共查询到20条相似文献,搜索用时 15 毫秒
1.
A perfusion-based high cell density (HD) cell banking process has been developed that offers substantial advantages in time savings and simplification of upstream unit operations. HD cell banking provides the means to reduce the time required for culture inoculum expansion and scale-up by eliminating the need for multiple small to intermediate scale shake flask-based operations saving up to 9 days of operation during large-scale inoculum expansion. HD perfusion cultures were developed and optimized in a disposable Wave bioreactor system. Through optimization of perfusion rate, rocking speed and aeration rate, the perfusion system supported peak cell densities of >20 × 10(6) cells/mL while maintaining high cell viability (≥ 90%). The cells were frozen at HD (90-100 × 10(6) viable cells/mL) in 5-mL CryoTube vials. HD cell banks were demonstrated to enable direct inoculation of culture into a Wave bioreactor in the inoculum expansion train thus eliminating the need for intermediate shake flask expansion unit operations. The simplicity of the disposable perfusion system and high quality of the cell banks resulted in the successful implementation in a 2000 L scale manufacturing facility. 相似文献
2.
《MABS-AUSTIN》2013,5(8):1502-1514
ABSTRACTAlthough process intensification by continuous operation has been successfully applied in the chemical industry, the biopharmaceutical industry primarily uses fed-batch, rather than continuous or perfusion methods, to produce stable monoclonal antibodies (mAbs) from Chinese hamster ovary (CHO) cells. Conventional fed-batch bioreactors may start with an inoculation viable cell density (VCD) of ~0.5 × 106 cells/mL. Increasing the inoculation VCD in the fed-batch production bioreactor (referred to as N stage bioreactor) to 2–10 × 106 cells/mL by introducing perfusion operation or process intensification at the seed step (N-1 step) prior to the production bioreactor has recently been used because it increases manufacturing output by shortening cell culture production duration. In this study, we report that increasing the inoculation VCD significantly improved the final titer in fed-batch production within the same 14-day duration for 3 mAbs produced by 3 CHO GS cell lines. We also report that other non-perfusion methods at the N-1 step using either fed batch or batch mode with enriched culture medium can similarly achieve high N-1 final VCD of 22–34 × 106 cells/mL. These non-perfusion N-1 seeds supported inoculation of subsequent production fed-batch production bioreactors at increased inoculation VCD of 3–6 × 106 cells/mL, where these achieved titer and product quality attributes comparable to those inoculated using the perfusion N-1 seeds demonstrated in both 5-L bioreactors, as well as scaled up to 500-L and 1000-L N-stage bioreactors. To operate the N-1 step using batch mode, enrichment of the basal medium was critical at both the N-1 and subsequent intensified fed-batch production steps. The non-perfusion N-1 methodologies reported here are much simpler alternatives in operation for process development, process characterization, and large-scale commercial manufacturing compared to perfusion N-1 seeds that require perfusion equipment, as well as preparation and storage vessels to accommodate large volumes of perfusion media. Although only 3 stable mAbs produced by CHO cell cultures are used in this study, the basic principles of the non-perfusion N-1 seed strategies for shortening seed train and production culture duration or improving titer should be applicable to other protein production by different mammalian cells and other hosts at any scale biologics facilities. 相似文献
3.
The inclined multiplate (lamella) gravity settler has proven to be an effective cell retention device in industrial perfusion cell culture applications. Investigations on the effects of geometric design and operational variables of the cell settler are crucial to understanding how to best improve the settler performance. Maximizing the harvest/perfusion flow rate while minimizing viable cell loss out of the harvest is the primary challenge for optimization of the settler design. This study demonstrated that computational fluid dynamics (CFD) can be utilized to accurately model and evaluate the settler separation performance for near-monodisperse suspensions and therefore aid in the design optimization of the settler under these baseline conditions. With the preferred geometric features that were identified from CFD modeling results, we proposed design guidelines for the scale-up of these multiplate settler systems. With these guidelines and performance verification using the CFD model, a new large-scale settler was designed and fabricated for a perfusion cell culture process using a minimally aggregating production cell line. Perfusion cell culture runs with this particular cell line were performed with this settler, and the CFD model was able to predict the initial ramp-up performance, proving it to be a valuable scale-up design tool for this production process. 相似文献
4.
