首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Anion exchange membrane adsorbers are used for contaminant removal in flow‐through polishing steps in the manufacture of biopharmaceuticals. This contribution describes the clearance of minute virus of mice, DNA, and host cell proteins by three commercially available anion‐exchange membranes: Sartobind Q, Mustang Q, and ChromaSorb. The Sartobind Q and Mustang Q products contain quaternary amine ligands; whereas, ChromaSorb contains primary amine based ligands. Performance was evaluated over a range of solution conditions: 0–200 mM NaCl, pH 6.0–9.0, and flow rates of 4–20 membrane volumes/min in the presence and absence of up to 50 mM phosphate and acetate. In addition contaminant clearance was determined in the presence and absence of 5 g/L monoclonal antibody. The quaternary amine based ligands depend mainly on Coulombic interactions for removal of negatively charged contaminants. Consequently, performance of Sartobind Q and Mustang Q was compromised at high ionic strength. Primary amine based ligands in ChromaSorb enable high capacities at high ionic strength due to the presence of secondary, hydrogen bonding interactions. However, the presence of hydrogen phosphate ions leads to reduced capacity. Monoclonal antibody recovery using primary amine based anion‐exchange ligands may be lower if significant binding occurs due to secondary interactions. The removal of a specific contaminant is affected by the level of removal of the other contaminants. The results of this study may be used to help guide selection of commercially available membrane absorbers for flow‐through polishing steps. Biotechnol. Bioeng. 2013; 110: 500–510. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
Chemical modification of macromolecular affinity chromatography ligands with polyethylene glycol chains or “PEGylation” can potentially improve selectivity by sterically suppressing non‐specific binding interactions without sacrificing binding capacity. For a commercial protein A affinity media and with yeast extract (YE) and fetal bovine serum (FBS) serving as mock contaminants, we found that the ligand accounted for more than 90% of the media‐associated non‐specific binding, demonstrating an opportunity for improvement. The IgG static binding affinity of protein A mono‐PEGylated with 5.0 and 20.7 kDa poly(ethylene glycol) chains was found to be preserved using a biomolecular interaction screening platform. Similar in situ PEGylations of the commercial protein A media were conducted and the modified media was functionally characterized with IgG solutions spiked with YE and FBS. Ligand PEGylation reduced the mass of media‐associated contaminants by a factor of two to three or more. Curiously, we also found an increase of up to 15% in the average recovery of IgG on elution after PEGylation. Combined, these effects produced an order of magnitude increase in the IgG selectivity on average when spiked with YE and a two‐ to three‐fold increase when spiked with FBS relative to the commercial media. Dynamic binding capacity and mass‐transfer resistance measurements revealed a reduction in dynamic capacity attributed to a decrease in IgG effective pore diffusivity and possibly slower IgG association kinetics for the PEGylated protein A ligands. Ligand PEGylation is a viable approach to improving selectivity in affinity chromatography with macromolecular ligands. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1364–1379, 2014  相似文献   

3.
Anion exchange chromatography (AEX) operated under weak partitioning mode has been proven to be a powerful polishing step as well as a robust viral clearance step in Pfizer's monoclonal antibody (mAb) platform purification process. A multivariate design of experiment (DoE) study was conducted to understand the impact of operating parameters and feedstream impurity levels on viral clearance by weak partitioning mode AEX. Bacteriophage was used initially as a surrogate for neutral and acidic isoelectric point mammalian viruses (e.g., retrovirus and parvovirus). Five different mAbs were used in the evaluation of process parameters such as load challenge (both product and impurities), load pH, load conductivity, and contact time (bed height and flow‐rate). The operating ranges obtained from phage clearance studies and Pfizer's historical data were used to define an appropriate operating range for a subsequent clearance study with model retrovirus and parvovirus. Both phage and virus clearance evaluations included feedstreams containing different levels of impurities such as high molecular mass species (HMMS), host cell proteins (HCPs), and host cell DNA. For all the conditions tested, over 5 log10 of clearance for both retrovirus and parvovirus was achieved. The results demonstrated that weak partitioning mode AEX chromatography is a robust step for viral clearance and has the potential to be included as part of the modular viral clearance approach. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:750–757, 2015  相似文献   

4.
5.
    
