共查询到20条相似文献,搜索用时 18 毫秒
1.
Justin Weaver Scott M. Husson Louise Murphy S. Ranil Wickramasinghe 《Biotechnology and bioengineering》2013,110(2):500-510
Anion exchange membrane adsorbers are used for contaminant removal in flow‐through polishing steps in the manufacture of biopharmaceuticals. This contribution describes the clearance of minute virus of mice, DNA, and host cell proteins by three commercially available anion‐exchange membranes: Sartobind Q, Mustang Q, and ChromaSorb. The Sartobind Q and Mustang Q products contain quaternary amine ligands; whereas, ChromaSorb contains primary amine based ligands. Performance was evaluated over a range of solution conditions: 0–200 mM NaCl, pH 6.0–9.0, and flow rates of 4–20 membrane volumes/min in the presence and absence of up to 50 mM phosphate and acetate. In addition contaminant clearance was determined in the presence and absence of 5 g/L monoclonal antibody. The quaternary amine based ligands depend mainly on Coulombic interactions for removal of negatively charged contaminants. Consequently, performance of Sartobind Q and Mustang Q was compromised at high ionic strength. Primary amine based ligands in ChromaSorb enable high capacities at high ionic strength due to the presence of secondary, hydrogen bonding interactions. However, the presence of hydrogen phosphate ions leads to reduced capacity. Monoclonal antibody recovery using primary amine based anion‐exchange ligands may be lower if significant binding occurs due to secondary interactions. The removal of a specific contaminant is affected by the level of removal of the other contaminants. The results of this study may be used to help guide selection of commercially available membrane absorbers for flow‐through polishing steps. Biotechnol. Bioeng. 2013; 110: 500–510. © 2012 Wiley Periodicals, Inc. 相似文献
2.
Anion exchange (AEX) is a common downstream purification operation for biotechnology products manufactured in cell culture such as therapeutic monoclonal antibodies (mAbs) and Fc‐fusion proteins. We present a head‐to‐head comparison of the viral clearance efficiency of AEX adsorbers and column chromatography using the same process fluids and comparable run conditions. We also present overall trends from the CDER viral clearance database. In our comparison of multiple brands of resins and adsorbers, clearance of three model viruses (PPV, X‐MuLV, and PR772) was largely comparable, with some exceptions which may reflect run conditions that had not been optimized on a resin/membrane specific basis. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:124–131, 2014 相似文献
3.
William T. Riordan Steven M. Heilmann Kurt Brorson Kannan Seshadri Mark R. Etzel 《Biotechnology progress》2009,25(6):1695-1702
Clearance of impurities such as viruses, host cell protein (HCP), and DNA is a critical purification design consideration for manufacture of monoclonal antibody therapeutics. Anion exchange chromatography has frequently been utilized to accomplish this goal; however, anion exchange adsorbents based on the traditional quaternary amine (Q) ligand are sensitive to salt concentration, leading to reduced clearance levels of impurities at moderate salt concentrations (50–150 mM). In this report, membrane adsorbers incorporating four alternative salt tolerant anion exchange ligands were examined for impurity clearance: agmatine, tris‐2‐aminoethyl amine, polyhexamethylene biguanide (PHMB), and polyethyleneimine. Each of these ligands provided greater than 5 log reduction value (LRV) for viral clearance of phage ?X174 (pI ~ 6.7) at pH 7.5 and phage PR772 (pI ~ 4) at pH 4.2 in the presence of salt. Under these same conditions, the commercial Q membrane adsorber provided no clearance (zero LRV). Clearance of host‐cell protein at pH 7.5 was the most challenging test case; only PHMB maintained 1.5 LRV in 150 mM salt. The salt tolerance of PHMB was attributed to its large positive net charge through the presence of multiple biguanide groups that participated in electrostatic and hydrogen bonding interactions with the impurity molecules. On the basis of the results of this study, membrane adsorbers that incorporate salt tolerant anion exchange ligands provide a robust approach to impurity clearance during the purification of monoclonal antibodies. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 相似文献
4.
