首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several optical imaging techniques have been used to monitor bacterial tropisms for cancer. Most such techniques require genetic engineering of the bacteria to express optical reporter genes. This study investigated a novel tumor‐targeting strain of bacteria, Rhodobacter sphaeroides 2.4.1 (R. sphaeroides), which naturally emits near‐infrared fluorescence, thereby facilitating the visualization of bacterial tropisms for cancer. To determine the penetration depth of bacterial fluorescence, various numbers of cells (from 108 to 1010 CFU) of R. sphaeroides and two types of Escherichia coli, which stably express green fluorescent protein (GFP) or red fluorescent protein (RFP), were injected s.c. or i.m. into mice. Bacterial tropism for cancer was determined after i.v. injection of R. sphaeroides (108 CFU) into mice implanted s.c. with eight types of tumors. The intensity of the fluorescence signal in deep tissue (muscle) from R. sphaeroides was much stronger than from E. coli‐expressing GFP or RFP. The near‐infrared fluorescence signal from R. sphaeroides was visualized clearly in all types of human or murine tumors via accumulation of bacteria. Analyses of C‐reactive protein and procalcitonin concentrations and body weights indicated that i.v. injection of R. sphaeroides does not induce serious systemic immune reactions. This study suggests that R. sphaeroides could be used as a tumor‐targeting microorganism for the selective delivery of drugs to tumor tissues without eliciting a systemic immune reaction and for visualizing tumors.  相似文献   

2.
Aims: To obtain a bacterial strain that can be used to quantify biodegradable polysaccharides at concentrations of a few micrograms per litre in freshwater. Methods and Results: Flavobacterium johnsoniae strain A3 was isolated from tap water supplemented with laminarin, pectin or amylopectin at 100 μg C l?1 and river Rhine water. The organism utilized 14 of 23 oligo‐ and polysaccharides, and 1 of 9 monosaccharides, but none of the sugar acids, sugar alcohols, carboxylic acids or aromatic acids tested at 10 μg C l?1. Amino acids promoted growth of strain A3, but not in coculture with assimilable organic carbon (AOC) test strain Pseudomonas fluorescens P17, which utilized these compounds more rapidly than strain A3. Compounds released by strain P17 and AOC test strain Spirillum sp. NOX grown on acetate promoted the growth of strain A3 at Nmax values of ≥ 2 × 105 CFU ml?1 of strain P17 and ≥ 5 × 105 CFU ml?1 of strain NOX. Significant growth of strain A3 was observed in surface water and in tap water in the presence of strain P17 (Nmax P17 < 2 × 105 CFU ml?1). Conclusions: Strain A3 utilizes oligo‐ and polysaccharides at microgram‐per‐litre levels. In surface water and in tap water, the organism was able to utilize compounds that were not utilized by strain P17. These compounds may include oligo‐ and/or polysaccharides. Significance and Impact of the Study: Phytoplanktonic and bacterial polysaccharides can constitute an important biodegradable fraction of natural organic matter in water and may promote growth of heterotrophic bacteria during water treatment and drinking water distribution. Strain A3 can be used to quantify a group of compounds that includes oligo‐ and polysaccharides at microgram‐per‐litre levels in freshwater.  相似文献   

3.
4.
Aims: The purposes of this study were to evaluate the efficacy of high pressure to inactivate Escherichia coli O157:H7 in ground beef at ambient and subzero treatment temperatures and to study the fate of surviving bacteria postprocess and during frozen storage. Methods and Results: Fresh ground beef was inoculated with a five‐strain cocktail of E. coli O157:H7 vacuum‐packaged, pressure‐treated at 400 MPa for 10 min at ?5 or 20°C and stored at ?20 or 4°C for 5–30 days. A 3‐log CFU g?1 reduction of E. coli O157:H7 in the initial inoculum of 1 × 106 CFU g?1 was observed immediately after pressure treatment at 20°C. During frozen storage, levels of E. coli O157:H7 declined to <1 × 102 CFU g?1 after 5 days. The physiological status of the surviving E. coli was affected by high pressure, sensitizing the cells to pH levels 3 and 4, bile salts at 5% and 10% and mild cooking temperatures of 55–65°C. Conclusions: High‐pressure processing (HPP) reduced E. coli O157:H7 in ground beef by 3 log CFU g?1 and caused substantial sublethal injury resulting in further log reductions of bacteria during frozen storage. Significance and Impact of the Study: HPP treatment of packaged ground beef has potential in the meat industry for postprocess control of pathogens such as E. coli O157:H7 with enhanced safety of the product.  相似文献   