The scale of operation of freely suspended animal cell culture has been increasing and in order to meet the demand for recombinant
therapeutic products, this increase is likely to continue. The most common reactor types used are stirred tanks. Air lift
fermenters are also used, albeit less commonly. No specific guidelines have been published for large scale (≥10 000 L) animal
cell culture and reactor designs are often based on those used for microbial systems. However, due to the large difference
in energy inputs used for microbial and animal cell systems such designs may be far from optimal. In this review the importance
of achieving a balance between mixing, mass transfer and shear effects is emphasised. The implications that meeting this balance
has on design of vessels and operation, particularly in terms of strategies to ensure adequate mixing to achieve homogeneity
in pH and dissolved gas concentrations are discussed.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
5.
Gargi Seth Robert W. Hamilton Thomas R. Stapp Lisa Zheng Angela Meier Krista Petty Stephenie Leung Srikanth Chary 《Biotechnology and bioengineering》2013,110(5):1376-1385
Agility to schedule and execute cell culture manufacturing campaigns quickly in a multi‐product facility will play a key role in meeting the growing demand for therapeutic proteins. In an effort to shorten campaign timelines, maximize plant flexibility and resource utilization, we investigated the initiation of cell culture manufacturing campaigns using CHO cells cryopreserved in large volume bags in place of the seed train process flows that are conventionally used in cell culture manufacturing. This approach, termed FASTEC (Frozen Accelerated Seed Train for Execution of a Campaign), involves cultivating cells to high density in a perfusion bioreactor, and cryopreserving cells in multiple disposable bags. Each run for a manufacturing campaign would then come from a thaw of one or more of these cryopreserved bags. This article reviews the development and optimization of individual steps of the FASTEC bioprocess scheme: scaling up cells to greater than 70 × 106 cells/mL and freezing in bags with an optimized controlled rate freezing protocol and using a customized rack configuration. Flow cytometry analysis was also employed to understand the recovery of CHO cells following cryopreservation. Extensive development data were gathered to ensure that the quantity and quality of the drug manufactured using the FASTEC bioprocess scheme was acceptable compared to the conventional seed train process flow. The result of offering comparable manufacturing options offers flexibility to the cell culture manufacturing network. Biotechnol. Bioeng. 2013; 110: 1376–1385. © 2012 Wiley Periodicals, Inc. 相似文献
6.
Efficiency improvement of an antibody production process by increasing the inoculum density
下载免费PDF全文

Volker Hecht Sevim Duvar Holger Ziehr Josef Burg Alexander Jockwer 《Biotechnology progress》2014,30(3):607-615
Increasing economic pressure is the main driving force to enhance the efficiency of existing processes. We developed a perfusion strategy for a seed train reactor to generate a higher inoculum density for a subsequent fed batch production culture. A higher inoculum density can reduce culture duration without compromising product titers. Hence, a better capacity utilization can be achieved. The perfusion strategy was planned to be implemented in an existing large scale antibody production process. Therefore, facility and process constraints had to be considered. This article describes the initial development steps. Using a proprietary medium and a Chinese hamster ovary cell line expressing an IgG antibody, four different cell retention devices were compared in regard to retention efficiency and reliability. Two devices were selected for further process refinement, a centrifuge and an inclined gravitational settler. A concentrated feed medium was developed to meet facility constraints regarding maximum accumulated perfundate volume. A 2‐day batch phase followed by 5 days of perfusion resulted in cell densities of 1.6 × 1010 cells L?1, a 3.5 fold increase compared to batch cultivations. Two reactor volumes of concentrated feed medium were needed to achieve this goal. Eleven cultivations were carried out in bench and 50 L reactors showing acceptable reproducibility and ease of scale up. In addition, it was shown that at least three perfusion phases can be combined within a repeated perfusion strategy. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:607–615, 2014 相似文献
7.
