level (B 0) when a patient stays in the magnets bore and nurse is crawling into the bore.  相似文献   

19.
This is the first of two articles addressing the most appropriate crossover frequency at which incident power flux density (Sinc) replaces the spatial peak value of the specific energy absorption rate (SAR) averaged over 1 or 10 g (i.e., peak 1 or 10 g SAR) as the basic restriction for protecting against radiofrequency (RF) heating effects in the 1–10 GHz range. Our general approach has been to compare the degree of correlation between these basic restrictions and the peak induced tissue temperature rise (ΔT) for a representative range of population/exposure scenarios. In this article we particularly address the effect of human population diversity in the thickness of body tissue layers at eight different sites of the body. We used a Monte Carlo approach to specify 32000 models (400 models for each of 8 body sites for 10 frequencies) which were representative of tissue thicknesses for age (18–74 years) and sex at the eight body sites. Histogram distributions of Sinc and peak 1 and 10 g SAR corresponding to a peak 1 °C temperature rise were obtained from RF and thermal analyses of 1D multiplanar models exposed to a normally incident plane wave ranging from 1 to 10 GHz in thermo‐neutral environmental conditions. Examination of the distribution spread of the histograms indicated that peak SAR was a better predictor of peak tissue temperature rise across the entire 1–10 GHz frequency range than Sinc, as indicated by the smaller spread in its histogram distributions, and that peak 10 g SAR was a slightly better predictor than peak 1 g SAR. However, this result must be weighed against partly conflicting indications from complex body modeling in the second article of this series, which incorporates near‐field effects and the influence of complex body geometries. Bioelectromagnetics 31:454–466, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
We examined the influence of ultrashort pulses (USP) on sensory neurons. Single and high frequency bursts of 12 ns E‐fields were presented to rat skin nociceptors that expressed distinct combinations of voltage‐sensitive proteins. A single E‐field pulse produced action potentials in all nociceptor subtypes at a critical threshold (Ec) of 403 V/cm. When configured into high frequency bursts, USP charge integrated to reduce the action potential threshold in a frequency and burst duration‐dependent manner with Ec as low as 16 V/cm (4000 Hz, 25 ms burst). There was no evidence of electroporation at field intensities near the Ec for nociceptor activation. USP bursts activated a late, persistent Ca++ flux that was identified as a dantrolene‐sensitive Ca++‐induced Ca++ release (CICR). Influx of Ca++ into the cell was required for the CICR and resulted in a reduction of the single pulse Ec by about 50%. Bioelectromagnetics 32:148–163, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号