William Riordan Steve Heilmann Kurt Brorson Kannan Seshadri Yi He Mark Etzel 《Biotechnology and bioengineering》2009,103(5):920-929
Strong anion exchange chromatography has frequently been employed as a viral clearance step during downstream processing of biological therapeutics. When challenged with viruses having only slightly acidic isoelectric points, the performance of the anion exchange operation becomes highly dependent on the buffer salt concentration, with the virus log reduction value (LRV) dropping dramatically in buffers with 50–150 mM salt. In this work, a series of anion exchange membrane adsorbers utilizing alternative ligand chemistries instead of the traditional quaternary amine (Q) ligand have been developed that overcome this limitation. Four different ligands (agmatine, tris‐2‐aminoethyl amine, polyhexamethylene biguanide, and polyethyleneimine) achieved >5 LRV of bacteriophage ΦX174 (pI ~ 6.7) at pH 7.5 and up to 150 mM salt, compared to 0 LRV for the Q ligand. By evaluating structural derivatives of the successful ligands, three factors were identified that contributed to ligand salt tolerance: ligand net charge, ligand immobilization density on the membrane, and molecular structure of the ligand‐binding group. Based on the results of this study, membrane adsorbers that incorporate alternative ligands provide a more robust and salt tolerant viral clearance‐processing step compared to traditional strong anion exchange membrane adsorbers. Biotechnol. Bioeng. 2009;103: 920–929. © 2009 Wiley Periodicals, Inc. 相似文献
5.
Development of a modular virus clearance package for anion exchange chromatography operated in weak partitioning mode 下载免费PDF全文
Timothy Iskra Ashley Sacramo Chris Gallo Ranga Godavarti Shuang Chen Scott Lute Kurt Brorson 《Biotechnology progress》2015,31(3):750-757
Anion exchange chromatography (AEX) operated under weak partitioning mode has been proven to be a powerful polishing step as well as a robust viral clearance step in Pfizer's monoclonal antibody (mAb) platform purification process. A multivariate design of experiment (DoE) study was conducted to understand the impact of operating parameters and feedstream impurity levels on viral clearance by weak partitioning mode AEX. Bacteriophage was used initially as a surrogate for neutral and acidic isoelectric point mammalian viruses (e.g., retrovirus and parvovirus). Five different mAbs were used in the evaluation of process parameters such as load challenge (both product and impurities), load pH, load conductivity, and contact time (bed height and flow‐rate). The operating ranges obtained from phage clearance studies and Pfizer's historical data were used to define an appropriate operating range for a subsequent clearance study with model retrovirus and parvovirus. Both phage and virus clearance evaluations included feedstreams containing different levels of impurities such as high molecular mass species (HMMS), host cell proteins (HCPs), and host cell DNA. For all the conditions tested, over 5 log10 of clearance for both retrovirus and parvovirus was achieved. The results demonstrated that weak partitioning mode AEX chromatography is a robust step for viral clearance and has the potential to be included as part of the modular viral clearance approach. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:750–757, 2015 相似文献
6.
Lars Opitz Sylvia Lehmann Udo Reichl Michael W. Wolff 《Biotechnology and bioengineering》2009,103(6):1144-1154
Strategies to control outbreaks of influenza, a contagious respiratory tract disease, are focused mainly on prophylactic vaccinations in conjunction with antiviral medications. Currently, several mammalian cell culture‐based influenza vaccine production processes are being established, such as the technologies introduced by Novartis Behring (Optaflu®) or Baxter International Inc. (Celvapan). Downstream processing of influenza virus vaccines from cell culture supernatant can be performed by adsorbing virions onto sulfated column chromatography beads, such as Cellufine® sulfate. This study focused on the development of a sulfated cellulose membrane (SCM) chromatography unit operation to capture cell culture‐derived influenza viruses. The advantages of the novel method were demonstrated for the Madin Darby canine kidney (MDCK) cell‐derived influenza virus A/Puerto Rico/8/34 (H1N1). Furthermore, the SCM‐adsorbers were compared directly to column‐based Cellufine® sulfate and commercially available cation‐exchange membrane adsorbers. Sulfated cellulose membrane adsorbers showed high viral product recoveries. In addition, the SCM‐capture step resulted in a higher reduction of dsDNA compared to the tested cation‐exchange membrane adsorbers. The productivity of the SCM‐based unit operation could be significantly improved by a 30‐fold increase in volumetric flow rate during adsorption compared to the bead‐based capture method. The higher flow rate even further reduced the level of contaminating dsDNA by about twofold. The reproducibility and general applicability of the developed unit operation were demonstrated for two further MDCK cell‐derived influenza virus strains: A/Wisconsin/67/2005 (H3N2) and B/Malaysia/2506/2004. Overall, SCM‐adsorbers represent a powerful and economically favorable alternative for influenza virus capture over conventional methods using Cellufine® sulfate. Biotechnol. Bioeng. 2009;103: 1144–1154. © 2009 Wiley Periodicals, Inc. 相似文献
7.
