首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, the exposure to radio frequency electromagnetic fields was studied in close proximity (distances of 10, 100, 300, and 600 mm) to six base station antennas. The specific absorption rate (SAR) in 800 mm × 500 mm × 200 mm box phantom as well as unperturbed electric field (E) in air was measured. The results were used to determine whether the measurement of local maximum of unperturbed electric field can be used as a compliance check for local exposure. Also, the conservativeness of this assessment method compared to the ICNIRP basic restriction was studied. Moreover, the assessment of whole‐body exposure was discussed and the distance ranges presented in which the ICNIRP limit for local exposure could be exceeded before the limit for whole‐body SAR. These results show that the electric field measurement alone can be used for easy compliance check for the local exposure at all distances and for all antenna types studied. However, in some cases when the local peak value of E was compared directly to the ICNIRP reference level for unperturbed E, the exposure was overestimated only very slightly (by factor 1.1) compared to the basic restriction for localized SAR in a human, and hence these results can not be generalized to all antenna types. Moreover, it was shown that the limit for localized exposure could be exceeded before the limit for the whole‐body average SAR, if the distance to the antenna was less than 240 mm. Bioelectromagnetics 30:307–312, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Measurements of the flux density and spectra of magnetic fields (MFs) generated by several types of electric bed heaters (EBH) were made in order to characterize the MFs to which the fetus may be exposed in utero from the mother's use of these devices. Data on MFs were gathered from more than 1,300 in-home and laboratory spot measurements. In-home measurements taken at seven different positions 10 cm from the EBHs determined that the mean flux density at the estimated position of the fetus relative to the device was 0.45 μT (4.5 mG) for electric blankets and 0.20 μT (2.0 mG) for electrically heated water beds. A rate-of-change (RC) metric applied to the nighttime segment of 24 h EMDEX-C personal-dosimeter measurements, which were taken next to the bed of volunteers, yielded an approximate fourfold to sixfold higher value for electric blanket users compared to water-bed heater users. These same data records yielded an approximate twofold difference for the same measurements when evaluated by the time-weighted-average (TWA) MF exposure metric. Performance of exposure meters was checked against standard fields generated in the laboratory, and studies of sources of variance in the in-home measurement protocols were carried out. Spectral measurements showed that the EBH's measured produced no appreciable high-frequency MFs. Data gathered during this work will be used in interpreting results from a component of the California Pregnancy Outcome Study, which evaluates the use of EBHs as a possible risk factor in miscarriage. © 1996 Wiley-Liss, Inc.  相似文献   

3.
Low-voltage electric fields were measured in conductive tissue culture media using three techniques: voltage slope, current density-conductivity, and dipole methods. All three methods tested yielded comparable results. However, all three techniques have associated errors. These errors fall into three major categories: those associated with the measurement equipment, those associated with electrodes, and errors in cross-sectional area measurements. Each source of error is discussed so that all can be taken into account during construction and/or testing of exposure equipment.  相似文献   

4.
The snouts of rats were placed in a 60-Hz electric field at an unperturbed field strength of 50 kV/m. A count of the number of vibrissae that moved in the field was made on a series of rats over a number of days where the laboratory humidity varied from 25% to 48%. The number observed to vibrate fell from nine to zero or one at relative humidities between 25% and 39%, respectively.  相似文献   

5.
Summary A digital registration system used with temperature- and humidity-controlled cuvettes for net photosynthesis and transpiration measurements in the field is described. The associated errors of the measured parameters and calculated data are estimated. The digitalization is based on an analogue registration which is of primary importance in the control of experimental conditions in the cuvettes. The digital system is connected to the analogue registration in series. The error associated with digitalization is 0.1% across 70% of the scale. This error increases to 0.2% between 3 and 30% on the scale due to a minor lack of linearity. The reproducibility of the digitalization is ±0.024%.The error associated with data transfer in the digitalization and the errors of the analogue registration are estimated for temperature and humidity measurements (error of air and leaf temperature is ±0.1° C; error of the dew point temperature is ±1.1° C dew point). The effect of these errors on the calculation of relative humidity and the water vapour difference between the leaf and the air is determined using the progressive error law. At 30° C and 50% relative humidity, the error in relative humidity is ±7.4%, the error for the water vapour difference is ±6.6%. The dependence of these errors on temperature and humidity is shown.The instrument error of the net photosynthesis measurement is calculated to be ±4.2%. Transpiration measurements have an average inaccuracy of ±8.3%. The total diffusion resistance which is calculated from values of transpiration and the water vapour difference has an average error of ±10.9%. The sizeable influence of errors in humidity and temperature measurements on the calculated diffusion resistance is demonstrated. The additional influence of biological errors associated with field measurements is discussed.  相似文献   

