首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to investigate if the magnitude of the soleus H-reflex is different depending on the method employed to measure its size (peak-to-peak amplitude vs. area). In this study, 13 healthy human subjects participated, while the soleus H-reflex was induced via conventional methods. In the first experiment, the soleus H-reflex was recorded via two monopolar electrodes and was evoked at least at eight different stimulation intensities in respect to the recovery curve of the H-reflex and at three different inter-stimulus intervals (ISIs) (8, 5, and 2?s). The ISI refers to the time delay between the single pulses delivered to the posterior tibial nerve within a single trial. In the second experiment, the effects of common peroneal nerve (CPN) stimulation at short (2–4?ms) and at long (60–120?ms) conditioning test (C-T) intervals on the soleus H-reflex elicited every 5?s were established. Control and conditioned reflexes were recorded via a single differential bipolar electrode. In both experiments, H-reflexes were quantified by measuring their size as peak-to-peak amplitude and as area under the full-wave rectified waveform. The reflex responses recorded through two monopolar electrodes across stimulation intensities and ISIs measured as peak-to-peak amplitude had larger values than measured as area. In contrast, the magnitude of the reflexes, conditioned by CPN stimulation at either short or long C-T intervals and recorded via a single differential electrode, were not significantly different when measured as peak-to-peak amplitude or as area. Our findings indicate that monopolar recordings yield different reflex sizes depending on the method employed to measure the reflex size, and that the H-reflex measured as area might detect better the homosynaptic reflex depression. The lack of observing such differences with bipolar recordings might be related to changes of the reflex shape at a given stimulus intensity due to inhibitory inputs. The implications of our findings are discussed in respect to human reflex studies.  相似文献   

2.
The aim of this study was to investigate if the magnitude of the soleus H-reflex is different depending on the method employed to measure its size (peak-to-peak amplitude vs. area). In this study, 13 healthy human subjects participated, while the soleus H-reflex was induced via conventional methods. In the first experiment, the soleus H-reflex was recorded via two monopolar electrodes and was evoked at least at eight different stimulation intensities in respect to the recovery curve of the H-reflex and at three different inter-stimulus intervals (ISIs) (8, 5, and 2 s). The ISI refers to the time delay between the single pulses delivered to the posterior tibial nerve within a single trial. In the second experiment, the effects of common peroneal nerve (CPN) stimulation at short (2-4 ms) and at long (60-120 ms) conditioning test (C-T) intervals on the soleus H-reflex elicited every 5 s were established. Control and conditioned reflexes were recorded via a single differential bipolar electrode. In both experiments, H-reflexes were quantified by measuring their size as peak-to-peak amplitude and as area under the full-wave rectified waveform. The reflex responses recorded through two monopolar electrodes across stimulation intensities and ISIs measured as peak-to-peak amplitude had larger values than measured as area. In contrast, the magnitude of the reflexes, conditioned by CPN stimulation at either short or long C-T intervals and recorded via a single differential electrode, were not significantly different when measured as peak-to-peak amplitude or as area. Our findings indicate that monopolar recordings yield different reflex sizes depending on the method employed to measure the reflex size, and that the H-reflex measured as area might detect better the homosynaptic reflex depression. The lack of observing such differences with bipolar recordings might be related to changes of the reflex shape at a given stimulus intensity due to inhibitory inputs. The implications of our findings are discussed in respect to human reflex studies.  相似文献   

3.
The objectives of this study were to establish the neurophysiological properties of the transpinal evoked potentials (TEPs) following transcutaneous electric stimulation of the spine (tsESS) over the cervicothoracic region, changes in the amplitude of the TEPs preceded by median nerve stimulation at group I threshold, and the effects of tsESS on the flexor carpi radialis (FCR) H-reflex in thirteen healthy human subjects while seated. Two re-usable self-adhering electrodes, connected to function as one electrode (cathode), were placed bilaterally on the clavicles. A re-usable electrode (anode) was placed on the cervicothoracic region covering from Cervical 4 – Thoracic 2 and held under constant pressure throughout the experiment. TEPs were recorded bilaterally from major arm muscles with subjects seated at stimulation frequencies of 1.0, 0.5, 0.33, 0.2, 0.125, and 0.1 Hz, and upon double tsESS pulses delivered at an inter-stimulus interval of 40 ms. TEPs from the arm muscles were also recorded following median nerve stimulation at the conditioning-test (C-T) intervals of 2, 3, 5, 8, and 10 ms. The FCR H-reflex was evoked and recorded according to conventional methods following double median nerve pulses at 40 ms, and was also conditioned by tsESS at C-T intervals that ranged from −10 to +50 ms. The arm TEPs amplitude was not decreased at low-stimulation frequencies and upon double tsESS pulses in all but one subject. Ipsilateral and contralateral arm TEPs were facilitated following ipsilateral median nerve stimulation, while the FCR H-reflex was depressed by double pulses and following tsESS at short and long C-T intervals. Non-invasive transpinal stimulation can be used as a therapeutic modality to decrease spinal reflex hyper-excitability in neurological disorders and when combined with peripheral nerve stimulation to potentiate spinal output.  相似文献   