Jäger V 《Cytotechnology》1996,20(1-3):191-198
Conclusion High density perfusion culture of insect cells for the production of recombinant proteins has proved to be an attractive alternative to batch and fed-batch processes. A comparison of the different production processes is summarized in Table 3. Internal membrane perfusion has a limited scale-up potential but appears to the method of choice in smaller lab-scale production systems. External membrane perfusion results in increased shear stress generated by pumping of cells and passing through microfiltration modules at high velocity. However, using optimized perfusion strategies this shear stress can be minimized such that it is tolerated by the cells. In these cases, perfusion culture has proven to be superior to batch production with respect to product yields and cell specific productivity. Although insect cells could be successfully cultivated by immobilization and perfusion in stationary bed bioreactors, this method has not yet been used in continuous processes. In fluidized bed bioreactors with continuous medium exchange cells showed reduced growth and protein production rates.For the cultivation of insect cells in batch and fedbatch processes numerous efforts have been made to optimize the culture medium in order to allow growth and production at higher cell densities. These improved media could be used in combination with a perfusion process, thus allowing substantially increased cell densities without raising the medium exchange rate. However, sufficient oxygen supply has to be guaranteed during fermentation in order to ensure optimal productivity. 相似文献
8.
In spite of the generally stable nature of immobilized perfusion culture, its profile of target protein production frequently shows variations. This might be explained by the drift in the metabolism of cultured cells. To address this issue, we performed a set of four Opticell bioreactor cultures producing recombinant anticogulant protein PCGFX. All the cultures lasted 40-50 days with the oxygen consumption rate (OCR) mostly around 10 μmol min−1; nevertheless, glucose and lactate metabolism was fluctuated with a parallel fluctuation in the recombinant protein productivity (RPP). The mean productivity of recombinant PCGFX was determined to be about 1.0 mg day−1 for all the cultures. The statistical analysis revealed a significant correlation between the lactate production rate (LPR) and RPP in two cultures. A significant correlation was further found between average OCR and RPP in another culture where OCR was exceptionally lowered under serum-free conditions. No parameter significantly correlated with RPP in the remaining one culture; thus, the overt drift of RPP resulted, at least partly, from that of the cell metabolic activity and the present data should be helpful to explore a strategy for maximizing productivity. 相似文献
9.
Two mouse myeloma cell lines which were transfected with chimeric mouse variable-human constant immunoglobulin heavy and light chain genes have been cultured at high cell density in a settling perfusion culture vessel to produce chimeric antibody specific for human common acute lymphocytic leukemia antigen (cALLA).J558L transfectant proliferated well in a serum-free medium (ITES-eRDF) to a viable cell density of 3.7×107 cells/ml and produced chimeric antibody to a maximum value of 60 g/ml in 120 ml scale vessel. X63Ag8.653 transfectant reached a density of 1.9×107 cells/ml in 1.2 I scale vessel in serum supplemented medium (10% FCS-eRDF) and produced chimeric antibody which consisted of chimeric gamma and chimeric kappa chains to a maximum value of 5.8 g/ml. 相似文献
10.
A depth filter perfusion system (DFPS) with polypropylene fibers had been demonstrated to support high density cultures of anchorage-independent hybridoma cells. The DFPS provides advantages of high surface-to-volume ratio of 450–600 cm2/cm3, low cost set-up, easy operation and scale-up. To test the feasibility of using DFPS for high density cultures of anchorage-dependent cells, Vero cells were cultivated in the DFPS. Gelatin coating on polypropylene fibers in the DFPS was necessary to promote cell attachment and growth. Dissolved oxygen (DO) concentrations could be controlled by sparging air into the reservoir vessel through a filter sparger. When DO concentration was controlled above 40% of air saturation in the DFPS with 40 m pore size, the maximum cell concentration as estimated on specific lactate production rate, was 3.81×107 cells/ml of the total reactor volume. This viable cell concentration is approximately 18 times higher than that obtained in a T-flask batch culture. Taken together, the results obtained here showed the potential of DFPS for high-density cultures of anchorage-dependent cells. 相似文献
11.