As upstream product titers increase, the downstream chromatographic capture step has become a significant “downstream bottleneck.” Precipitation becomes more attractive under these conditions as the supersaturation driving force increases with the ever-increasing titer. In this study, two precipitating reagents with orthogonal mechanisms, polyethylene glycol (PEG) as a volume excluder and zinc chloride (ZnCl2) as a cross linker, were examined as precipitants for two monoclonal antibodies (mAbs), one stable and the other aggregation-prone, in purified drug substance and harvested cell culture fluid forms. Manual batch solubility and redissolution experiments were performed as scouting experiments. A high throughput (HTP) liquid handling system was used to investigate the design space as fully as possible while reducing time, labor, and material requirements. Precipitation and redissolution were studied by systematically varying the concentrations of PEG and ZnCl2 to identify combinations that resulted in high yield and good quality for the stable mAb; PEG concentrations in the range 7–7.5 wt/vol% together with 10 mM ZnCl2 gave a yield of 97% and monomer contents of about 93%. While yield for the unstable mAb was high, quality was not acceptable. Performance at selected conditions was further corroborated for the stable mAb using a continuous tubular precipitation reactor at the laboratory scale. The HTP automation system was a powerful tool for locating desired (customized) conditions for antibodies of different physicochemical properties.  相似文献   

6.
         下载免费PDF全文
Recent studies have demonstrated that continuous countercurrent tangential chromatography (CCTC) can effectively purify monoclonal antibodies from clarified cell culture fluid. CCTC has the potential to overcome many of the limitations of conventional packed bed protein A chromatography. This paper explores the optimization of CCTC in terms of product yield, impurity removal, overall productivity, and buffer usage. Modeling was based on data from bench‐scale process development and CCTC experiments for protein A capture of two clarified Chinese Hamster Ovary cell culture feedstocks containing monoclonal antibodies provided by industrial partners. The impact of resin binding capacity and kinetics, as well as staging strategy and buffer recycling, was assessed. It was found that optimal staging in the binding step provides better yield and increases overall system productivity by 8–16%. Utilization of higher number of stages in the wash and elution steps can lead to significant decreases in buffer usage (~40% reduction) as well as increased removal of impurities (~2 log greater removal). Further reductions in buffer usage can be obtained by recycling of buffer in the wash and regeneration steps (~35%). Preliminary results with smaller particle size resins show that the productivity of the CCTC system can be increased by 2.5‐fold up to 190 g of mAb/L of resin/hr due to the reduction in mass transfer limitations in the binding step. These results provide a solid framework for designing and optimizing CCTC technology for capture applications. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:430–439, 2016  相似文献   

7.
The ability to process high‐concentration monoclonal antibody solutions (> 10 g/L) through small‐pore membranes typically used for virus removal can improve current antibody purification processes by eliminating the need for feed stream dilution, and by reducing filter area, cycle‐time, and costs. In this work, we present the screening of virus filters of varying configurations and materials of construction using MAb solutions with a concentration range of 4–20 g/L. For our MAbs of interest—two different humanized IgG1s—flux decay was not observed up to a filter loading of 200 L/m2 with a regenerated cellulose hollow fiber virus removal filter. In contrast, PVDF and PES flat sheet disc membranes were plugged by solutions of these same MAbs with concentrations >4 g/L well before 50 L/m2. These results were obtained with purified feed streams containing <2% aggregates, as measured by size exclusion chromatography, where the majority of the aggregate likely was composed of dimers. Differences in filtration flux performance between the two MAbs under similar operating conditions indicate the sensitivity of the system to small differences in protein structure, presumably due to the impact of these differences on nonspecific interactions between the protein and the membrane; these differences cannot be anticipated based on protein pI alone. Virus clearance data with two model viruses (XMuLV and MMV) confirm the ability of hollow fiber membranes with 19 ± 2 nm pore size to achieve at least 3–4 LRV, independent of MAb concentration, over the range examined. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

8.
    
Viral safety is a critical concern with regard to monoclonal antibody (mAb) products produced in mammalian cells such as Chinese hamster ovary cells. Manufacturers are required to ensure the safety of such products by validating the clearance of viruses in downstream purification steps. Cation exchange (CEX) chromatography is widely used in bind/elute mode as a polishing step in mAb purification. However, bind/elute modes require a large volume of expensive resin. To reduce the production cost, the use of CEX chromatography in overloaded mode has recently been investigated. The viral clearance ability in overloaded mode was evaluated using murine leukemia virus (MLV). Even under high-load conditions such as 2,000 g mAb/L resin, MLV was removed from mAb solutions. This viral clearance ability was not significantly affected by resin type or mAb type. The overloaded mode can also remove other types of viruses such as pseudorabies virus and reovirus Type 3 from mAb solutions. Based on these results, this cost-effective overloaded mode is comparable to the bind-elute mode in terms of viral removal.  相似文献   