4.
We studied changes of the H reflex recorded from the m. soleus, which were evoked by conditioning transcutaneous stimulation of the n. tibialis and n. peroneous comm. of the contralateral leg. In both cases, rather similar two-phase changes in the amplitude of the tested H reflex were observed. After a latent period (50 to 60 msec), the reflex was facilitated for about 300 msec, with the maximum at an about 100-msec-long interval. Then, facilitation was replaced by inhibition; the time course of the latter at test intervals longer than 500 msec could be satisfactorily approximated by a logarithmic curve. The mean durations of inhibition calculated with the use of a least-square technique were 4.0 and 2.7 sec in the cases of stimulation of n. tibialis and n. peroneous comm., respectively. Facilitation of the reflex was initiated with the intensity of conditioning stimulation corresponding to the threshold for excitation of cutaneous receptors. Facilitation could also be evoked by electrical stimulation of the skin in the contralateral popliteal dimple outside the projections of the above-mentioned nerves. Inhibition of the H reflex was evoked only with greater intensities of transcutaneous stimulation of the contralateral nerves corresponding to activation of low-threshold afferents of the above-mentioned nerves. The examined inhibition of the H reflex is probably of a presynaptic nature because it was not eliminated by tonic activation of the motoneurons of the tested muscle evoked by voluntary sole flexion. Long-lasting contralateral presynaptic inhibition can play a noticeable role in redistribution of the tone of skeletal muscles in the course of the motor activity. Neirofiziologiya/Neurophysiology, Vol. 37, No. 4, pp. 372–378, July–August, 2005.  相似文献   

5.
Activation of pudendal afferents can evoke bladder contraction or relaxation dependent on the frequency of stimulation, but the mechanisms of reflex bladder excitation evoked by pudendal afferent stimulation are unknown. The objective of this study was to determine the contributions of sympathetic and parasympathetic mechanisms to bladder contractions evoked by stimulation of the dorsal nerve of the penis (DNP) in α-chloralose anesthetized adult male cats. Bladder contractions were evoked by DNP stimulation only above a bladder volume threshold equal to 73 ± 12% of the distension-evoked reflex contraction volume threshold. Bilateral hypogastric nerve transection (to eliminate sympathetic innervation of the bladder) or administration of propranolol (a β-adrenergic antagonist) decreased the stimulation-evoked and distension-evoked volume thresholds by -25% to -39%. Neither hypogastric nerve transection nor propranolol affected contraction magnitude, and robust bladder contractions were still evoked by stimulation at volume thresholds below the distension-evoked volume threshold. As well, inhibition of distention-evoked reflex bladder contractions by 10 Hz stimulation of the DNP was preserved following bilateral hypogastric nerve transection. Administration of phentolamine (an α-adrenergic antagonist) increased stimulation-evoked and distension-evoked volume thresholds by 18%, but again, robust contractions were still evoked by stimulation at volumes below the distension-evoked threshold. These results indicate that sympathetic mechanisms contribute to establishing the volume dependence of reflex contractions but are not critical to the excitatory pudendal to bladder reflex. A strong correlation between the magnitude of stimulation-evoked bladder contractions and bladder volume supports that convergence of pelvic afferents and pudendal afferents is responsible for bladder excitation evoked by pudendal afferents. Further, abolition of stimulation-evoked bladder contractions following administration of hexamethonium bromide confirmed that contractions were generated by pelvic efferent activation via the pelvic ganglion. These findings indicate that pudendal afferent stimulation evokes bladder contractions through convergence with pelvic afferents to increase pelvic efferent activity.  相似文献   