5.
Aims: To evaluate the suitability of commercially available Petrifilm? EC plates for enumeration of Escherichia coli from soil. Methods and Results: A confirmed E. coli strain isolated from liquid swine manure was inoculated into sterilized sandy clay loam and loam soils at the concentrations of 102, 103, 105 CFU g?1 of soil. The efficiency of recovery on Petrifilm? EC plates for soils spiked with E. coli was compared with standard membrane filtration techniques on m‐FC basal medium supplemented with 3‐bromo‐4‐chloro‐5‐indoyl‐β‐d ‐glucopyranoside (BCIG) and most probable numbers (MPN) techniques in E. coli medium with 4‐methylumbelliferyl‐β‐d ‐glucuronide (EC‐MUG) broth. Petrifilm? EC and m‐FC (BCIG) methods were then assessed for the ability to recover E. coli from field soils applied with swine manure. No significant differences (P > 0·05) were observed between Petrifilm? EC, m‐FC (BCIG) and MPN methods for the recovery of E. coli from spiked samples, irrespective of soil type. However, recovery of E. coli from manure‐applied field soil samples showed a significant difference (P < 0·05) between the Petrifilm? EC method and the m‐FC method in enumerating E. coli possibly as a result of false positives on m‐FC. Conclusion: The Petrifilm? EC method is suitable for the enumeration of E. coli from soil with a detection limit of 10 CFU g?1 soil. Significance and Impact of the Study: The commercially available Petrifilm? EC method is comparatively low cost, easy to use method for the enumeration of E. coli from soil without the need for further confirmation tests.  相似文献   

6.
At elevated osmolarity of the mineral medium M63, marine macroalgae constitute important osmoprotectants and nutrients sources for Escherichia coli. Growth of bacterial population (16 strains) was improved by supplementing M63 salts medium with either aqueous or ethanolic algal extracts obtained from Ascophyllum nodosum, Fucus serratus, Enteromorpha ramulosa, Ulva lactuca, and Palmaria palmata. In their presence, growth was still observed even at 1.02 m NaCl. Furthermore, the E. coli ZB400 growth in presence of whole macroalgae thalli in M63/0.85 m NaCI reached its maximum within 24 h (5 × 107 – 5 × 108 colony-forming units [CFU] per milliliter). In the presence of A. nodosum, bacterial growth was inhibited. In the same experimental conditions, ethanolic extracts improved E. coli growth significantly, because the yield reached 1011 CFU per milliliter. Ulva lactuca and P. palmata allowed the better growth. The Dragendorff-positive compounds extracted from bacterial cells growing on each ethanolic extract exhibited an osmoprotective effect as proved by a disk-diffusion assay. On the other hand, the -onium compounds (quaternary ammonium [betaines] and tertiary sulphonium) and total free amino acid contents of U. lactuca ethanolic extracts were higher than in others. Fucaceae extracts demonstrated especially high protein content. Algal extracts constitute not only an appreciable osmoprotection source for E. coli but also nutrient sources. Correspondence to: J. Minet  相似文献   

