首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 3D Biofilm model, appropriate for complex porous media support structures, is successfully modified such that non‐zero permeability of biofilms structures is enabled. A systematic study is then conducted into the influence of biofilm permeability on overall biomass growth rate. This reveals a significant influence at large biofilm concentrations; even when the permeability of the biomass is 1.25% of that of the free pore space, biomass accumulation increased by a factor of ~3 over 40 h. The effect is shown to be retained when allowing for biomass detachment or erosion as a consequence of adjacent velocity shear. We conclude that biofilm permeability should be included in biofilm models and that further experimental work is required to better describe the link between biofilm permeability and local microstructure. Biotechnol. Bioeng. 2012; 109:1031–1042. © 2011 Wiley Periodicals, Inc.  相似文献   

2.
Biological activity in oil reservoirs can cause significant problems such as souring and plugging. This study focuses on the problem of polymer degradation and permeability reduction due to biofilm formation during polymer injection for improved oil recovery. Polymers are included in injection fluids to increase their viscosity. Results relating biological processes and polymer degradation to fluid‐dynamic conditions in a laboratory model porous medium are presented.

A transparent flow cell with an etched two‐dimensional network of pores served as a model porous medium. A sterile xanthan polymer and natural sea water solution were continuously injected into the porous medium. A bacterial culture capable of xanthan degradation was introduced into the cell by a single injection. Some of the cells from this culture attached to the pore walls forming an immobile bacterial culture, termed biofilm. The development of this biofilm, its xanthan degradation and its effect on permeability were measured.

The effects of injection rate and rate transitions were analyzed. Injection fluid viscosity was reduced by 30% after 5 min flow through the porous medium at the maximum steady state degradation rate observed. Permeability was significantly reduced by the xanthan degrading biofilm, causing an increase in pressure drop through the porous medium of up to 80%. Polymer injection in oil reservoirs may, therefore, have negative effects on oil recovery, unless efficient biofouling control is applied. The methodology presented may serve as a tool in the development of biofouling control measures in porous media.  相似文献   

3.
4.
The influence of bacterial biomass on hydraulic properties of porous media (bioclogging) has been explored as a viable means for optimizing subsurface bioremediation and microbial enhanced oil recovery. In this study, we present a pore network simulator for modeling biofilm evolution in porous media including hydrodynamics and nutrient transport based on coupling of advection transport with Fickian diffusion and a reaction term to account for nutrient consumption. Biofilm has non‐zero permeability permitting liquid flow and transport through the biofilm itself. To handle simultaneous mass transfer in both liquid and biofilm in a pore element, a dual‐diffusion mass transfer model is introduced. The influence of nutrient limitation on predicted results is explored. Nutrient concentration in the network is affected by diffusion coefficient for nutrient transfer across biofilm (compared to water/water diffusion coefficient) under advection dominated transport, represented by mass transport Péclet number >1. The model correctly predicts a dependence of rate of biomass accumulation on inlet concentration. Poor network connectivity shows a significantly large reduction of permeability, for a small biomass pore volume. Biotechnol. Bioeng. 2011;108: 2413–2423. © 2011 Wiley Periodicals, Inc.  相似文献   

5.
Biofilm growth can impact the effectiveness of industrial processes that involve porous media. To better understand and characterize how biofilms develop and affect hydraulic properties in porous media, both spatial and temporal development of biofilms under flow conditions was investigated in a translucent porous medium by using Pseudomonas fluorescens HK44, a bacterial strain genetically engineered to luminesce in the presence of an induction agent. Real-time visualization of luminescent biofilm growth patterns under constant pressure conditions was captured using a CCD camera. Images obtained over 8 days revealed that variations in bioluminescence intensity could be correlated to biofilm cell density and hydraulic conductivity. These results were used to develop a real-time imaging method to study the dynamic behavior of biofilm evolution in a porous medium, thereby providing a new tool to investigate the impact of biological fouling in porous media under flow conditions.  相似文献   

6.
7.