Perfusion seed cultures improve biopharmaceutical fed‐batch production capacity and product quality
下载免费PDF全文

William C. Yang Jiuyi Lu Chris Kwiatkowski Hang Yuan Rashmi Kshirsagar Thomas Ryll Yao‐Ming Huang 《Biotechnology progress》2014,30(3):616-625
Volumetric productivity and product quality are two key performance indicators for any biopharmaceutical cell culture process. In this work, we showed proof‐of‐concept for improving both through the use of alternating tangential flow perfusion seed cultures coupled with high‐seed fed‐batch production cultures. First, we optimized the perfusion N‐1 stage, the seed train bioreactor stage immediately prior to the production bioreactor stage, to minimize the consumption of perfusion media for one CHO cell line and then successfully applied the optimized perfusion process to a different CHO cell line. Exponential growth was observed throughout the N‐1 duration, reaching >40 × 106 vc/mL at the end of the perfusion N‐1 stage. The cultures were subsequently split into high‐seed (10 × 106 vc/mL) fed‐batch production cultures. This strategy significantly shortened the culture duration. The high‐seed fed‐batch production processes for cell lines A and B reached 5 g/L titer in 12 days, while their respective low‐seed processes reached the same titer in 17 days. The shortened production culture duration potentially generates a 30% increase in manufacturing capacity while yielding comparable product quality. When perfusion N‐1 and high‐seed fed‐batch production were applied to cell line C, higher levels of the active protein were obtained, compared to the low‐seed process. This, combined with correspondingly lower levels of the inactive species, can enhance the overall process yield for the active species. Using three different CHO cell lines, we showed that perfusion seed cultures can optimize capacity utilization and improve process efficiency by increasing volumetric productivity while maintaining or improving product quality. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:616–625, 2014 相似文献
12.
T Alber M B Cassidy R M Zablotowicz J T Trevors H Lee 《Journal of industrial microbiology & biotechnology》2000,25(2):93-99
The degradation of mixtures of pentachlorophenol (PCP) and p-nitrophenol (PNP) were evaluated in pure cultures of Sphingomonas sp. UG30, statically incubated soils (60% water-holding capacity) and soil perfusion bioreactors where encapsulated cells of UG30 were used as a soil inoculant. In pure-culture studies, conditions were optimized for mineralization of PCP and PNP mixtures at concentrations of 30 mg l−1 each. Optimum in vitro mineralization of PCP and PNP mixtures by UG30 was facilitated using ammonium phosphate as a nitrogen source, while inhibition was observed with ammonium nitrate. The bioreactor system used columns containing soil treated with mixtures of 100, 225 or 500 mg kg−1 of PCP and PNP. Rapid dissipation of both substrates was observed at the 100 mg kg−1 level. Inoculation with UG30 enhanced PCP degradation at the 100 mg kg−1 level in bioreactors but not in static soil microcosms. At higher PCP and PNP concentrations (225 mg kg−1), occasional complete degradation of PNP was observed, and PCP degradation was about 80% compared to about 25% in statically incubated soils after 20 days at 22°C. There was no additional degradation of the PCP and PNP mixtures attributable to inoculation with encapsulated cells of UG30 in either soil system at concentrations of 225 or 500 mg kg−1. Journal of Industrial Microbiology & Biotechnology (2000) 25, 93–99. Received 25 February 2000/ Accepted in revised form 07 June 2000 相似文献
13.
Voisard D Meuwly F Ruffieux PA Baer G Kadouri A 《Biotechnology and bioengineering》2003,82(7):751-765
This review focuses on cultivation of mammalian cells in a suspended perfusion mode. The major technological limitation in the scaling-up of these systems is the need for robust retention devices to enable perfusion of medium as needed. For this, cell retention techniques available to date are presented, namely, cross-flow filters, hollow fibers, controlled-shear filters, vortex-flow filters, spin-filters, gravity settlers, centrifuges, acoustic settlers, and hydrocyclones. These retention techniques are compared and evaluated for their respective advantages and potential for large-scale utilization in the context of industrial manufacturing processes. This analysis shows certain techniques have a limited range of perfusion rate where they can be implemented (most microfiltration techniques). On the other hand, techniques were identified that have shown high perfusion capacity (centrifuges and spin-filters), or have a good potential for scale-up (acoustic settlers and inclined settlers). The literature clearly shows that reasonable solutions exist to develop large-scale perfusion processes. 相似文献
14.