Bhut BV Weaver J Carter AR Wickramasinghe SR Husson SM 《Biotechnology and bioengineering》2011,108(11):2654-2660
The surface-initiated polymerization protocol developed in part I was used to prepare strong anion-exchange membranes with variable polymer chain graft densities and degrees of polymerization for DNA and virus particle separations. A focus of part II was to evaluate the role of polymer nanolayer architecture on DNA and virus binding. Salmon sperm-DNA (SS-DNA) was used as model nucleic acid to measure the dynamic-binding capacities at 10% breakthrough. The dynamic-binding capacity increases linearly with increasing poly ([2-(methacryloyloxy)ethyl]trimethylammonium chloride) chain density up to the highest chain density used in this study. The new membranes yielded threefold higher SS-DNA-binding capacity (30 mg/mL) than a leading commercial membrane with the same functional group chemistry. Elution of bound DNA yielded a sharp peak, and resulted in a 13-fold increase relative to the feed concentration. This concentration effect further demonstrates the highly favorable transport properties of the newly designed Q-type membranes. However, unlike findings in part I on protein binding, SS-DNA binding was not fully reversible. Minute virus of mice (MVM) was used as model virus to evaluate the virus clearance performance of newly designed Q-type membranes. Log reduction of virus (LRV) of MVM increased with increasing polymer chain density. Membranes exhibited >4.5 LRV for the given MVM impurity load and may be capable of higher LRV values, as the MVM concentration in the flow-through fraction of these samples was below the limit of detection of the assay. 相似文献
8.
Bhut BV Weaver J Carter AR Wickramasinghe SR Husson SM 《Biotechnology and bioengineering》2011,108(11):2645-2653
This contribution describes the preparation of strong anion-exchange membranes with higher protein binding capacities than the best commercial resins. Quaternary amine (Q-type) anion-exchange membranes were prepared by grafting polyelectrolyte nanolayers from the surfaces of macroporous membrane supports. A focus of this study was to better understand the role of polymer nanolayer architecture on protein binding. Membranes were prepared with different polymer chain graft densities using a newly developed surface-initiated polymerization protocol designed to provide uniform and variable chain spacing. Bovine serum albumin and immunoglobulin G were used to measure binding capacities of proteins with different size. Dynamic binding capacities of IgG were measured to evaluate the impact of polymer chain density on the accessibility of large size protein to binding sites within the polyelectrolyte nanolayer under flow conditions. The dynamic binding capacity of IgG increased nearly linearly with increasing polymer chain density, which suggests that the spacing between polymer chains is sufficient for IgG to access binding sites all along the grafted polymer chains. Furthermore, the high dynamic binding capacity of IgG (>130 mg/mL) was independent of linear flow velocity, which suggests that the mass transfer of IgG molecules to the binding sites occurs primarily via convection. Overall, this research provides clear evidence that the dynamic binding capacities of large biologics can be higher for well-designed macroporous membrane adsorbers than commercial membrane or resin ion-exchange products. Specifically, using controlled polymerization leads to anion-exchange membrane adsorbers with high binding capacities that are independent of flow rate, enabling high throughput. Results of this work should help to accelerate the broader implementation of membrane adsorbers in bioprocess purification steps. 相似文献
9.
The impact of typical anion‐exchange flowthrough conditions on the IgG mass loading of an anion‐exchange membrane scale‐down unit (Mustang® Q coin) was investigated. High performance size‐exclusion chromatography and multiangle laser light scattering results suggested the presence of a small fraction of IgG aggregates with average radius >100 nm under anion‐exchange flowthrough conditions. The small filtration area presented by the 0.35 mL membrane volume Mustang® Q coin limited the membrane throughput due to fouling from the aggregates at higher antibody loading. Data in this report indicated that a 0.2 μm hybrid polyethersulfone and polyvinylidene fluoride membrane in‐line prefilter with a minimum filtration area of 20 sq cm alleviated the Mustang® Q coin fouling. The combined cake filtration and intermediate blocking model was proposed as the most likely membrane pore blocking mechanism. Increasing the filtration area in the in‐line prefilter resulted in higher IgG mass throughput. Thus, using an appropriately sized in‐line prefilter could provide more robust antibody throughput performance on scale‐down membrane anion‐exchange units. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010 相似文献
10.
