首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 607 毫秒
1.
pH in animal cell cultures decreases due to production of metabolites like lactate. pH control via measurement and base addition is not easily possible in small‐scale culture formats like tissue‐culture flasks and shake flasks. A hydrogel‐based system is reported for in situ pH maintenance without pH measurement in such formats, and is demonstrated to maintain pH between 6.8 and 7.2 for a suspension CHO cell line in CD CHO medium and between 7.3 and 7.5 for adherent A549 cells in DMEM:F12 containing 10% FBS. This system for pH maintenance, along with our previous report of hydrogels for controlled nutrient delivery in shake flasks can allow shake flasks to better mimic bioreactor‐based fed batch operation for initial screening during cell line and process development for recombinant protein production in mammalian cells. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

2.
Characterization of manufacturing processes is key to understanding the effects of process parameters on process performance and product quality. These studies are generally conducted using small‐scale model systems. Because of the importance of the results derived from these studies, the small‐scale model should be predictive of large scale. Typically, small‐scale bioreactors, which are considered superior to shake flasks in simulating large‐scale bioreactors, are used as the scale‐down models for characterizing mammalian cell culture processes. In this article, we describe a case study where a cell culture unit operation in bioreactors using one‐sided pH control and their satellites (small‐scale runs conducted using the same post‐inoculation cultures and nutrient feeds) in 3‐L bioreactors and shake flasks indicated that shake flasks mimicked the large‐scale performance better than 3‐L bioreactors. We detail here how multivariate analysis was used to make the pertinent assessment and to generate the hypothesis for refining the existing 3‐L scale‐down model. Relevant statistical techniques such as principal component analysis, partial least square, orthogonal partial least square, and discriminant analysis were used to identify the outliers and to determine the discriminatory variables responsible for performance differences at different scales. The resulting analysis, in combination with mass transfer principles, led to the hypothesis that observed similarities between 15,000‐L and shake flask runs, and differences between 15,000‐L and 3‐L runs, were due to pCO2 and pH values. This hypothesis was confirmed by changing the aeration strategy at 3‐L scale. By reducing the initial sparge rate in 3‐L bioreactor, process performance and product quality data moved closer to that of large scale. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1370–1380, 2015  相似文献   

3.
4.
This article describes the optimization of cultivation factor settings, that is the shaking rate and working volume in 50 mL spin tubes for a Chinese hamster ovary cell line expressing recombinant human α‐erythropoietin, using a response D‐optimal surface method. The main objectives of the research were, firstly, to determine a setting in which the product titer and product quality attributes in spin tubes are equivalent to those in 250 mL shake flasks in a seven day batch and, secondly, to find a setting in which the product titer is maximal. The model for product titer prediction as a function of shaking rate and working volume in the defined design space was successfully applied to the optimization of cultivation conditions in spin tubes for the tested cell line. Subsequently, validation experiments were carried out simultaneously in spin tubes, shake flasks and bench scale bioreactors to compare cell culture performance parameters such as growth, productivity and product quality attributes in the form of isoform profiles and glycan antennarity structures. The results of the experiments showed that similar cell culture performance and product quality could be achieved in spin tubes when compared to shake flasks. Additionally, bioreactor titers could be reproduced in spin tubes at high shaking rates and low working volumes, but with differing product quality. Cultivation at lower shaking rates in spin tubes and shake flasks produced a glycoprotein with a product quality slightly comparable to that from bioreactors, but with titers being only two thirds. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

5.
Therapeutic monoclonal antibodies (mAb) are often produced in Chinese hamster ovary (CHO) cells. Three commonly used CHO host cells for generating stable cell lines to produce therapeutic proteins are dihydrofolate reductase (DHFR) positive CHOK1, DHFR‐deficient DG44, and DUXB11‐based DHFR deficient CHO. Current Genentech commercial full‐length antibody products have all been produced in the DUXB11‐derived DHFR‐deficient CHO host. However, it has been challenging to develop stable cell lines producing an appreciable amount of antibody proteins in the DUXB11‐derived DHFR‐deficient CHO host for some antibody molecules and the CHOK1 host has been explored as an alternative approach. In this work, stable cell lines were developed for three antibody molecules in both DUXB11‐based and CHOK1 hosts. Results have shown that the best CHOK1 clones produce about 1 g/l for an antibody mAb1 and about 4 g/l for an antibody mAb2 in 14‐day fed batch cultures in shake flasks. In contrast, the DUXB11‐based host produced ~0.1 g/l for both antibodies in the same 14‐day fed batch shake flask production experiments. For an antibody mAb3, both CHOK1 and DUXB11 host cells can generate stable cell lines with the best clone in each host producing ~2.5 g/l. Additionally, studies have shown that the CHOK1 host cell has a larger endoplasmic reticulum and higher mitochondrial mass. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:980–985, 2013  相似文献   