A comparison is made between existing mathematical models and experimental data that relate the reduction of the saturated hydraulic conductivity (K) of a porous medium to the porosity reduction caused by microbial growth. The models yielded a realistic prediction of a data set obtained with a model porous medium consisting of millimeter‐size glass spheres, but failed to predict the clogging behaviour observed in smaller‐than‐1‐mm sand. A new modelling approach, semi‐mechanistic in nature, is proposed that gives good predictions of fine sand media as well. It relaxes the assumption about uniformly‐thick biofilms by allowing a second arrangement to occur, i.e. discrete plugs filling the pore lumen. The new model requires input data on two intrinsic properties of the system, which renders it sufficiently flexible as to fit very different data sets. The two model parameters are Kmin, the minimum K value when all porosity is filled with microorganisms, and Bc, the biovolume fraction at which most cell detachment from biofilm occurs.  相似文献   

8.
A two-dimensional pore-scale numerical model was developed to evaluate the dynamics of preferential flow paths in porous media caused by bioclogging. The liquid flow and solute transport through the pore network were coupled with a biofilm model including biomass attachment, growth, decay, lysis, and detachment. Blocking of all but one flow path was obtained under constant liquid inlet flow rate and biomass detachment caused by shear forces only. The stable flow path formed when biofilm detachment balances growth, even with biomass weakened by decay. However, shear forces combined with biomass lysis upon starvation could produce an intermittently shifting location of flow channels. Dynamic flow pathways may also occur when combined liquid shear and pressure forces act on the biofilm. In spite of repeated clogging and unclogging of interconnected pore spaces, the average permeability reached a quasi-constant value. Oscillations in the medium permeability were more pronounced for weaker biofilms.  相似文献   

9.
A packed bed biofilm reactor inoculated with pure culture Pseudomonas aeruginosa was run under high substrate loading and constant flow rate conditions. The 3.1-cm-diameter cylindrical reactor was 5 cm in length and packed with 1-mm glass beads. Daily observations of biofilm thickness, influent and effluent glucose substrate concentration, and effluent dissolved and total organic carbon were made during the 13-day experiment. Biofilm thickness appeared to rech quasi-steady-state condition after 10 days. A published biofilm process simulation program (AQUASIM) was used to analyze experimental data. Comparison of observed and simulated variables revealed three distinct phases of biofilm accumulation during the experiment: an initial phase, a growth phase, and a mature biofilm phase. Different combinations of biofilm and mass transport process variables were found to be important during each phase. Biofilm detachment was highly correlated with shear at the biofilm surface during all three phases of biofilm development. (c) 1995 John Wiley & Sons, Inc.  相似文献   

10.
An anaerobic upflow porous media biofilm reactor was designed to study the kinetics and stoichiometry of hydrogen sulfide production by the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans (ATCC 5575) as the first step for the modeling and control of formation souring (H(2)S) in oil field porous media. The reactor was a packed bed (50 x 5.5 cm) tubular reactor. Sea sand (140 to 375 mum) was used as the porous media. The initial indication of souring was the appearance of well-separated black spots (precipitates of iron sulfide) in the sand bed. The blackened zones expanded radially and upward through the column. New spots also appeared and expanded into the cone shapes. Lactate (substrate) was depleted and hydrogen sulfide appeared in the effluent.Analysis of the pseudo-steady state column shows that there were concentration gradients for lactate and hydrogen sulfide along the column. The results indicate that most of the lactate was consumed at the front part of the column. Measurements of SRB biomass on the solid phase (sand) and in the liquid phase indicate that the maximum concentration of SRB biomass resided at the front part of the column while the maximum in the liquid phase occurred further downstream. The stoichiometry regarding lactate consumption and hydrogen sulfide production observed in the porous media reactor was different from that in a chemostat. After analyzing the radial dispersion coefficient for the SRB in porous media and kinetics of microbial growth, it was deduced that transport phenomena dominate the souring process in our porous media reactor system. (c) 1994 John Wiley & Sons, Inc.  相似文献   

11.
A model is presented for the coupled processes of bacterial growth and convective transport of bacteria has been modeled using a fractional flow approach. The various mechanisms of bacteria retention can be incorporated into the model through selection of an appropriate shape of the fractional flow curve. Permeability reduction due to pore plugging by bacteria was simulated using the effective medium theory. In porous media, the rates of transport and growth of bacteria, the generation of metabolic products, and the consumption of nutrients are strongly coupled processes. Consequently, the set of governing conservation equations form a set of coupled, nonlinear partial differential equations that were solved numerically. Reasonably good agreement between the model and experimental data has been obtained indicating that the physical processes incorporated in the model are adequate. The model has been used to predict the in situ transport and growth of bacteria, nutrient consumption, and metabolite production. It can be particularly useful in simulating laboratory experiments and in scaling microbial-enhanced oil recovery or bioremediation processes to the field. (c) 1994 John Wiley & Sons, Inc.  相似文献   