6.
The effect of stimulation of the mesencephalic central gray matter and raphe nuclei on jaw opening reflexes evoked by excitation of high-threshold (dental pulp) and low-threshold (A-alpha) fibers of the infraorbital nerve afferents was studied in cats anesthetized with chloralose and pentobarbital. The jaw opening reflex evoked by stimulation of the dental pulp was shown to be effectively suppressed by conditioning stimulation of the central gray matter and raphe nuclei. The reflex evoked by stimulation of low-threshold infraorbital nerve afferents also was depressed (but less deeply and for a shorter period than the reflex evoked by stimulation of the dental pulp) during stimulation of the raphe nuclei and caudal zone of the central gray matter, but was unchanged after stimulation of the points located in the rostral zone of the central gray matter. Application of single stimuli or bursts of five stimuli with a frequency of 100 Hz had no effect on the reflexes studied. Short-term stimulation with a burst of 10–20 stimuli with a following frequency of 200–400 Hz led to inhibition of the reflexes, which lasted 450–1000 msec. Long-term stimulation of the central gray matter and raphe nuclei for 30 sec with a frequency of 50 Hz caused inhibition of jaw opening reflexes evoked by stimulation of both high- and low-threshold afferents for 60 min. Impulses from the central gray matter and raphe nuclei thus have a mainly inhibitory action on the jaw opening reflex evoked by stimulation of high-threshold afferents, but they act less effectively on the reflex evoked by stimulation of low-thres-hold afferents. The duration of inhibition depends essentially on the parameters of stimulation.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 3, pp. 374–387, May–June, 1984.  相似文献   

7.
Electrical stimulation (50-100 pulses, 100-500 Hz) of the ventral tegmental area (VTA) in the vicinity of the n. interpeduncularis in the frontal plane AP2-AP4, L1-L2 caused a cat to grab food placed near its mouth. The conditioned forepaw placing reaction was elaborated using food reinforcement and VTA stimulation as a conditioned stimulus. The conditioned reflex, being once established, was repeatedly performed without extinction in the course of up to 250 trials without food reinforcement. Short (5-10 pulses) conditioned VTA stimulation evoked a prolonged (up to 1000 ms or longer) activation of neurons of the motor cortex and caused a substitution of the inhibitory phase of response to stimulation of the parietal cortex in poststimulus interval in 50-200 ms for the late secondary excitatory response.  相似文献   

8.
The antigravity soleus muscle (Sol) is crucial for compensation of stance perturbation. A corticospinal contribution to the compensatory response of the Sol is under debate. The present study assessed spinal, corticospinal, and cortical excitability at the peaks of short- (SLR), medium- (MLR), and long-latency responses (LLR) after posterior translation of the feet. Transcranial magnetic stimulation (TMS) and peripheral nerve stimulation were individually adjusted so that the peaks of either motor evoked potential (MEP) or H reflex coincided with peaks of SLR, MLR, and LLR, respectively. The influence of specific, presumably direct, corticospinal pathways was investigated by H-reflex conditioning. When TMS was triggered so that the MEP arrived in the Sol at the same time as the peaks of SLR and MLR, EMG remained unaffected. Enhanced EMG was observed when the MEP coincided with the LLR peak (P < 0.001). Similarly, conditioning of the H reflex by subthreshold TMS facilitated H reflexes only at LLR (P < 0.001). The earliest facilitation after perturbation occurred after 86 ms. The TMS-induced H-reflex facilitation at LLR suggests that increased cortical excitability contributes to the augmentation of the LLR peaks. This provides evidence that the LLR in the Sol muscle is at least partly transcortical, involving direct corticospinal pathways. Additionally, these results demonstrate that approximately 86 ms after perturbation, postural compensatory responses are cortically mediated.  相似文献   

9.
The effects of group II muscle (PBSt, GS) and cutaneous afferent (Sur, SPc, Tib) inputs from the hindlimb on the monosynaptic reflexes of motoneurons innervating tail muscles were studied in lower spinalized cats. Stimulation of the cutaneous nerves at the conditioning-test stimulus interval of about 10-20 ms facilitated and inhibited the monosynaptic reflexes of ipsilateral and contralateral tail muscles, respectively. The effects of the muscle nerve stimulation were not so prominent as those elicited by cutaneous nerve stimulation. The monosynaptic reflex was also inhibited by muscle nerve stimulation at 10-50 ms intervals. The effects of conditioning stimulation of the hindlimb peripheral nerves at short intervals were depressed or blocked by section of the ipsilateral lateral funiculus at S1 spinal segment. These findings show that the neuronal pathway from hindlimb afferents to tail muscle motoneurons passed the lateral funiculus of the spinal cord and modulates the motoneuronal activity of tail muscles.  相似文献   