6.
For therapeutic applications of small interfering RNA (siRNA), serum stability, enhanced cellular uptake, and facile endosome escape are key issues for designing carriers. In this study, green fluorescent protein (GFP) siRNA was conjugated to a six‐arm polyethylene glycol (PEG) derivative via a reducible disulfide linkage (6PEG‐siRNA). The 6PEG‐siRNA conjugate was also functionalized with a cell penetrating peptide, Hph1 to enhance its cellular uptake property (6PEG‐siRNA‐Hph1). The 6PEG‐siRNA‐Hph1 conjugate was electrostatically complexed with cationic self‐crosslinked fusogenic KALA peptide (cl‐KALA) to form multifunctional polyelectrolyte complex micelles for gene silencing. The resultant siRNA complex formulation with multiple PEG chains showed superior physical stability and resistance to enzymatic degradation. The 6PEG‐siRNA‐Hph1/cl‐KALA complexes exhibited enhanced GFP gene silencing efficiency for MDA‐MB‐435 cells in the serum containing condition. The current reducible and multifunctional polyelectrolyte complex micelles are expected to have high potential for efficient delivery of therapeutic siRNA. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

7.
Efficient and effective cell line screening is paramount toward a successful biomanufacturing program. Here we describe the implementation of 24‐deep well plate (24‐DWP) screening of CHO lines as part of the cell line development platform at AbbVie. Incorporation of this approach accelerated the identification of the best candidate lines for process development. In an effort to quantify and predict process performance comparability, we compared cell culture performance in and in shake flasks, for a panel of Chinese Hamster Ovary cell lines expressing a monoclonal antibody. The results in 24‐DWP screening showed reduced growth profiles, but comparable viability profiles. Slow growers in 24‐DWP achieved the highest productivity improvement upon scaling‐up to shake flasks. Product quality of the protein purified from shake flasks and 24‐DWP were also compared. The 24‐DWP culture conditions were found to influence the levels of acidic species, reduce the G0 N‐glycan species, and increase the high‐mannose N‐glycan species. Nevertheless, the identification of undesirable profiles is executed consistently with the scaled‐up culture. We further employed multivariate data analysis to capture differences depending on the two scales and we could demonstrate that cell line profiles were adequately clustered, regardless of the vessel used for the development. In conclusion, the 24‐DWP platform was reasonably predictive of the parameters crucial for upstream process development activities, and has been adapted as part of the AbbVie cell line development platform. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:175–186, 2018  相似文献   

8.
RNAi is a powerful tool for gene‐specific knockdown and gene therapy. However, the imprecise expression of siRNA limits the extensive application of RNAi in gene therapy. Here we report the development of a novel controllable siRNA expression vector pMHSP70psil that is initiated by HSP70 promoter. We determined the efficiency of the controllable siRNA system by targeting the gama‐synuclein (SNCG) gene in breast cancer cells MCF‐7. The results show that the controllable siRNA system can be induced to initiate siRNA expression by heat‐induction. The silencing effect of SNCG occurs at a relatively low level (10.1%) at 37°C, while it is significantly increased to 69.4% after heat induction at 43°C. The results also show that the controllable siRNA system inhibits proliferation of cancer cells by heat‐shock. Therefore, this RNAi strategy holds the promise of the high efficiency in gene knockdown at targeted times and locations, avoiding systemic side effects. It provides, for the first time, an approach to control siRNA expression by heat‐shock. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1289–1297, 2013  相似文献   

9.
Osteogenesis and the production of composite osteochondral tissues were investigated using human adult adipose‐derived stem cells and polyglycolic acid (PGA) mesh scaffolds under dynamic culture conditions. For osteogenesis, cells were expanded with or without osteoinduction factors and cultured in control or osteogenic medium for 2 weeks. Osteogenic medium enhanced osteopontin and osteocalcin gene expression when applied after but not during cell expansion. Osteogenesis was induced and mineralized deposits were present in tissues produced using PGA culture in osteogenic medium. For development of osteochondral constructs, scaffolds seeded with stem cells were precultured in either chondrogenic or osteogenic medium, sutured together, and cultured in dual‐chamber stirred bioreactors containing chondrogenic and osteogenic media in separate compartments. After 2 weeks, total collagen synthesis was 2.1‐fold greater in the chondroinduced sections of the composite tissues compared with the osteoinduced sections; differentiation markers for cartilage and bone were produced in both sections of the constructs. The results from the dual‐chamber bioreactor highlight the challenges associated with achieving simultaneous chondrogenic and osteogenic differentiation in tissue engineering applications using a single stem‐cell source. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