9.
大肠杆菌(E.coli)重组表达获得的重组人瘦素蛋白(rh-leptin),复性、纯化后进行SDS-PAGE电泳和Western-blot印迹杂交鉴定其免疫学活性,免疫小鼠后制备单克隆抗体,结果表明通过对rh-leptin进行复性和纯化,获得了高纯度的具有免疫学活性的rh-leptin蛋白,并获得一株稳定分泌抗rh-leptin单抗的杂交瘤细胞株。瘦素蛋白的纯化及其单克隆抗体的制备,可供瘦素进一步研究应用。  相似文献   

10.
    
The potential of viral contamination is a regulatory concern for continuous cell line-derived pharmaceutical proteins. Complementary and redundant safety steps, including an evaluation of the viral clearance capacity of unit operations in the purification process, are performed prior to registration and marketing of biotechnology pharmaceuticals. Because process refinement is frequently beneficial, CBER/FDA has published guidance facilitating process improvement by delineating specific instances where the bracketing and generic approaches are appropriate for virus removal validation. In this study, a generic/matrix study was performed using Q-Sepharose Fast Flow (QSFF) chromatography to determine if bracketing and generic validation can be applied to anion exchange chromatography. Key operational parameters were varied to upper and lower extreme values and the impact on viral clearance was assessed using simian virus 40 (SV40) as the model virus. Operational ranges for key chromatography parameters were identified where an SV40 log(10) reduction value (LRV) of >or=4.7 log(10) is consistently achieved. On the basis of the apparent robustness of SV40 removal by Q-anion exchange chromatography, we propose that the concept of \"bracketed generic\" validation can be applied to this and potentially other chromatography unit operations.  相似文献   

11.
12.
Controlling viral contamination is an important issue in the process development of monoclonal antibodies (MAbs) produced from mammalian cell lines. Virus filtration (VF) has been demonstrated to be a robust and effective clearance step which can provide ≥4 logs of reduction via size exclusion. The minimization of VF area by increasing flux and filter loading is critical to achieving cost targets as VFs are single use and often represent up to 10% of total purification costs. The research presented in this publication describes a development strategy focused on biophysical attributes of product streams that are directly applicable to VF process performance. This article summarizes a case study where biophysical tools (high‐pressure size exclusion chromatography, dynamic light scattering, and absolute size exclusion chromatography) were applied to a specific MAb program to illustrate how changes in feed composition (pH, sodium chloride concentration, and buffer salt type) can change biophysical properties which correlate with VF performance. The approach was subsequently refined and expanded over the course of development of three MAbs where performance metrics (i.e., loading and flux) were evaluated for two specific virus filters (Viresolve Pro and Planova 20N) during both unspiked control runs and virus clearance experiments. The analyses of feed attributes can be applied to a decision tree to guide the recommendation of a VF filter and operating conditions for use in future MAb program development. The understanding of the biophysical properties of the feed can be correlated to virus filter performance to significantly reduce the mass of product, time, and costs associated with virus filter step development. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:765–774, 2015  相似文献   

13.
Monoclonal antibodies (mAbs) are the most important family of biopharmaceutical compounds in terms of market share. At present, 30 mAbs have been approved and are now commercialized for therapeutic purposes. mAbs are typically produced by mammalian cell culture in bioreactors that range in scale of 1–20 m3. Regardless of scale, from laboratory to commercial settings, the recovery and purification of mAbs present important challenges. Depending on the scale, the particular product, and the type of production process (bioreactor operation, process time, complexity of the culture media, cell density, etc.), many possible downstream configurations are possible and have been used. In this contribution, we review each type of unit operation that forms a downstream train for mAb production. We provide information regarding typical operation settings and critical variables for centrifugation, ultrafiltration, affinity chromatography, ion exchange chromatography, and viral removal operations. In addition, we discuss some important considerations required for the formulation of drugs based on mAbs. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 28: 899–916, 2012  相似文献   