10.
The objective of this study was to assess changes in corticospinal excitability and spinal output following noninvasive transpinal and transcortical stimulation in humans. The size of the motor evoked potentials (MEPs), induced by transcranial magnetic stimulation (TMS) and recorded from the right plantar flexor and extensor muscles, was assessed following transcutaneous electric stimulation of the spine (tsESS) over the thoracolumbar region at conditioning-test (C-T) intervals that ranged from negative 50 to positive 50 ms. The size of the transpinal evoked potentials (TEPs), induced by tsESS and recorded from the right and left plantar flexor and extensor muscles, was assessed following TMS over the left primary motor cortex at 0.7 and at 1.1× MEP resting threshold at C-T intervals that ranged from negative 50 to positive 50 ms. The recruitment curves of MEPs and TEPs had a similar shape, and statistically significant differences between the sigmoid function parameters of MEPs and TEPs were not found. Anodal tsESS resulted in early MEP depression followed by long-latency MEP facilitation of both ankle plantar flexors and extensors. TEPs of ankle plantar flexors and extensors were increased regardless TMS intensity level. Subthreshold and suprathreshold TMS induced short-latency TEP facilitation that was larger in the TEPs ipsilateral to TMS. Noninvasive transpinal stimulation affected ipsilateral and contralateral actions of corticospinal neurons, while corticocortical and corticospinal descending volleys increased TEPs in both limbs. Transpinal and transcortical stimulation is a noninvasive neuromodulation method that alters corticospinal excitability and increases motor output of multiple spinal segments in humans.  相似文献   

11.
The mechanism of onset of rebound after inhibition induced by electrical stimulation of a nerve of maximal and submaximal strength for M-response was studied in single motor units of normal human soleus, rectus femoris, and hand muscles. Poststimulus histograms and changes in the duration of interspike intervals were compared with mechanical recordings of muscle contractions. In all muscles tested, during strong isotonic contraction, the increase in motor unit activity after a silent period was partly due to synchronization of their emergence from inhibition. However, it also contained a component of true facilitation of motoneurons, which was evidently a reflex response to lengthening of the muscle in the relaxation phase after evoked contraction. The latent period of this facilitation in the soleus and rectus femoris muscles coincided in value with the latent period of the monosynaptic spinal reflex, whereas in the hand muscles, in which a monosynaptic response to electrical nerve stimulation could not be evoked, the latent period of facilitation as a result of spindle activation during muscle relaxation was significantly longer than the latent period of the monosynaptic reflex. These findings support the hypothesis of presynaptic suppression of monosynaptic connections of Ia afferents with the motoneurons of some human muscles by descending tonic influences and of the use of information coming from spindles by supraspinal levels of the CNS.  相似文献   

12.
Neural output from the locomotor system for each arm and leg influences the spinal motoneuronal pools directly and indirectly through interneuronal (IN) reflex networks. While well documented in other species, less is known about the functions and features of convergence in common IN reflex system from cutaneous afferents innervating different foot regions during remote arm and leg movement in humans. The purpose of the present study was to use spatial facilitation to examine possible convergence in common reflex pathways during rhythmic locomotor limb movements. Cutaneous reflexes were evoked in ipsilateral tibialis anterior muscle by stimulating (in random order) the sural nerve (SUR), the distal tibial nerve (TIB), and combined simultaneous stimulation of both nerves (TIB&SUR). Reflexes were evoked while participants performed rhythmic stepping and arm swinging movement with both arms and the leg contralateral to stimulation (ARM&LEG), with just arm movement (ARM) and with just contralateral leg movement (LEG). Stimulation intensities were just below threshold for evoking early latency (<80 ms to peak) reflexes. For each stimulus condition, rectified EMG signals were averaged while participants held static contractions in the stationary (stimulated) leg. During ARM&LEG movement, amplitudes of cutaneous reflexes evoked by combined TIB&SUR stimulation were significantly larger than simple mathematical summation of the amplitudes evoked by SUR or TIB alone. Interestingly, this extra facilitation seen during combined nerve stimulation was significantly reduced when performing ARM or LEG compared to ARM&LEG. We conclude that locomotor rhythmic limb movement induces excitation of common IN reflex pathways from cutaneous afferents innervating different foot regions. Importantly, activity in this pathway is most facilitated during ARM&LEG movement. These results suggest that transmission in IN reflex pathways is weighted according to the number of limbs directly engaged in human locomotor activity and underscores the importance of arm swing to support neuronal excitability in leg muscles.  相似文献   