6.
The purpose of this study was to evaluate residential short term "spot" measurements as surrogates for long term personal magnetic field (MF) exposure. In an epidemiological study on birth weight and pregnancy delay, MF exposure was assessed by taking five spot measurements in each room. For a subsample of 30 subjects 24 h personal MF measurements were made, and the following exposure metrics were calculated: 24 h arithmetic mean, 24 h median, percentage of time above 0.15 microT, and percentage of time above 0.29 microT. The 24 h exposure metrics were used as gold standards, when evaluating the validity of various summary measures calculated from spot measurements for assessing personal exposure. Based on Spearman correlation coefficient (r), specificity and sensitivity, the average of the spot measurements of a residence resulted in least exposure measurement error (misclassification). Also the above bed spot value correlated better with the 24 h metrics than any room average. Spot measurements performed about equally well in predicting different types of exposure metrics.  相似文献   

7.
Magnetic field systems were added to existing electric field exposure apparatuses for exposing cell suspensions in vitro and small animals in vivo. Two horizontally oriented, rectangular coils, stacked one directly above the other, have opposite electric currents. This configuration minimizes leakage fields and allows sham- and field-exposure systems to be placed in the same room or incubator. For the in vitro system, copper plates formed the loop-pair, with up to 900 A supplied by a 180:1 transformer. Electric fields were supplied via electrodes at the ends of cell-culture tubes, eight of which can be accommodated by each exposure system. Two complete systems are situated in an incubator to allow simultaneous sham and field exposure up to 1 mT. For the in vivo system, four pairs of 0.8 x 2.7-m coils made of copper bus bar are employed. This arrangement is energized from the power grid via a 30:1 transformer; horizontal magnetic flux densities up to 1 mT can be generated. Pairs of electrode plates spaced 30.5 cm apart provide electric field exposure of up to 130 kV/m. Four systems with a capacity of 48 rats each are located in one room. For both the in vitro and in vivo systems, magnetic exposure fields are uniform to within +/- 2.5%, and sham levels are at least 2,500-fold lower than exposure levels. Potential confounding factors, such as heating and vibration, were examined and found to be minimal.  相似文献   

8.
A computational fluid dynamics (CFD) model describing the flow, electric field and temperature distribution of a laboratory‐scale pulsed electric field (PEF) treatment chamber with co‐field electrode configuration was developed. The predicted temperature increase was validated by means of integral temperature studies using thermocouples at the outlet of each flow cell for grape juice and salt solutions. Simulations of PEF treatments revealed intensity peaks of the electric field and laminar flow conditions in the treatment chamber causing local temperature hot spots near the chamber walls. Furthermore, thermal inactivation kinetics of lactoperoxidase (LPO) dissolved in simulated milk ultrafiltrate were determined with a glass capillary method at temperatures ranging from 65 to 80°C. Temperature dependence of first order inactivation rate constants was accurately described by the Arrhenius equation yielding an activation energy of 597.1 kJ mol?1. The thermal impact of different PEF processes on LPO activity was estimated by coupling the derived Arrhenius model with the CFD model and the predicted enzyme inactivation was compared to experimental measurements. Results indicated that LPO inactivation during combined PEF/thermal treatments was largely due to thermal effects, but 5–12% enzyme inactivation may be related to other electro‐chemical effects occurring during PEF treatments. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

9.
A magnetic field exposure laboratory has been constructed to support National Toxicology Program studies for the evaluation of the toxicity and carcinogenicity of pure, linearly polarized, 60 Hz magnetic fields in rodents. This dual corridor, controlled access facility can support the simultaneous exposure of 1200 rats and 1200 mice. The facility contains fully redundant electrical and environmental control systems and was constructed using non‐metallic materials to maintain low levels of background (ambient), stray, and cross‐talk magnetic fields. The exposure module design provides for large uniform exposure volumes with good control of stray and cross‐talk fields, while allowing the use of roll‐around cage racks for simplified animal husbandry. Stray fields and cross‐talk have been further reduced by the inclusion of “steering coils” in each exposure module. Ambient 60 Hz fields (less cross‐talk) in all exposure rooms are <0.1 μT (1 mG), and static magnetic fields have been mapped extensively. Magnetic field strength, waveform, temperature, relative humidity, light intensity, noise level, vibration, and air flow in all animal holding areas are tightly regulated, and are monitored continuously during all studies. Field uniformity in the animal exposure volumes is better than ±10%; a systematic program of cage, rack, and room rotation controls for possible positional effects within the exposure system. Magnetic fields are turned on and off over multiple cycles to prevent the induction of transients associated with abrupt field level changes. Total harmonic distortion is <3% at all field strengths. The facility has been used to study magnetic field bioeffects in rodent model systems in experiments ranging in duration from 8 weeks to 2 years. Bioelectromagnetics 20:13–23, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