14.
Clearance of impurities such as viruses, host cell protein (HCP), and DNA is a critical purification design consideration for manufacture of monoclonal antibody therapeutics. Anion exchange chromatography has frequently been utilized to accomplish this goal; however, anion exchange adsorbents based on the traditional quaternary amine (Q) ligand are sensitive to salt concentration, leading to reduced clearance levels of impurities at moderate salt concentrations (50–150 mM). In this report, membrane adsorbers incorporating four alternative salt tolerant anion exchange ligands were examined for impurity clearance: agmatine, tris‐2‐aminoethyl amine, polyhexamethylene biguanide (PHMB), and polyethyleneimine. Each of these ligands provided greater than 5 log reduction value (LRV) for viral clearance of phage ?X174 (pI ~ 6.7) at pH 7.5 and phage PR772 (pI ~ 4) at pH 4.2 in the presence of salt. Under these same conditions, the commercial Q membrane adsorber provided no clearance (zero LRV). Clearance of host‐cell protein at pH 7.5 was the most challenging test case; only PHMB maintained 1.5 LRV in 150 mM salt. The salt tolerance of PHMB was attributed to its large positive net charge through the presence of multiple biguanide groups that participated in electrostatic and hydrogen bonding interactions with the impurity molecules. On the basis of the results of this study, membrane adsorbers that incorporate salt tolerant anion exchange ligands provide a robust approach to impurity clearance during the purification of monoclonal antibodies. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

15.
    
One measure taken to ensure safety of biotherapeutics produced in mammalian cells is to demonstrate the clearance of potential viral contaminants by downstream purification processes. This paper provides evidence that cation exchange chromatography (CEX), a widely used polishing step for monoclonal antibody (mAb) production, can effectively and reproducibly remove xMuLV, a retrovirus used as a model of non‐infectious retrovirus‐like particles found in Chinese hamster ovary cells. The dominant mechanism for xMuLV clearance by the strong cation exchanger, Fractogel SO, is by retention of the virus via adsorption instead of inactivation. Experimental data defining the design space for effective xMuLV removal by Fractogel SO with respect to operational pH, elution ionic strength, loading, and load/equilibration buffer ionic strength are provided. Additionally, xMuLV is able to bind to other CEX resins, such as Fractogel COO? and SP Sepharose Fast Flow, suggesting that this phenomenon is not restricted to one type of CEX resin. Taken together, the data indicate that CEX chromatography can be a robust and reproducible removal step for the model retrovirus xMuLV. Biotechnol. Bioeng. 2012;109: 157–165. © 2011 Wiley Periodicals, Inc.  相似文献   

16.
         下载免费PDF全文
Protein A chromatography has been used as the mAb capture step in the majority of FDA submissions. In this study, the performance of protein A chromatography, as indicated by capacity, operational flow rate, and productivity (rate of mAb production per liter of resin) was examined over its full history to gain insights into the reasons for its consistent use. Protein A productivity and capacity have increased 4.3 and 5.5% a year, respectively, since 1978. In contrast, protein A operational flow rate increased between 1978 and 2001 and then remained constant or declined as further improvements provided only marginal benefits. The productivity of protein A resin and also the mAb bioreactor titer (14% growth) rapidly improved starting in about 1990 to economically provide material for clinical trials. Technology improvement is typically driven by product sales. The sales of protein A resin, as indicated by sales of protein A ligand (21% growth), have closely paralleled the sales of mAbs (20% growth). Both increased rapidly in 2000 after the first major mAb therapeutics were approved and the markets were developed. It is likely that alternatives to protein A chromatography have not been implemented because of the order of magnitude improvement in protein A performance. Protein A membrane adsorbers and monoliths have higher productivity than packed columns due to their short bed heights and high operational flow rates. These devices are not currently practical for large‐scale manufacturing but may represent a format for future improvements in protein A productivity. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1193–1202, 2016  相似文献   

17.
The theoretical potential for virus transmission by monoclonal antibody based therapeutic products has led to the inclusion of appropriate virus reduction steps. In this study, virus elimination by the chromatographic steps used during the purification process for two (IgG‐1 & ?3) monoclonal antibodies (MAbs) have been investigated. Both the Protein G (>7log) and ion‐exchange (5 log) chromatography steps were very effective for eliminating both enveloped and non‐enveloped viruses over the life‐time of the chromatographic gel. However, the contribution made by the final gel filtration step was more limited, i.e., 3 log. Because these chromatographic columns were recycled between uses, the effectiveness of the column sanitization procedures (guanidinium chloride for protein G or NaOH for ion‐exchange) were tested. By evaluating standard column runs immediately after each virus spiked run, it was possible to directly confirm that there was no cross contamination with virus between column runs (guanidinium chloride or NaOH). To further ensure the virus safety of the product, two specific virus elimination steps have also been included in the process. A solvent/detergent step based on 1% triton X‐100 rapidly inactivating a range of enveloped viruses by >6 log inactivation within 1 min of a 60 min treatment time. Virus removal by virus filtration step was also confirmed to be effective for those viruses of about 50 nm or greater. In conclusion, the combination of these multiple steps ensures a high margin of virus safety for this purification process. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1341–1347, 2014  相似文献   

18.
    