13.
At interval of less than 100 ms between indifferent sound and unconditioned electrocutaneous stimulation, classical defensive conditioned reflex is not elaborated in dogs, in full correspondence with literature data. But intracortical temporary connection is established; this fact is shown by electrographic phenomena, the most specific and demonstrative among them is "conditioned evoked potential". The absence of behavioural (peripheral) and presence of electrographic (central) manifestations allow to assume that for the formation of the conditioned reflex of full value the involvement is necessary of additional activational (motivational) mechanisms, connected with reticular and (or) limbic subcortical structures which do not react to the conditioned stimulus at time deficit in conditions of microdelay.  相似文献   

14.
Reflex cardiovascular responses to muscle contraction are mediated by mechanical and metabolic stimulation of thin muscle afferent fibers. Metabolic stimulants and receptors involved in responses are uncertain. Capsaicin depolarizes thin sensory afferent nerves that have vanilloid type 1 receptors (VR1). Among potential endogenous ligands of thin fibers, H+ has been suggested as a metabolite mediating the reflex muscle response as well as a potential stimulant of VR1. It has also been suggested that acid-sensing ion channels (ASIC) mediate H+, evoking afferent nerve excitation. We have examined the roles of VR1 and ASIC in mediating cardiovascular reflex responses to acid stimulation of muscle afferents in a rat model. In anesthetized rats, injections of capsaicin into the arterial blood supply of triceps surae muscles evoked a biphasic response (n = 6). An initial fall in mean arterial pressure (from baseline of 95.8 +/- 9.5 to 70.4 +/- 4.5 mmHg, P < 0.05 vs. baseline) was followed by an increase (to 131.6 +/- 11.3 mmHg, P < 0.05 vs. baseline). Anandamide (an endogenous substance that activates VR1) induced the same change in blood pressure as did capsaicin. The pressor (but not depressor) component of the response was blocked by capsazepine (a VR1 antagonist) and section of afferent nerves. In decerebrate rats (n = 8), H+ evoked a pressor response that was not blocked by capsazepine but was attenuated by amiloride (an ASIC blocker). In rats (n = 12) pretreated with resiniferatoxin to destroy muscle afferents containing VR1, capsaicin and H+ responses were blunted. We conclude that H+ stimulates ASIC, evoking the reflex response, and that ASIC are likely to be frequently found on afferents containing VR1. The data also suggest that VR1 and ASIC may play a role in processing of muscle afferent signals, evoking the muscle pressor reflex.  相似文献   

15.
A rapid plantar flexion perturbation applied to the ankle during the stance phase of the step cycle during human walking unloads the ankle extensors and produces a marked decline in the soleus EMG. This demonstrates that sensory activity contributes importantly to the enhancement of the ankle extensor muscle activation during human walking. On average, the EMG begins to decline approximately 52 ms after the perturbation. In contrast, a rapid dorsi flex ion perturbation produces a group Ia mediated short-latency stretch reflex burst with an onset latency of approximately 36 ms. The transmission of sensory traffic from the foot and ankle was suppressed in 10 subjects by an anaesthetic nerve block produced with local injections of lidocaine hydrochloride. The anaesthetic block had no effect on the stance phase soleus EMG, the latencies of the EMG responses, or the magnitude of the EMG decline following the plantar flexion perturbation. Therefore, it is more likely that proprioceptive afferents, rather than cutaneous afferents, contribute to the background soleus EMG during the late stance phase of the step cycle. The large difference in onset latencies between the short-latency reflex and unload responses suggests that the largest of the active group Ia afferents might not contribute strongly to the background soleus EMG, although it remains to be determined which of the proprioceptive pathways provide the more important contributions.  相似文献   