Isotope labeling to determine the dynamics of metabolic response in CHO cell perfusion bioreactors using MALDI‐TOF‐MS
下载免费PDF全文

Marie R. G. Kopp Miroslav Soos Renato Zenobi Massimo Morbidelli 《Biotechnology progress》2017,33(6):1630-1639
The steady‐state operation of Chinese hamster ovary (CHO) cells in perfusion bioreactors requires the equilibration of reactor dynamics and cell metabolism. Accordingly, in this work we investigate the transient cellular response to changes in its environment and their interactions with the bioreactor hydrodynamics. This is done in a benchtop perfusion bioreactor using MALDI‐TOF MS through isotope labeling of complex intracellular nucleotides (ATP, UTP) and nucleotide sugars (UDP‐Hex, UDP‐HexNAc). By switching to a 13C6 glucose containing feed media during constant operation at 20 × 106 cells and a perfusion rate of 1 reactor volume per day, isotopic steady state was studied. A step change to the 13C6 glucose medium in spin tubes allowed the determination of characteristic times for the intracellular turnover of unlabeled metabolites pools, (≤0.56 days), which were confirmed in the bioreactor. On the other hand, it is shown that the reactor residence time (1 day) and characteristic time for glucose uptake (0.33 days), representative of the bioreactor dynamics, delayed the consumption of 13C6 glucose in the bioreactor and thus the intracellular 13C enrichment. The proposed experimental approach allowed the decoupling of bioreactor hydrodynamics and intrinsic dynamics of cell metabolism in response to a change in the cell culture environment. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1630–1639, 2017 相似文献
15.
A high density hybridoma perfusion culture was established by separating and recycling cells from the product stream to the reactor using a simple external sedimentation-based separator — an inclined modified Erlenmeyer flask. After 3 weeks, when the optimal perfusion rate of 1.0 day–1 had been reached, viable cell density stabilized at around 10×106 cells ml–1, a level five times that obtained by simple batch culture. The efficiency of the separator was enhanced by cell flocculation. Specific antibody productivity, which was initially 0.4 g 1×106 cells–1 h–1, decreased to half that value while cell density was increasing, but recovered to the initial level when the culture finally stabilized at a high cell density. During the final phase, when viable cell density and specific antibody production were high, there was a marked shift in metabolism. Consumption of the two most important substrates for energy generation, glucose and glutamine, caused their broth concentrations to decrease to 1.5 mM and 1 mM, respectively, from input medium concentrations of 25 mM and 10 mM, respectively. At the same time there was an increase in the specific production of glycine and aspartate, their broth concentrations reaching 1.5 mM and 0.02 mM, respectively. We suggest that this shift in metabolism results in enhanced production of ATP from glutamine. The specific glucose consumption and lactate production also indicate that there is a shift to more energy efficient metabolism. The mechanism whereby this leads to enhanced specific antibody production remains to be elucidated. Nevertheless, the combination of high cell density and enhanced productivity obtained with the present perfusion culture resulted in a high monoclonal antibody production –100 mg l–1 d–1. 相似文献
16.
Omasa T Kobayashi M Nishikawa T Shioya S Suga K Uemura S Kitani Y Imamura Y 《Biotechnology and bioengineering》1995,48(6):673-680
The effects of the high-molecular-weight growth factors, transferrin and bovine serum albumin (BSA), on antibody production were analyzed quantitatively in continuous hollow-fiber cultivation over a period of 60 days. Transferrin enhanced cell growth but had no significant effect on the specific antibody production rate, whereas BSA significantly enhanced antibody production. The antibody production rate was increased 4- and 14-fold respectively by feeding BSA at 2 and 5 g L(-1) into the EC side of the system (the side connected to the cell-containing outer part of the hollow-fiber unit) compared with the production achieved without BSA. Addition of 5 g L(1) BSA into the IC side of the system (the side connected to the inner part of the hollow-fiber unit) resulted in a 2.5-fold increase in the antibody production rate. The effect of BSA was also analyzed using the perfusion culture system with a separation unit. When fresh medium containing either 2 or 5 g L(-1) BSA was fed into the reactor, both the specific growth rate and specific death rate increased, while the specific antibody production rate was increased 2- and 25-fold, respectively, by feeding BSA at these two concentrations compared with no addition. Comparing the two systems, the increase in the antibody production rate achieved with the hollow-fiber system was threefold greater than that in the perfusion culture system with the same concentration of BSA feeding. (c) 1995 John Wiley & Sons, Inc. 相似文献
17.