10.
Oxidation of biopharmaceuticals is a major product quality issue with potential impacts on activity and immunogenicity. At Eli Lilly and Company, high tryptophan oxidation was observed for two biopharmaceuticals in development produced in Chinese hamster ovary cells. A switch from historical hydrolysate‐containing media to chemically defined media with a reformulated basal powder was thought to be responsible, so mitigation efforts focused on media modification. Shake flask studies identified that increasing tryptophan, copper, and manganese and decreasing cysteine concentrations were individual approaches to lower tryptophan oxidation. When amino acid and metal changes were combined, the modified formulation had a synergistic impact that led to substantially less tryptophan oxidation for both biopharmaceuticals. Similar results were achieved in shake flasks and benchtop bioreactors, demonstrating the potential to implement these modifications at manufacturing scale. The modified formulation did not negatively impact cell growth and viability, product titer, purity, charge variants, or glycan profile. A potential mechanism of action is presented for each amino acid or metal factor based on its role in oxidation chemistry. This work served not only to mitigate the tryptophan oxidation issue in two Lilly biopharmaceuticals in development, but also to increase our knowledge and appreciation for the impact of media components on product quality. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:178–188, 2016  相似文献   

11.
The need for efficient and reliable technologies for clinical‐scale expansion of mesenchymal stromal cells (MSC) has led to the use of disposable bioreactors and culture systems. Here, we evaluate the expansion of cord blood‐derived MSC in a disposable fixed bed culture system. Starting from an initial cell density of 6.0 × 107 cells, after 7 days of culture, it was possible to produce of 4.2(±0.8) × 108 cells, which represents a fold increase of 7.0 (±1.4). After enzymatic retrieval from Fibra‐Cell disks, the cells were able to maintain their potential for differentiation into adipocytes and osteocytes and were positive for many markers common to MSC (CD73, CD90, and CD105). The results obtained in this study demonstrate that MSC can be efficiently expanded in the culture system. This novel approach presents several advantages over the current expansion systems, based on culture flasks or microcarrier‐based spinner flasks and represents a key element for MSC cellular therapy according to GMP compliant clinical‐scale production system. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29: 568–572, 2013  相似文献   

12.
Effective clone selection is a crucial step toward developing a robust mammalian cell culture production platform. Currently, clone selection is done by culturing cells in well plates and picking the highest producers. Ideally, clone selection should be done in a stirred tank bioreactor as this would best replicate the eventual production environment. The actual number of clones selected for future evaluation in bioreactors at bench‐scale is limited by the scale‐up and operational costs involved. This study describes the application of miniaturized stirred high‐throughput bioreactors (35 mL working volume; HTBRs) with noninvasive optical sensors for clone screening and selection. We investigated a method for testing several subclones simultaneously in a stirred environment using our high throughput bioreactors (up to 12 clones per HTBR run) and compared it with a traditional well plate selection approach. Importantly, it was found that selecting clones solely based on results from stationary well plate cultures could result in the chance of missing higher producing clones. Our approach suggests that choosing a clone after analyzing its performance in a stirred bioreactor environment is an improved method for clone selection. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

13.
Rotary lobe pumps are commonly used in the biotechnology industry for a variety of purposes. Shear damage to animal cells within the rotary lobe pump can adversely affect the product yield or purity during, for example, cell concentration via cross‐flow filtration. In this research, CHO cells grown in 20‐L bioreactors were fed to a rotary lobe pump in both single pass and recycle experiments were conducted at different RPMs and “slip” conditions. The results indicate that the slip flow rate more severely impacts the viability of the CHO cells than the pump RPM. A novel mathematical modeling approach is presented that predicts shear rates in all of the positive displacement pump's slip regions, and then predicts cell death vs. operating conditions. This model accounts for the complex flow situation that results from changes to RPM, backpressure and pump geometry (i.e., clearances). © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