16.
Experiments on cats anesthetized with chloralose showed that repetitive stimulation of the locus coeruleus is accompanied by a decrease in IPSPs evoked by stimulation of flexor reflex afferents in extensor motoneurons. The effect appeared 600 msec after the beginning of stimulation and reached its maximum after 1500–2000 msec. Repetitive stimulation of the locus coeruleus did not change the membrane potential and did not affect EPSPs or IPSPs evoked by stimulation of low-threshold muscle afferents; EPSPs due to activation of high-threshold cutaneous and muscle afferents likewise remained unchanged. Repetitive stimulation of more central regions of the brain stem was accompanied not only by a decrease in IPSPs evoked by stimulation of flexor reflex afferents in extensor motoneurons, but also by a decrease in amplitude of EPSPs arising in response to stimulation of these same afferents in flexor motoneurons. These effects were not connected with activation of monoaminergic structures, for unlike effects arising during stimulation of the locus coeruleus, they were also found in previously reserpinized animals.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 1, pp. 51–59, January–February, 1982.  相似文献   

17.
The purpose of this study was to investigate whether rhythmic arm swing modulates the long latency effect of transcranial magnetic stimulation (TMS) on soleus motoneuron pool excitability. Ten healthy humans rhythmically swung the left arm back and forth in a sitting position. The soleus H-reflex was evoked when the arm was in the backward swing phase. Conditioning TMS was delivered over the motor cortex 8?ms before the soleus H-reflex was evoked. The soleus H-reflex amplitude in both legs was depressed by the rhythmic arm swing. In contrast, rhythmic arm swing enhanced the facilitatory effect of conditioning TMS over the motor cortex contralateral to the arm swing side on the soleus H-reflex ipsilateral to the arm swing side. This finding indicates that rhythmic arm swing enhances some polysynaptic facilitatory pathways from the motor cortex contralateral to the arm swing side to the soleus motoneuron pool ipsilateral to the arm swing side.  相似文献   

18.
The purpose of this study was to investigate whether rhythmic arm swing modulates the long latency effect of transcranial magnetic stimulation (TMS) on soleus motoneuron pool excitability. Ten healthy humans rhythmically swung the left arm back and forth in a sitting position. The soleus H-reflex was evoked when the arm was in the backward swing phase. Conditioning TMS was delivered over the motor cortex 8 ms before the soleus H-reflex was evoked. The soleus H-reflex amplitude in both legs was depressed by the rhythmic arm swing. In contrast, rhythmic arm swing enhanced the facilitatory effect of conditioning TMS over the motor cortex contralateral to the arm swing side on the soleus H-reflex ipsilateral to the arm swing side. This finding indicates that rhythmic arm swing enhances some polysynaptic facilitatory pathways from the motor cortex contralateral to the arm swing side to the soleus motoneuron pool ipsilateral to the arm swing side.  相似文献   

19.
Neuromuscular electrical stimulation (NMES) can be used as treatment for spasticity. The present study examined differences in time-dependent effects of NMES depending on stimulation frequency. Forty healthy subjects were separated into four groups (no-stim, NMES of 50, 100, and 200?Hz). The un-conditioned H-reflex amplitude and the H-reflex conditioning-test paradigm were used to measure the effectiveness on monosynaptic Ia excitation of motoneurons in the soleus (SOL) muscle, disynaptic reciprocal Ia inhibition from tibialis anterior (TA) to SOL, and presynaptic inhibition of SOL Ia afferents. Each trial consisted of a 30-min period of NMES applied to the deep peroneal nerve followed by a 30-min period with no stimulation to measure prolonged effects. Measurements were performed periodically. Stimulation applied at all frequencies produced a significant reduction in monosynaptic Ia excitation of motoneurons in the SOL muscle, however, only stimulation with 50?Hz showed prolonged reduction after NMES. NMES frequency did not affect the amount of disynaptic reciprocal Ia inhibition and presynaptic inhibition of Ia afferents. The results show a frequency-dependent effect of NMES on the monosynaptic Ia excitation of motoneurons. This result has implications for selecting the optimal NMES frequency for treatment in patients with spasticity.  相似文献   

20.
The parameters of evoked motor responses of the muscles of the upper and lower extremities to magnetic stimulation of the motor zones of the cerebral cortex, spinal segments, and n. tibialis were estimated in athletes adapted to performance of different duration and intensity (short-and long-distance runners) and having different sports qualifications. It was shown that the maximum amplitude of event-related motor responses of m. gastrocnemius med. and m. soleus to transcranial magnetic stimulation of the brain was higher in the group of long-distance runners as compared with short-distance runners. Ski racers of high qualification differ from less qualified skiers in lower thresholds of excitation and a higher maximum amplitude of evoked motor responses of m. carpi radialis, m. biceps brachii, m. gastrocnemius med., and m. soleus. No statistically significant differences were found between the tested groups of subjects in the time of central motor transmission or the latent period of evoked motor responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号