Rüdiger Heidemann Chun Zhang Hanshi Qi James Larrick Rule Carl Rozales Sinyoung Park Sandra Chuppa Manas Ray James Michaels Konstantin Konstantinov David Naveh 《Cytotechnology》2000,32(2):157-167
Protein hydrolysates as substitutes for serum havebeen employed by many in cell culture mediumformulation, especially with the shift to low proteinor protein-free media. More recently, vegetablehydrolysates have also been added as nutritionalsupplements to fortify the amino acid content in smallpeptide form for batch and fed-batch fermentations. Several of these new hydrolysates (peptones of soy,rice, wheat gluten etc.) were tested as protein-freemedium supplements for the production of a recombinanttherapeutic protein. Multiple peptone-supplemented,continuous perfusion bioreactor experiments wereconducted, varying dilution rates and basal mediumcomposition over the various runs. Cell specificrates and product quality studies were obtained forthe various peptones and compared with peptone-freemedium. The potential for peptones to decreaseintrinsic and proteolytic degradation of the productwas also investigated.It was found that peptones confer a nutritionalbenefit, especially at low dilution rates, for therecombinant BHK cell line used in this investigation.The specific productivity increased 20–30% comparedto the peptone-free controls. However, this benefitwas also fully delivered by using fortified medium inplace of the peptone-enriched media. Therefore, whilepeptones may be considered as useful medium additiveswhen development time is limited, their addition maybe avoided by systematic medium development ifpermitted by the time line of the project. 相似文献
18.
Comparison of cell growth in T-flasks, in micro hollow fiber bioreactors, and in an industrial scale hollow fiber bioreactor system 总被引:1,自引:0,他引:1
In this article, cell growth in a novel micro hollow fiberbioreactor was compared to that in a T-flask and theAcuSyst-Maximizer®, a large scale industrial hollowfiber bioreactor system. In T-flasks, there was relativelylittle difference in the growth rates of one murine hybridomacultured in three different media and for three other murinehybridomas cultured in one medium. However, substantialdifferences were seen in the growth rates of cells in themicro bioreactor under these same conditions. These differencecorrelated well with the corresponding rates of initial cellexpansion in the Maximizer. Quantitative prediction of thesteady-state antibody production rate in the Maximizer was moreproblematic. However, conditions which lead to faster initialcell growth and higher viable cell densities in the microbioreactor correlated with better performance of a cell line inthe Maximizer. These results demonstrate that the microbioreactor is more useful than a T-flask for determining optimalconditions for cell growth in a large scale hollow fiberbioreactor system. 相似文献
19.
The effect of phosphorus (P) concentration in barley seed on seedling growth has not been much investigated. Consequently,
two experiments were conducted in the greenhouse to determine the effect of P concentration in barley seed (Hordeum vulgare L., cv. Empress) on the seedlings grown in sand-filled boxes receiving a culture solution without P. Seeds were selected
with three P concentrations: high-P (113.0 mmol P kg−1), medium-P (80.7 mmol P kg−1) and low-P (54.9 mmol P kg−1). At 21 days after sowing, the shoot and root yield or shoot height was the least with seedlings from low-P seed. In the
other experiment, high-P and low-P seeds were wetted with distilled water or with a solution of 25.8 cmol L−1 of NaH2PO4 for 24 h, and then grown for 31 days. Solution P had been imbibed by seeds whether low or high in native P, but only the
imbibed P held by low native P seed benefited seedling dry matter accumulation and shoot elongation. The lack of benefit from
seed-imbibed P on seedlings grown from high-P barley seed was associated with low recovery of the imbibed P in those seedlings. 相似文献
20.
This article describes a cell banking process for rBHK cell lines in 100‐mL cryobags. As the use of larger volume cell banks requires greater cell numbers and longer preparation time, extensive characterization of key process parameters beyond the conventional ranges was performed to support a cGMP banking process. All experiments were conducted using two recombinant BHK21 cell lines, one of them cotransfected with Hsp70. The results show that the entire cell banking process for these BHK cell lines can be performed at room temperature. A DMSO exposure time up to 5 h either directly in a bioreactor or in shaker flasks did not result in any significant negative effect after cell thaw, when the cryocontainers were frozen immediately after filling. Extensive characterization did not indicate any significant apoptotic effects after thaw. However, the Hsp70 cotransfected cell line did show a slightly better protection from potential cryopreservation‐induced apoptosis. Surprisingly, it was found that cells transferred into cryobags showed a low recovery rate after thaw if the incubation time exceeded 1.5 h before freezing. Additional experiments confirmed that the DMSO exposure time inside the cryocontainer in contrast to the DMSO exposure in a reactor or shaker flasks is much more critical. The cryobag cell banking process should therefore be performed within a 1½–2 h window; a banking process for vials should not exceed 2½ h. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010 相似文献