12.
The characterization of substrate transport in the bulk phase and in the biofilm matrix is one of the problems which has to be solved for the verification of biofilm models. Additionally, the surface structure of biofilms has to be described with appropriate parameters. Magnetic resonance imaging (MRI) is one of the promising methods for the investigation of transport phenomena and structure in biofilm systems. The MRI technique allows the noninvasive determination of flow velocities and biofilm structures with a high resolution on the sub-millimeter scale. The presented investigations were carried out for defined heterotrophic biofilms which were cultivated in a tube reactor at a Reynolds number of 2000 and 8000 and a substrate load of 6 and 4 g/m2d glucose. Magnetic resonance imaging provides both structure data of the biofilm surface and flow velocities in the bulk phase and at the bulk/biofilm interface. It is shown that the surface roughness of the biofilms can be determined in one experiment for the complete cross section of the test tubes both under flow and stagnant conditions. Furthermore, the local shear stress was calculated from the measured velocity profiles. In the investigated biofilm systems the local shear stress at the biofilm surface was up to 3 times higher compared to the mean wall shear stress calculated on the base of the mean flow velocity.  相似文献   

13.
The convective transport of concentrated suspension of bacteria in porous media is of interest for several processes such as microbial enhanced oil recovery and in situ bioremediation. The parameters which affect the transport of the bacterium Bacillus licheniformis JF-2, a candidate microorganism for microbial enhanced oil recovery, were investigated experimentally in sandpacks. Bacteria retention and permeability reduction occurred primarily in the first few centimeters upon entering the porous medium. In downstream sections of the sandpack, the permeability reduction was low, even in cases in which high cell concentrations (10(8) cfu/mL) were detected in the effluent. The effect of (i) addition of a dispersant, (ii) linear velocity of injection, (iii) cell concentration, (iv) salinity (v) temperature, and (vi) the presence of a residual oleic phase were determined experimentally. A lower reduction in permeability and a higher effluent bacterial concentration were obtained in the presence of dispersant, high injection velocities, low salinities, and at a higher temperature. Macroscopic measurements at different linear velocities and in the presence or absence of dispersants suggest that the formation of reversible microaggregates and multiparticle hydrodynamic exclusion may be the primary mechanisms for bacterial retention and permeability reduction. (c) 1994 John Wiley & Sons, Inc.  相似文献   

14.
Using a magnetic resonance microscopy (MRM) technique, velocity perturbations due to biofouling in capillaries were detected in 3D velocity maps. The velocity images in each of the three square capillary sizes (2, 0.9, and 0.5 mm i.d.) tested indicate secondary flow in both the x‐ and y‐directions for the biofouled capillaries. Similar flow maps generated in a clean square capillary show only an axial component. Investigation of these secondary flows and their geometric and dynamic similarity is the focus of this study. The results showed significant secondary flows present in the 0.9 mm i.d. capillary, on the scale of 20% of the bulk fluid flow. Since this is the “standard 1 mm” size capillary used in confocal microscopy laboratory bioreactors to investigate biofilm properties, it is important to understand how these enhanced flows impact bioreactor transport. Biotechnol. Bioeng. 2009;103: 353–360. © 2009 Wiley Periodicals, Inc.  相似文献   

15.
The long-term operation of bioremediation technologies relies on the success of the contaminant-degrading microorganism(s) to compete for available resources with microorganisms already present in an aquifer or those that may contaminate a bioreactor. Though research has been performed studying the interaction of multiple species in batch and chemostat reactors, little work has been done looking at multi-species interactions in environments that more closely resemble field-scale applications. The research presented herein examined the interaction of Burkholderia cepacia PR1-pTOM(31c), an aerobic trichloroethylene (TCE)-degrading bacterium, with Klebsiella oxytoca, a facultative bacterium, in a flow-through porous media (PM) reactor. Growth characteristics and population distributions in PM were compared to previously reported values from batch and chemostat reactors. The faster growing organism in batch experiments (K. oxytoca) did not always have the greater population density in dual-species PM experiments. The biofilm population distribution was influenced by substrate concentration, with B. cepacia having a greater dual-species population density than K. oxytoca at a low (30 mg/L dissolved organic carbon [DOC]) substrate concentration and K. oxytoca having a greater population density at a high (700 mg/L DOC) substrate concentration. This change in species population distribution with change in substrate concentration, which was not observed in batch reactors, was also observed in chemostat reactors. Therefore, manipulation of substrate concentration enabled the control of species dominance to the advantage of the TCE degrading population in this dual-species PM system and may provide a mechanism to enhance bioremediation scenarios involving TCE or other contaminants of concern.  相似文献   