The mammalian cell-lines used to produce biopharmaceutical products are known to produce endogenous retrovirus-like particles and have the potential to foster adventitious viruses as well. To ensure product safety and regulatory compliance, recovery processes must be capable of removing or inactivating any viral impurities or contaminants which may be present. Anion exchange chromatography (AEX) is a common process in the recovery of monoclonal antibody products and has been shown to be effective for viral removal. To further characterize the robustness of viral clearance by AEX with respect to process variations, we have investigated the ability of an AEX process to remove three model viruses using various combinations of mAb products, feedstock conductivities and compositions, equilibration buffers, and pooling criteria. Our data indicate that AEX provides complete or near-complete removal of all three model viruses over a wide range of process conditions, including those typically used in manufacturing processes. Furthermore, this process provides effective viral clearance for different mAb products, using a variety of feedstocks, equilibration buffers, and different pooling criteria. Viral clearance is observed to decrease when feedstocks with sufficiently high conductivities are used, and the limit at which the decrease occurs is dependent on the salt composition of the feedstock. These data illustrate the robust nature of the AEX recovery process for removal of viruses, and they indicate that proper design of AEX processes can ensure viral safety of mAb products.  相似文献   

19.
    
In the production of monoclonal antibodies (mAbs) intended for use in humans, it is a global regulatory requirement that the manufacturing process includes unit operations that are proven to inactivate or remove adventitious agents to ensure viral safety. Viral inactivation by low pH hold (LPH) is typically used to ensure this viral safety in the purification process of mAbs and other biotherapeutics derived from mammalian cell lines. To ascertain the effectiveness of the LPH step, viral clearance studies have evaluated LPH under worst-case conditions of pH above the manufacturing set point and hold duration at or below the manufacturing minimum. Highly acidic conditions (i.e., pH < 3.60) provide robust and effective enveloped virus inactivation but may lead to reduced product quality of the therapeutic protein. However, when viral inactivation is operated above pH 3.60 to ensure product stability, effective (>4 log10 reduction factor) viral inactivation may not be observed under these worst-case pH conditions in viral clearance studies. A multivariate design of experiments was conducted to further characterize the operating space for low pH viral inactivation of a model retrovirus, xenotropic murine leukemia virus (X-MuLV). The statistically designed experiment evaluated the effect of mAb isotype, pH, temperature, acid titrant, sodium chloride (NaCl) concentration, virus spike timing, and post-spike filtration on X-MuLV inactivation. Data from the characterization study were used to generate predictive models to identify conditions that reliably achieve effective viral inactivation at pH ≥ 3.60. Results of the study demonstrated that NaCl concentration has the greatest effect on virus inactivation in the range studied, and pH has a large effect when the load material has no additional NaCl. Overall, robust and effective inactivation of X-MuLV at pH 3.65–3.80 can be achieved by manipulating either the pH or the NaCl concentration of the load material. This study contributes to the understanding of ionic strength as an influential parameter in low pH viral inactivation studies.  相似文献   

20.
    
In the production of biopharmaceuticals such as monoclonal antibodies (mAbs) and vaccines, the residual amounts of host-cell proteins (HCPs) are among the critical quality attributes. In addition to overall HCP levels, individual HCPs may elude purification, potentially causing issues in product stability or patient safety. Such HCP persistence has been attributed mainly to biophysical interactions between individual HCPs and the product, resin media, or residual chromatin particles. Based on measurements on process streams from seven mAb processes, we have found that HCPs in aggregates, not necessarily chromatin-derived, may play a significant role in the persistence of many HCPs. Such aggregates may also hinder accurate detection of HCPs using existing proteomics methods. The findings also highlight that certain HCPs may be difficult to remove because of their functional complementarity to the product; specifically, chaperones and other proteins involved in the unfolded protein response (UPR) are disproportionately present in the aggregates. The methods and findings described here expand our understanding of the origins and potential behavior of HCPs in cell-based biopharmaceutical processes and may be instrumental in improving existing techniques for HCP detection and clearance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号