Michael W. Wolff Sylvia Lehmann Sara Post Hansen Rene Djurup Rene Faber Udo Reichl 《Biotechnology and bioengineering》2010,105(4):761-769
Smallpox is an acute, highly infectious viral disease unique to humans, and responsible for an estimated 300–500 million deaths in the 20th century. Following successful vaccination campaigns through the 19th and 20th centuries, smallpox was declared eradicated by the World Health Organization in 1980. However, the threat of using smallpox as a biological weapon prompted efforts of some governments to produce smallpox vaccines for emergency preparedness. An additional aspect for the interest in smallpox virus is its potential use as a platform technology for vector vaccines. In particular, the latter requires a high safety level for routine applications. IMVAMUNE®, a third generation smallpox vaccine based on the attenuated Modified Vaccinia Ankara (MVA) virus, demonstrates superior safety compared to earlier generations and represents therefore an interesting choice as viral vector. Current downstream production processes of Vaccinia virus and MVA are mainly based on labor‐intensive centrifugation and filtration methods, requiring expensive nuclease treatment in order to achieve sufficient low host‐cell DNA levels for human vaccines. This study compares different ion exchange and pseudo‐affinity membrane adsorbers (MA) to capture chicken embryo fibroblast cell‐derived MVA‐BN® after cell homogenization and clarification. In parallel, the overall performance of classical bead‐based resin chromatography (Cellufine® sulfate and Toyopearl® AF‐Heparin) was investigated. The two tested pseudo‐affinity MA (i.e., sulfated cellulose and heparin) were superior over the applied ion exchange MA in terms of virus yield and contaminant depletion. Furthermore, studies confirmed an expected increase in productivity resulting from the increased volume throughput of MA compared to classical bead‐based column chromatography methods. Overall virus recovery was ~60% for both pseudo‐affinity MA and the Cellufine® sulfate resin. Depletion of total protein ranged between 86% and 102% for all tested matrices. Remaining dsDNA in the product fraction varied between 24% and 7% for the pseudo‐affinity chromatography materials. Cellufine® sulfate and the reinforced sulfated cellulose MA achieved the lowest dsDNA product contamination. Finally, by a combination of pseudo‐affinity with anion exchange MA a further reduction of host‐cell DNA was achieved. Biotechnol. Bioeng. 2010. 105: 761–769. © 2009 Wiley Periodicals, Inc. 相似文献
11.
The potential of viral contamination is a regulatory concern for continuous cell line-derived pharmaceutical proteins. Complementary and redundant safety steps, including an evaluation of the viral clearance capacity of unit operations in the purification process, are performed prior to registration and marketing of biotechnology pharmaceuticals. Because process refinement is frequently beneficial, CBER/FDA has published guidance facilitating process improvement by delineating specific instances where the bracketing and generic approaches are appropriate for virus removal validation. In this study, a generic/matrix study was performed using Q-Sepharose Fast Flow (QSFF) chromatography to determine if bracketing and generic validation can be applied to anion exchange chromatography. Key operational parameters were varied to upper and lower extreme values and the impact on viral clearance was assessed using simian virus 40 (SV40) as the model virus. Operational ranges for key chromatography parameters were identified where an SV40 log(10) reduction value (LRV) of >or=4.7 log(10) is consistently achieved. On the basis of the apparent robustness of SV40 removal by Q-anion exchange chromatography, we propose that the concept of "bracketed generic" validation can be applied to this and potentially other chromatography unit operations. 相似文献
12.