14.
A myriad of bioreactor configurations have been investigated as extracorporeal medical support systems for temporary replacement of vital organ functions. In recent years, studies have demonstrated that the rotating bioreactors have the potential to be utilized as bioartificial liver assist devices (BLADs) owing to their advantage of ease of scalability of cell‐culture volume. However, the fluid movement in the rotating chamber will expose the suspended cells to unwanted flow structures with abnormally high shear conditions that may result in poor cell stability and in turn lower the efficacy of the bioreactor system. In this study, we compared the hydrodynamic performance of our modified rotating bioreactor design with that of an existing rotating bioreactor design. Computational fluid dynamic analysis coupled with experimental results were employed in the optimization process for the development of the modified bioreactor design. Our simulation results showed that the modified bioreactor had lower fluid induced shear stresses and more uniform flow conditions within its rotating chamber than the conventional design. Experimental results revealed that the cells within the modified bioreactor also exhibited better cell‐carrier attachment, higher metabolic activity, and cell viability compared to those in the conventional design. In conclusion, this study was able to provide important insights into the flow physics within the rotating bioreactors, and help enhanced the hydrodynamic performance of an existing rotating bioreactor for BLAD applications. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1002–1012, 2013  相似文献   

15.
The number of therapeutic proteins produced by cell culture in the pharmaceutical industry continues to increase. During the early stages of manufacturing process development, hundreds of clones and various cell culture conditions are evaluated to develop a robust process to identify and select cell lines with high productivity. It is highly desirable to establish a high throughput system to accelerate process development and reduce cost. Multiwell plates and shake flasks are widely used in the industry as the scale down model for large‐scale bioreactors. However, one of the limitations of these two systems is the inability to measure and control pH in a high throughput manner. As pH is an important process parameter for cell culture, this could limit the applications of these scale down model vessels. An economical, rapid, and robust pH measurement method was developed at Eli Lilly and Company by employing SNARF‐4F 5‐(‐and 6)‐carboxylic acid. The method demonstrated the ability to measure the pH values of cell culture samples in a high throughput manner. Based upon the chemical equilibrium of CO2, HCO, and the buffer system, i.e., HEPES, we established a mathematical model to regulate pH in multiwell plates and shake flasks. The model calculates the required %CO2 from the incubator and the amount of sodium bicarbonate to be added to adjust pH to a preset value. The model was validated by experimental data, and pH was accurately regulated by this method. The feasibility of studying the pH effect on cell culture in 96‐well plates and shake flasks was also demonstrated in this study. This work shed light on mini‐bioreactor scale down model construction and paved the way for cell culture process development to improve productivity or product quality using high throughput systems. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

16.
Daptomycin is a cyclic lipopeptide natural product produced by Stretptomyces roseosporus, displaying good bactericidal activity against a wide range of gram‐positive pathogens. Daptomycin contains a 13 amino acid and kynurenine (Kyn) is essential for optimal activity of daptomycin. In this study, we characterized the Kyn pathway in S. roseosporus and investigated its role in supplying precursor for daptomycin biosynthesis. Two genes (dptJ and tdo) coding for tryptophan‐2,3‐dioxgenase existed in the chromosome. dptJ is located in the daptomycin biosynthetic gene cluster, while tdo is in other locus. Disruption of dptJ or tdo resulted in reduced yield by ~50%. The introduction of an additional copy of dptJ but not tdo led to enhanced production of daptomycin by 110%. Furthermore, disruption of kyn encoding kynureninase showed improved daptomycin productivity by 30%. Our results demonstrated that the enhancement of Kyn supply through metabolic engineering approach is an efficient way to increase daptomycin production. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:847–852, 2013  相似文献   

17.
Human mesenchymal or stromal cells (hMSCs) isolated from various adult tissues are primary candidates in cell therapy and tissue regeneration. Despite promising results in preclinical studies, robust therapeutic responses to MSC treatment have not been reproducibly demonstrated in clinical trials. In the translation of MSC‐based therapy to clinical application, studies of MSC metabolism have significant implication in optimizing bioprocessing conditions to obtain therapeutically competent hMSC population for clinical application. In addition, understanding the contribution of metabolic cues in directing hMSC fate also provides avenues to potentiate their therapeutic effects by modulating their metabolic properties. This review focuses on MSC metabolism and discusses their unique metabolic features in the context of common metabolic properties shared by stem cells. Recent advances in the fundamental understanding of MSC metabolic characteristics in relation to their in vivo origin and metabolic regulation during proliferation, lineage‐specific differentiation, and exposure to in vivo ischemic conditions are summarized. Metabolic strategies in directing MSC fate to enhance their therapeutic potential in tissue engineering and regenerative medicine are discussed. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:468–481, 2015  相似文献   