16.
To effectively solve the problem of aquifer clogging in the process of in situ bioremediation of groundwater pollution by micron emulsified vegetable oil (Micron EVO), Nano emulsified vegetable oil (Nano EVO) was prepared to replace conventional micron EVO, and three one-dimensional laboratory columns packed with medium or fine sands were conducted to simulate migration, clogging, and carbon source release of EVO in porous media. Column experiment results show that micron and nano EVO resulted in a 20.40% and 3.20% reduction in permeability of medium sand, respectively. Correspondingly, the interception of micron and nano EVO in medium sand were 28.51% and 20.15%, respectively. Obviously, EVO interception is an important reason for permeability loss, and reducing EVO droplet size can effectively alleviate permeability loss in porous media. The COD ratios (dissolved COD/total COD) of micron and nano EVO in medium sand were 87.61% and 61.95%, respectively. The release effect of nano EVO was better than that of micron EVO. Effective longevity of micron and nano EVO were 243.17 d and 98.80 d, respectively. The effect of fine sand media on EVO indicated nano EVO can be used in a finer granular media, and its longevity can also be extended in this media.  相似文献   

17.
In this article we present magnetic resonance microscopy (MRM) characterization of the advective transport in a biofilm capillary reactor. The biofilm generates non-axial flows that are up to 20% of the maximum axial velocity. The presence of secondary velocities of this magnitude alters the mass transport in the bioreactor relative to non-biofilm fouled reactors and questions the applicability of empirical mass transfer coefficient approaches. The data are discussed in the context of simulations and models of biofilm transport and conceptual aspects of transport modeling in complex flows are also discussed. The variation in the residence time distribution due to biofilm growth is calculated from the measured propagator of the motion. Dynamical systems methods applied to model fluid mixing in complex flows are indicated as a template for extending mass transport theory to quantitatively incorporate microscale data on the advection field into macroscale mass transfer models.  相似文献   

18.
The flow of power law fluids, which include shear thinning and shear thickening as well as Newtonian as a special case, in networks of interconnected elastic tubes is investigated using a residual-based pore scale network modeling method with the employment of newly derived formulae. Two relations describing the mechanical interaction between the local pressure and local cross-sectional area in distensible tubes of elastic nature are considered in the derivation of these formulae. The model can be used to describe shear dependent flows of mainly viscous nature. The behavior of the proposed model is vindicated by several tests in a number of special and limiting cases where the results can be verified quantitatively or qualitatively. The model, which is the first of its kind, incorporates more than one major nonlinearity corresponding to the fluid rheology and conduit mechanical properties, that is non-Newtonian effects and tube distensibility. The formulation, implementation, and performance indicate that the model enjoys certain advantages over the existing models such as being exact within the restricting assumptions on which the model is based, easy implementation, low computational costs, reliability, and smooth convergence. The proposed model can, therefore, be used as an alternative to the existing Newtonian distensible models; moreover, it stretches the capabilities of the existing modeling approaches to reach non-Newtonian rheologies.  相似文献   

19.
20.
Vanadium, a hazardous pollutant, has been frequently detected in soil and groundwater, however, its transport behavior in porous media were not clearly understood. In this study, the effects of solution pH, ionic strength (IS) and the effect of clay mineral on the transport of vanadium in saturated porous media were investigated. Laboratory experiments using a series of columns packed with quartz sand were carried out to explore the retention and transport of vanadium with a range of ionic-strength (0.001–0.1 M) and pH (4–8) and two different types of clay minerals montmorillonite and kaolinite. Results of the breakthrough experiments showed that vanadium was highly mobile in the saturated porous media. The increase in pH rendered a higher transport of vanadium in saturated porous media. The study also indicated an easier transfer of vanadium with an increase in IS. Montmorillonite enhanced the mobility of vanadium in the column when compared to kaolinite. A mathematical model based on advection-dispersion equation coupled with equilibrium and kinetic reactions was used to describe the retention and transport of vanadium in the columns very well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号