10.
The incomplete understanding of the relation between power-frequency fields and biological responses raises problems in defining an appropriate metric for exposure assessment and epidemiological studies. Based on evidence from biological experiments, one can define alternative metrics or effects functions that embody the relationship between field exposure patterns and hypothetical health effects. In this paper, we explore the application of the “effects function” approach to occupational exposure data. Our analysis provides examples of exposure assessments based on a range of plausible effects functions. An EMDEX time series data set of ELF frequency (40–800 Hz) magnetic field exposure measurements for electric utility workers was analyzed with several statistical measures and effects functions: average field strength, combination of threshold and exposure duration, and field strength changes. Results were compared for eight job categories: electrician, substation operator, machinist, welder, plant operator, lineman/splicer, meter reader, and clerical. Average field strength yields a different ranking for these job categories than the ranks obtained using other biologically plausible effects functions. Whereas the group of electricians has the highest exposure by average field strength, the group of substation operators has the highest ranking for most of the other effects functions. Plant operators rank highest in the total number of field strength changes greater than 1 μT per hour. The clerical group remains at the lowest end for all of these effects functions. Our analysis suggests that, although average field strength could be used as a surrogate of field exposure for simply classifying exposure into “low” and “high,” this summary measure may be misleading in the relative ranking of job categories in which workers are in “high” fields. These results indicate the relevance of metrics other than average field strength in occupational exposure assessment and in the design and analysis of epidemiological studies. Bioelectromagnetics 18:365–375, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Fertilized eggs of Gallus domesticus were exposed continuously during their 21-day incubation period to either 50- or 60-Hz sinusoidal electric fields at an average intensity of 10 Vrms/m. The exposure apparatus was housed in an environmental room maintained at 37 degrees C and 55-60% relative humidity (RH). Within 1.5 days after hatching, the chickens were removed from the apparatus and tested. The test consisted of examining the effect of 50- or 60-Hz electromagnetic fields at 15.9 Vrms/m and 73 nTrms (in a local geomagnetic field of 38 microT, 85 degrees N) on efflux of calcium ions from the chicken brain. For eggs exposed to 60-Hz electric fields during incubation, the chicken brains demonstrated a significant response to 50-Hz fields but not to 60-Hz fields, in agreement with the results from commercially incubated eggs [Blackman et al., 1985a]. In contrast, the brains from chicks exposed during incubation to 50-Hz fields were not affected by either 50- or 60-Hz fields. These results demonstrate that exposure of a developing organism to ambient power-line-frequency electric fields at levels typically found inside buildings can alter the response of brain tissue to field-induced calcium-ion efflux. The physiological significance of this finding has yet to be established.  相似文献   