Optimization of cell culture‐derived influenza A virus particles purification using sulfated cellulose membrane adsorbers 下载免费PDF全文
Ana Raquel Fortuna Florian Taft Louis Villain Michael W. Wolff Udo Reichl 《Engineering in Life Science》2018,18(1):29-39
Downstream processing remains one of the biggest challenges in manufacturing of biologicals and vaccines. This work focuses on a Design of Experiments approach to understand factors influencing the performance of sulfated cellulose membrane adsorbers for the chromatographic purification of a cell culture‐derived H1N1 influenza virus strain (A/Puerto Rico/8/34). Membranes with a medium ligand density together with low conductivity and a high virus titer in the feed stream resulted in optimum virus yields and low protein and DNA content in the product fraction. Flow rate and salt concentration in the buffer used for elution were of secondary importance while membrane permeability had no significant impact on separation performance. A virus loss of 2.1% in the flow through, a yield of 57.4% together with a contamination level of 5.1 pgDNA HAU?1 and 1.2 ngprot HAU?1 were experimentally confirmed for the optimal operating point predicted. The critical process parameters identified and their optimal settings should support the optimization of sulfated cellulose membrane adsorbers based purification trains for other influenza virus strains, streamlining cell culture‐derived vaccine manufacturing. 相似文献
13.
14.
Strauss DM Gorrell J Plancarte M Blank GS Chen Q Yang B 《Biotechnology and bioengineering》2009,102(1):168-175
The mammalian cell-lines used to produce biopharmaceutical products are known to produce endogenous retrovirus-like particles and have the potential to foster adventitious viruses as well. To ensure product safety and regulatory compliance, recovery processes must be capable of removing or inactivating any viral impurities or contaminants which may be present. Anion exchange chromatography (AEX) is a common process in the recovery of monoclonal antibody products and has been shown to be effective for viral removal. To further characterize the robustness of viral clearance by AEX with respect to process variations, we have investigated the ability of an AEX process to remove three model viruses using various combinations of mAb products, feedstock conductivities and compositions, equilibration buffers, and pooling criteria. Our data indicate that AEX provides complete or near-complete removal of all three model viruses over a wide range of process conditions, including those typically used in manufacturing processes. Furthermore, this process provides effective viral clearance for different mAb products, using a variety of feedstocks, equilibration buffers, and different pooling criteria. Viral clearance is observed to decrease when feedstocks with sufficiently high conductivities are used, and the limit at which the decrease occurs is dependent on the salt composition of the feedstock. These data illustrate the robust nature of the AEX recovery process for removal of viruses, and they indicate that proper design of AEX processes can ensure viral safety of mAb products. 相似文献
15.
Michael W. Wolff Corina Siewert Sara Post Hansen Rene Faber Udo Reichl 《Biotechnology and bioengineering》2010,107(2):312-320
A purification scheme for cell culture‐derived smallpox vaccines based on an orthogonal downstream process of pseudo‐affinity membrane adsorbers (MA) and hydrophobic interaction chromatography (HIC) was investigated. The applied pseudo‐affinity chromatography, based on reinforced sulfated cellulose and heparin‐MA, was optimized in terms of dynamic binding capacities, virus yield and process productivity. HIC was introduced as a subsequent method to further reduce the DNA content. Therefore, two screens were undertaken. First, several HIC ligands were screened for different adsorption behavior between virus particles and DNA. Second, elution from pseudo‐affinity MA and adsorption of virus particles onto the hydrophobic interaction matrix was explored by a series of buffers using different ammonium sulfate concentrations. Eventually, variations between different cultivation batches and buffer conditions were investigated.The most promising combination, a sulfated cellulose membrane adsorber with subsequent phenyl HIC resulted in overall virus particle recoveries ranging from 76% to 55% depending on the product batch and applied conditions. On average, 61% of the recovered virus particles were infective within all tested purification schemes and conditions. Final DNA content varied from 0.01% to 2.5% of the starting material and the level of contaminating protein was below 0.1%. Biotechnol. Bioeng. 2010;107: 312–320. © 2010 Wiley Periodicals, Inc. 相似文献
16.
Development of a 3‐step straight‐through purification strategy combining membrane adsorbers and resins 下载免费PDF全文
Michael D. Hughson Thayana A. Cruz Rimenys J. Carvalho Leda R. Castilho 《Biotechnology progress》2017,33(4):931-940
The pressures to efficiently produce complex biopharmaceuticals at reduced costs are driving the development of novel techniques, such as in downstream processing with straight‐through processing (STP). This method involves directly and sequentially purifying a particular target with minimal holding steps. This work developed and compared six different 3‐step STP strategies, combining membrane adsorbers, monoliths, and resins, to purify a large, complex, and labile glycoprotein from Chinese hamster ovary cell culture supernatant. The best performing pathway was cation exchange chromatography to hydrophobic interaction chromatography to affinity chromatography with an overall product recovery of up to 88% across the process and significant clearance of DNA and protein impurities. This work establishes a platform and considerations for the development of STP of biopharmaceutical products and highlights its suitability for integration with single‐use technologies and continuous production methods. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:931–940, 2017 相似文献
17.