7.
The adult house fly Musca domestica (L.) (Diptera: Muscidae) can disseminate bacteria from microbe‐rich substrates to areas in which humans and domesticated animals reside. Because bacterial abundance fluctuates widely across substrates, flies encounter and ingest varying amounts of bacteria. This study investigated the dose‐dependent survival of bacteria in house flies. Flies were fed four different ‘doses’ of green fluorescent protein (GFP)‐expressing Escherichia coli (GFP E. coli) (very low, low, medium, high) and survival was determined at 1, 4, 10 and 22 h post‐ingestion by culture and epifluorescent microscopy. Over 22 h, the decline in GFP E. coli was significant in all treatments (P < 0.04) except the very low dose treatment (P = 0.235). Change in survival (ΔS) did not differ between flies fed low and very low doses of bacteria across all time‐points, although ΔS in both treatments differed from that in flies fed high and medium doses of bacteria at several time‐points. At 4, 10 and 22 h, GFP E. coli ΔS significantly differed between medium and high dose‐fed flies. A threshold dose, above which bacteria are detected and destroyed by house flies, may exist and is likely to be immune‐mediated. Understanding dose‐dependent bacterial survival in flies can help in predicting bacteria transmission potential.  相似文献   

8.
9.
Escherichia coli strain BL21 is commonly used as a host strain for protein expression and purification. For structural analysis, proteins are frequently isotopically labeled with deuterium (2H), 13C, or 15N by growing E. coli cultures in a medium containing the appropriate isotope. When large quantities of fully deuterated proteins are required, E. coli is often grown in minimal media with deuterated succinate or acetate as the carbon source because these are less expensive. Despite the widespread use of BL21, we found no data on the effect of different minimal media and carbon sources on BL21 growth. In this study, we assessed the growth behavior of E. coli BL21 in minimal media with different gluconeogenic carbon sources. Though BL21 grew reasonably well on glycerol and pyruvate, it had a prolonged lag-phase on succinate (20 h), acetate (10 h), and fumarate (20 h), attributed to the physiological adaptation of E. coli cells. Wild-type strain NCM3722 (K12) grew well on all the substrates. We also examined the growth of E. coli BL21 in minimal media that differed in their salt composition but not in their source of carbon. The commonly used M9 medium did not support the optimum growth of E. coli BL21 in minimal medium. The addition of ferrous sulphate to M9 medium (otherwise lacking it) increased the growth rate of E. coli cultures and significantly increased their cell density in the stationary phase. An erratum to this article can be found at  相似文献   

10.
Aim: To develop quantitative PCR for culture‐independent enumeration of enterotoxigenic Escherichia coli (ETEC) in sewage‐impacted waters and aquatic weeds. Methods and Results: Two fluorescent probes (TaqMan and FRET) based on two different real‐time PCR chemistries were designed in highly conserved region of LT1 gene encoding heat labile enterotoxin. Both the assays could detect 2 CFU ml?1 from serially diluted (two‐fold and ten‐fold) culture of reference strain (E. coli MTCC 723). FRET performed better in terms of CT value and PCR efficiency than TaqMan. The presence of 106 CFU ml?1 of nonpathogenic E. coli reduced the detection limit two‐fold with both the probes. However, the performance for two chemistries in various environmental samples was significantly (student’s t‐test, P < 0·05) different. Conclusion: It could be inferred from this study that real‐time PCR chemistries (TaqMan and FRET) could detect very few copies of target DNA in pure cultures, but may give varied response in the presence of nonspecific DNA and natural inhibitors present in environmental sample matrices. Significance and Impact of the Study: The assays can be used for pre‐emptive monitoring of aquatic weeds (a potential nonpoint source), surface and potable waters to prevent waterborne outbreaks caused by ETEC.  相似文献   

11.
12.
Aims: The objective of this study was to investigate whether bacterial cells could develop resistance (as a part of their adaptation strategy) to high‐pressure CO2 (HPCD) inactivation. Methods and Results: Alternating cycles of exposure to pressurized CO2 (10·5 MPa, 35°C, 400 min?1, 70% working volume ratio during 10 min) and re‐growth of the surviving subpopulation were used to investigate possible increases in the resistance of Escherichia coli and Listeria monocytogenes to HPCD. The results show an increased resistance of both pathogens tested after seven cycles of inactivation. Increase in the resistance after 15 cycles resulted in a difference of 2·4 log CFU ml?1 in log N0/Ni when parental (N0) and treated cultures (Ni) of E. coli and L. monocytogenes were compared. Conclusions: Current findings indicate the ability of micro‐organisms to adapt to HPCD preservation technology. Significance and Impact of the Study: The occurrence of HPCD‐resistant micro‐organisms could pose a new hazard to the safety and stability of HPCD‐processed foods.  相似文献   