12.
The relation between the incident electromagnetic field strength and both the whole‐body and the local specific absorption rate (SAR) was investigated for typical heterogeneous exposure scenarios for frequencies relevant for mobile communication. The results were compared to results from plane wave exposure. Heterogeneous exposure arises from multiple path propagation of the electromagnetic waves to the location of interest. It is shown that plane wave exposure does not represent worst‐case exposure conditions. When the electric field strength arising at plane wave exposure is compared to the electric field strength averaged over the volume of the human body occurring during multipath exposure, 12% of all heterogeneous cases examined represent worse exposure conditions than plane wave exposure for whole‐body exposure at 946 MHz, 15% at 1840 MHz, and 22% at 2140 MHz. The deviation between plane wave and heterogeneous whole‐body SAR ranges from ?54% to 54%. For partial‐body SAR averaged over 10 g of tissue, a range from ?93% to 209% was found when comparing multiple wave exposure to single incoming plane waves. The investigations performed using the Visible Human as phantom showed that the basic restrictions are met as long as the reference levels are not exceeded. However, this must not be necessarily the case when different phantoms are used to perform similar investigations because recent studies demonstrated that reference levels might not be conservative when phantoms of children are used. Therefore, the results of this work indicate the need to extend the investigations to numerical simulations with additional human phantoms representing parts of the human population having different anatomy and morphology compared to the phantom used within the frame of this project. This also applies to phantoms of children. Bioelectromagnetics 30:651–662, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Several reports have suggested that the nervous system can be affected by exposure to electric fields and that these effects may have detrimental health consequences for the exposed organism. The purpose of this study was to investigate the effects of chronic (30-day) exposure of rats to a 60Hz, 100-kV/m electric field on synaptic transmission and peripheral-nerve function. One hundred forty-four rats, housed in individual polycarbonate cages were exposed to uniform, vertical, 60-Hz electric fields in a system free of corona discharge and ozone formation and in which the animals did not receive spark discharges or other shocks during exposure. Following 30 days of exposure to the electric field, superior cervical sympathetic ganglia, vagus and sciatic nerves were removed from rats anesthetized with urethan, placed in a temperature-controlled chamber, and superfused with a modified mammalian Ringer's solution equilibrated with 95% O2 and 5% CO2. Several measures and tests were used to characterize synaptic transmission and peripheral-nerve function. These included amplitude, area, and configuration of the postsynaptic or whole-nerve compound-action potential; conduction velocity; accommodation; refractory period; strength-duration curves; conditioning-test (C-T) response, frequency response; post-tetanic response; and high-frequency-induced fatigue. The results of a series of neurophysiologic tests and measurements indicate that only synaptic transmission is significantly and consistently affected by chronic (30-day) exposure to a 60-Hz, 100-kV/m electric field. Specifically, and increase in synaptic excitability was detected in replicated measurements of the C-T response ratio. In addition, there are trends in other data that can be interpreted to suggest a generalized increase in neuronal excitability in exposed animals.  相似文献   

14.
The thermographic method for determining specific absorption rate (SAR) in animals and models of tissues or bodies exposed to electromagnetic fields was applied to the problem of quantifying the current distribution in homogeneous bodies of arbitrary shape exposed to 60-Hz electric fields. The 60-Hz field exposures were simulated by exposing scale models of high electrical conductivity to 57.3-MHz VHF fields of high strength in a large 3.66 × 3.66 × 2.44-m TE101 mode resonant cavity. After exposure periods of 2–30 s, the models were quickly disassembled so that the temperature distribution (maximum value up to 7 °C) along internal cross-sectional planes of the model could be recorded thermographically. The SAR, W′, calculated from the temperature changes at any point in the scale model was used to determine the SAR, W, for a full-scale model exposed to a 60-Hz electric field of the same strength by the relation W = (60/ f2 · (σ′/σ) · W′ where f′ is the model exposure frequency, σ′ is the conductivity of the scale model at the VHF exposure frequency, and σ is the conductivity of the full-scale subject at 60 Hz. The SAR was used to calculate either the electric field strength or the current density for the full-scale subject. The models were used to simulate the exposure of the full-scale subject located either in free space or in contact with a conducting ground plane. Measurements made on a number of spheroidal models with axial ratios from 1 to 10 and conductivity from 1 to 10 s/m agreed well with theoretical predictions. Maximum current densities of 200 nA/cm2 predicted in the ankles of man models and 50 nA/cm2 predicted in the legs of pig models exposed to 60-Hz fields at 1kV/m agreed well with independent measurements on full-scale models.  相似文献   

15.
16.
This paper demonstrates the application of effects function analysis to residential magnetic field exposure, focusing on appliance sources and mitigation choices. Residential field exposure time series were synthesized by using a sample of background household field measurements, a model of average daily appliance use, and a small sample of EMDEX data of field exposure from 12 household appliances. Four alternative effects functions (average field strength with or without a threshold, field strength window, sudden field changes) were simulated by using the synthesized time series data for different exposure situations, such as high and low levels of appliance use, simple avoidance, and use of a set of hypothetical “low field” appliances (50% lower fields). In particular, field exposure from the use of bedside clocks and electric blankets was examined. Results demonstrate that the choice of effects function is critical for the ranks of field sources and exposure reduction choices. For the effects function of average field strength with or without a threshold, exposure from background fields dominated exposure from all appliances except for bedside clocks and electric blankets. In the case of the field strength window effects function, the dominant field sources changed with the width of the window. For the effects function based on rapid field changes, appliance use was the major source of exposure. Because of the small sample size of our data set and other simplifications, specific results should be viewed as illustrative. Bioelectromagnetics 18:116–124, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
In-vitro studies of biological effects of electromagnetic fields are often conducted with cultured cells either in suspension or grown in a monolayer. In the former case, the exposed medium can be assumed to be homogeneous; however, eventually the cells settle to the bottom of the container forming a two layer system with different dielectric and conductive properties. In the present work the effect of this separation on the electric field distribution is calculated and experimentally measured at selected positions for a commonly used exposure configuration. The settled cell suspension is modeled by a well-defined two layer system placed in a rectangular container with the base of the container parallel to the direction of the magnetic field. Theoretical calculations based on numerical techniques are done for various two layer systems with different conductivities in each layer. The agreement between the theoretical calculations and the experimental measurements is within ± 1.5 mV/m, or 10% of the maximum induced field when the conductivity of the lower layer is ten times that of the upper layer. This result is well within experimental error. When the thickness of one of the layers is small compared to the thickness of the other layer, it is found that the electric field distribution is essentially that of the homogeneous case. The latter situation corresponds to a typical cell exposure condition. © 1993 Wiley-Liss, Inc.  相似文献   