The ability to process high‐concentration monoclonal antibody solutions (> 10 g/L) through small‐pore membranes typically used for virus removal can improve current antibody purification processes by eliminating the need for feed stream dilution, and by reducing filter area, cycle‐time, and costs. In this work, we present the screening of virus filters of varying configurations and materials of construction using MAb solutions with a concentration range of 4–20 g/L. For our MAbs of interest—two different humanized IgG1s—flux decay was not observed up to a filter loading of 200 L/m2 with a regenerated cellulose hollow fiber virus removal filter. In contrast, PVDF and PES flat sheet disc membranes were plugged by solutions of these same MAbs with concentrations >4 g/L well before 50 L/m2. These results were obtained with purified feed streams containing <2% aggregates, as measured by size exclusion chromatography, where the majority of the aggregate likely was composed of dimers. Differences in filtration flux performance between the two MAbs under similar operating conditions indicate the sensitivity of the system to small differences in protein structure, presumably due to the impact of these differences on nonspecific interactions between the protein and the membrane; these differences cannot be anticipated based on protein pI alone. Virus clearance data with two model viruses (XMuLV and MMV) confirm the ability of hollow fiber membranes with 19 ± 2 nm pore size to achieve at least 3–4 LRV, independent of MAb concentration, over the range examined. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 相似文献
18.
Parvovirus retentive filters that assure removal of viruses and virus‐like particles during the production of therapeutic proteins significantly contribute to total manufacturing costs. Operational approaches that can increase throughput and reduce filtration area would result in a significant cost savings. A combination of methods was used to achieve high throughputs of an antibody or therapeutic protein solution through three parvovirus retentive filters. These methods included evaluation of diatomaceous earth or size‐based prefilters, the addition of additives, and the optimization of protein concentration, temperature, buffer composition, and solution pH. An optimum temperature of 35°C was found for maximizing throughput through the Virosart CPV and Viresolve Pro filters. Mass‐throughput values of 7.3, 26.4, and 76.2 kg/m2 were achieved through the Asahi Planova 20N, Virosart CPV, and Viresolve Pro filters, respectively, in 4 h of processing. Mass‐throughput values of 73, 137, and 192 kg/m2 were achieved through a Millipore Viresolve Pro filter in 4.0, 8.8, and 22.1 h of processing, respectively, during a single experiment. However, large‐scale parvovirus filtration operations are typically controlled to limit volumetric throughput to below the level achieved during small‐scale virus spiking experiments. The virus spike may cause significant filter plugging, limiting throughput. Therefore newer parvovirus filter spiking strategies should be adopted that may lead to more representative viral clearance data and higher utilization of large‐scale filter capacity. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010 相似文献
19.
Matthew Billups Mirko Minervini Melissa Holstein Hasin Feroz Swarnim Ranjan Jessica Hung Haiying Bao Zheng Jian Li Sanchayita Ghose Andrew L. Zydney 《Biotechnology progress》2022,38(2):e3231
Virus removal filtration is a critical step in the manufacture of monoclonal antibody products, providing a robust size-based removal of both enveloped and non-enveloped viruses. Many monoclonal antibodies show very large reductions in filtrate flux during virus filtration, with the mechanisms governing this behavior and its dependence on the properties of the virus filter and antibody remaining largely unknown. Experiments were performed using the highly asymmetric Viresolve® Pro and the relatively homogeneous Pegasus™ SV4 virus filters using a highly purified monoclonal antibody. The filtrate flux for a 4 g/L antibody solution through the Viresolve® Pro decreased by about 10-fold when the filter was oriented with the skin side down but by more than 1000-fold when the asymmetric filter orientation was reversed and used with the skin side up. The very large flux decline observed with the skin side up could be eliminated by placing a large pore size prefilter directly on top of the virus filter; this improvement in filtrate flux was not seen when the prefilter was used inline or as a batch prefiltration step. The increase in flux due to the prefilter was not related to the removal of large protein aggregates or to an alteration in the extent of concentration polarization. Instead, the prefilter appears to transiently disrupt reversible associations of the antibodies caused by strong intermolecular attractions. These results provide important insights into the role of membrane morphology and antibody properties on the filtrate flux during virus filtration. 相似文献