13.
Aims:  Zero‐valent iron (ZVI) filters may provide an efficient method to mitigate the contamination of produce crops through irrigation water. Methods:  A field‐scale system was utilized to evaluate the effectiveness of a biosand filter (S), a biosand filter with ZVI incorporated (ZVI) and a control (C, no treatment) in decontaminating irrigation water. An inoculum of c. 8·5 log CFU 100 ml?1 of Escherichia coli O157:H12 was introduced to all three column treatments in 20‐l doses. Filtered waters were subsequently overhead irrigated to ‘Tyee’ spinach plants. Water, spinach plant and soil samples were obtained on days 0, 1, 4, 6, 8, 10, 13 and 15 and analysed for E. coli O157:H12 populations. Results:  ZVI filters inactivated c. 6 log CFU 100 ml?1E. coli O157:H12 during filtration on day 0, significantly (P < 0·05) more than S filter (0·49 CFU 100 ml?1) when compared to control on day 0 (8·3 log CFU 100 ml?1). On day 0, spinach plants irrigated with ZVI‐filtered water had significantly lower E. coli O157 counts (0·13 log CFU g?1) than spinach irrigated with either S‐filtered (4·37 log CFU g?1) or control (5·23 log CFU g?1) water. Soils irrigated with ZVI‐filtered water contained E. coli O157:H12 populations below the detection limit (2 log CFU g?1), while those irrigated with S‐filtered water (3·56 log CFU g?1) were significantly lower than those irrigated with control (4·64 log CFU g?1). Conclusions:  ZVI biosand filters were more effective in reducing E. coli O157:H12 populations in irrigation water than sand filters. Significance and Impact of the Study:  Zero‐valent ion treatment may be a cost‐effective mitigation step to help small farmers reduce risk of foodborne E. coli infections associated with contamination of leafy greens.  相似文献   

14.
Aims: Investigating mechanisms of lethality enhancement when Escherichia coli O157:H7, and selected E. coli mutants, were exposed to tert‐butylhydroquinone (TBHQ) during ultra‐high pressure (UHP) treatment. Methods and Results: Escherichia coli O157:H7 EDL‐933, and 14 E. coli K12 strains with mutations in selected genes, were treated with dimethyl sulfoxide solution of TBHQ (15–30 ppm), and processed with UHP (400 MPa, 23 ± 2°C for 5 min). Treatment of wild‐type E. coli strains with UHP alone inactivated 2·4–3·7 log CFU ml?1, whereas presence of TBHQ increased UHP lethality by 1·1–6·2 log CFU ml?1; TBHQ without pressure was minimally lethal (0–0·6 log reduction). Response of E. coli K12 mutants to these treatments suggests that iron–sulfur cluster‐containing proteins ([Fe–S]‐proteins), particularly those related to the sulfur mobilization (SUF system), nitrate metabolism, and intracellular redox potential, are critical to the UHP–TBHQ synergy against E. coli. Mutations in genes maintaining redox homeostasis and anaerobic metabolism were associated with UHP–TBHQ resistance. Conclusions: The redox cycling activity of cellular [Fe–S]‐proteins may oxidize TBHQ, potentially leading to the generation of bactericidal reactive oxygen species. Significance and Impact of the Study: A mechanism is proposed for the enhanced lethality of UHP by TBHQ against E. coli O157:H7. The results may benefit food processors using UHP–based preservation, and biologists interested in piezophilic micro‐organisms.  相似文献   