18.
We conducted a pilot study to assess magnetic field levels in electric compared to gasoline‐powered vehicles, and established a methodology that would provide valid data for further assessments. The sample consisted of 14 vehicles, all manufactured between January 2000 and April 2009; 6 were gasoline‐powered vehicles and 8 were electric vehicles of various types. Of the eight models available, three were represented by a gasoline‐powered vehicle and at least one electric vehicle, enabling intra‐model comparisons. Vehicles were driven over a 16.3 km test route. Each vehicle was equipped with six EMDEX Lite broadband meters with a 40–1,000 Hz bandwidth programmed to sample every 4 s. Standard statistical testing was based on the fact that the autocorrelation statistic damped quickly with time. For seven electric cars, the geometric mean (GM) of all measurements (N = 18,318) was 0.095 µT with a geometric standard deviation (GSD) of 2.66, compared to 0.051 µT (N = 9,301; GSD = 2.11) for four gasoline‐powered cars (P < 0.0001). Using the data from a previous exposure assessment of residential exposure in eight geographic regions in the United States as a basis for comparison (N = 218), the broadband magnetic fields in electric vehicles covered the same range as personal exposure levels recorded in that study. All fields measured in all vehicles were much less than the exposure limits published by the International Commission on Non‐Ionizing Radiation Protection (ICNIRP) and the Institute of Electrical and Electronics Engineers (IEEE). Future studies should include larger sample sizes representative of a greater cross‐section of electric‐type vehicles. Bioelectromagnetics 34:156–161, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Purple membrane fragments from Halobacterium halobium were oriented by a static electric field in a water suspension. It was found that an electric field of approx. 20 V/cm is sufficient to achieve practically complete orientation; the purple membranes have a permanent electric dipole moment of (6 ±1)· 10?23 C · m, the orientation of the retinal transition moment relative to the direction of the electric dipole moment, θ, is (59 ± 1)0, and the purple membrane rotational diffusion constant Drot = 0.65 s?1. It was found that because of the electrophoretic movement of the particles a hydrodynamic velocity gradient builds up which also orients the purple membranes.  相似文献   

20.
Previous investigations of exposure to electric, magnetic, or electromagnetic fields (EMF) in households were either about electricity supply EMFs or radio frequency EMFs (RF‐EMFs). We report results from spot measurements at the bedside that comprise electrostatic fields, extremely low‐frequency electric fields (ELF‐EFs), extremely low‐frequency magnetic fields (ELF‐MFs), and RF‐EMFs. Measurements were taken in 226 households throughout Lower Austria. In addition, effects of simple reduction measures (e.g., removal of clock radios or increasing their distance from the bed, turning off Digital Enhanced Cordless Telecommunication (DECT) telephone base stations) were assessed. All measurements were well below International Commission on Non‐Ionizing Radiation Protection (ICNIRP) guideline levels. Average night‐time ELF‐MFs (long‐term measurement from 10 pm to 6 am, geometric mean over households) above 100 nT were obtained in 2.3%, and RF‐EMFs above 1000 µW/m2 in 7.1% of households. Highest ELF‐EFs were primarily due to lamps beside the bed (max = 166 V/m), and highest ELF‐MFs because of transformers of devices (max = 1030 nT) or high current of power lines (max = 380 nT). The highest values of RF‐EMFs were caused by DECT telephone base stations (max = 28979 µW/m2) and mobile phone base stations (max = 4872 µW/m2). Simple reduction measures resulted in an average decrease of 23 nT for ELF‐MFs, 23 V/m for ELF‐EFs, and 246 µW/m2 for RF‐EMFs. A small but statistically significant correlation between ELF‐MF exposure and overall RF‐EMF levels of R = 0.16 (P = 0.008) was computed that was independent of type (flat, single family) and location (urban, rural) of houses. Bioelectromagnetics 31:200–208, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号