18.
High cell density (HCD) culture increases recombinant protein productivity via higher biomass. Compared to traditional fed‐batch cultures, HCD is achieved by increased nutrient availability and removal of undesired metabolic components via regular medium replenishment. HCD process development is usually performed in instrumented lab‐scale bioreactors (BR) that require time and labor for setup and operation. To potentially minimize resources and cost during HCD experiments, we evaluated a 2‐week 50‐mL Tubespin (TS) simulated HCD process where daily medium exchanges mimic the medium replacement rate in BR. To best assess performance differences, we cultured 13 different CHO cell lines in simulated HCD as satellites from simultaneous BR, and compared growth, metabolism, productivity and product quality. Overall, viability, cell‐specific productivity and metabolism in TS were comparable to BR, but TS cell growth and final titer were lower by 25 and 15% in average, respectively. Peak viable cell densities were lower in TS than BR as a potential consequence of lower pH, different medium exchange strategy and dissolved oxygen limitations. Product quality attributes highly dependent on intrinsic molecule or cell line characteristics (e.g., galactosylation, afucosylation, aggregation) were comparable in both scales. However, product quality attributes that can change extracellularly as a function of incubation time (e.g., deamidation, C‐terminal lysine, fragmentation) were in general lower in TS because of shorter residence time than HCD BR. Our characterization results and two case studies show that TS‐simulated HCD cultures can be effectively used as a simple scale‐down model for relative comparisons among cell lines for growth or productivity (e.g., clone screening), and for investigating effects on protein galactosylation. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:490–499, 2017  相似文献   

19.
Chinese hamster ovary (CHO) cells remain the most popular host for the production of biopharmaceutical drugs, particularly monoclonal antibodies (mAbs), bispecific antibodies, and Fc‐fusion proteins. Creating and characterizing the stable CHO clonally‐derived cell lines (CDCLs) needed to manufacture these therapeutic proteins is a lengthy and laborious process. Therefore, CHO pools have increasingly been used to rapidly produce protein to support and enable preclinical drug development. We recently described the generation of CHO pools yielding mAb titers as high as 7.6 g/L in a 16 day bioprocess using piggyBac transposon‐mediated gene integration. In this study, we wanted to understand why the piggyBac pool titers were significantly higher (2–10 fold) than the control CHO pools. Higher titers were the result of a combination of increased average gene copy number, significantly higher messenger RNA levels and the homogeneity (i.e. less diverse population distribution) of the piggyBac pools, relative to the control pools. In order to validate the use of piggyBac pools to support preclinical drug development, we then performed an in‐depth product quality analysis of purified protein. The product quality of protein obtained from the piggyBac pools was very similar to the product quality profile of protein obtained from the control pools. Finally, we demonstrated the scalability of these pools from shake flasks to 36L bioreactors. Overall, these results suggest that gram quantities of therapeutic protein can be rapidly obtained from piggyBac CHO pools without significantly changing product quality attributes. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:534–540, 2017  相似文献   

20.
Gel‐matrix culture environments provide tissue engineering scaffolds and cues that guide cell differentiation. For many cellular therapy applications such as for the production of islet‐like clusters to treat Type 1 diabetes, the need for large‐scale production can be anticipated. The throughput of the commonly used nozzle‐based devices for cell encapsulation is limited by the rate of droplet formation to ~0.5 L/h. This work describes a novel process for larger‐scale batch immobilization of mammalian cells in alginate‐filled hollow fiber bioreactors (AHFBRs). A methodology was developed whereby (1) alginate obstruction of the intra‐capillary space medium flow was negligible, (2) extra‐capillary alginate gelling was complete and (3) 83 ± 4% of the cells seeded and immobilized were recovered from the bioreactor. Chinese hamster ovary (CHO) cells were used as a model aggregate‐forming cell line that grew from mostly single cells to pancreatic islet‐sized spheroids in 8 days of AHFBR culture. CHO cell growth and metabolic rates in the AHFBR were comparable to small‐scale alginate slab controls. Then, the process was applied successfully to the culture of primary neonatal pancreatic porcine cells, without significant differences in cell viability compared with slab controls. As expected, alginate‐immobilized culture in the AHFBR increased the insulin content of these cells compared with suspension culture. The AHFBR process could be refined by adding matrix components or adapted to other reversible gels and cell types, providing a practical means for gel‐matrix assisted cultures for cellular therapy. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号