15.
Aims: Our main objective was to optimize the enrichment of Escherichia coli O26 in raw milk cheeses for their subsequent detection with a new automated immunological method. Methods and Results: Ten enrichment broths were tested for the detection of E. coli O26. Two categories of experimentally inoculated raw milk cheeses, semi‐hard uncooked cheese and ‘Camembert’ type cheese, were initially used to investigate the relative efficacy of the different enrichments. The enrichments that were considered optimal for the growth of E. coli O26 in these cheeses were then challenged with other types of raw milk cheeses. Buffered peptone water supplemented with cefixim–tellurite and acriflavin was shown to optimize the growth of E. coli O26 artificially inoculated in the cheeses tested. Despite the low inoculum level (1–10 CFU per 25 g) in the cheeses, E. coli O26 counts reached at least 5·104 CFU ml?1 after 24‐h incubation at 41·5°C in this medium. Conclusions: All the experimentally inoculated cheeses were found positive by the immunological method in the enrichment broth selected. Significance and Impact of the Study: Optimized E. coli O26 enrichment and rapid detection constitute the first steps of a complete procedure that could be used in routine to detect E. coli O26 in raw milk cheeses.  相似文献   

16.
Aim: The pathogen growth in dairy compost was studied in a greenhouse setting under different seasons. Methods and Results: The five‐strain mixtures of each Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes were inoculated separately into dry compost to yield c. 1 log CFU g?1. After acclimation at room temperature, the inoculated compost was initially adjusted to moisture levels of 10–50% and then kept in a greenhouse under different seasons. The populations of all three pathogens increased by 2·1–3·9 log CFU g?1 within 3 days in autoclaved compost with initial moisture content of at least 40%. Listeria monocytogenes multiplied up to 2·4 log CFU g?1 in compost with initial moisture content of 30% and was detected up to 28 days for all seasons, whereas populations of both E. coli O157:H7 and Salmonella increased by c. 1 log in compost with initial moisture content of 30% during winter months only. No pathogen growth in nonautoclaved compost was detected. Conclusion: Bacterial species, temperature, light intensity and moisture content affected the growth potential and survival of pathogens in compost when the population of background microflora was low. Significance and Impact of the Study: Keeping compost as dry as possible and maintaining certain levels of background microflora may be critical to prevent the growth of pathogens.  相似文献   

17.
E. coli (P450pyrTM‐GDH) with dual plasmids, pETDuet containing P450pyr triple mutant I83H/M305Q/A77S (P450pyrTM) and ferredoxin reductase (FdR) genes and pRSFDuet containing glucose dehydrogenase (GDH) and ferredoxin (Fdx) genes, was engineered to show a high activity (12.7 U g?1 cdw) for the biohydroxylation of N‐benzylpyrrolidine 1 and a GDH activity of 106 U g?1 protein. The E. coli cells were used as efficient biocatalysts for highly regio‐ and stereoselective hydroxylation of alicyclic substrates at non‐activated carbon atom with enhanced productivity via intracellular recycling of NAD(P)H. Hydroxylation of N‐benzylpyrrolidine 1 with resting cells in the presence of glucose showed excellent regio‐ and stereoselectivity, giving (S)‐N‐benzyl‐3‐hydroxypyrrolidine 2 in 98% ee as the sole product in 9.8 mM. The productivity is much higher than that of the same biohydroxylation using E. coli (P450pyrTM)b without expressing GDH. E. coli (P450pyrTM‐GDH) was found to be highly regio‐ and stereoselective for the hydroxylation of N‐benzylpyrrolidin‐2‐one 3 , improving the regioselectivity from 90% of the wild‐type P450pyr to 100% and giving (S)‐N‐benzyl‐4‐hydroxylpyrrolidin‐2‐one 4 in 99% ee as the sole product. A high activity of 15.5 U g?1 cdw was achieved and (S)‐ 4 was obtained in 19.4 mM. E. coli (P450pyrTM‐GDH) was also found to be highly regio‐ and stereoselective for the hydroxylation of N‐benzylpiperidin‐2‐one 5 , increasing the ee of the product (S)‐N‐benzyl‐4‐hydroxy‐piperidin‐2‐one 6 to 94% from 33% of the wild‐type P450pyr. A high activity of 15.8 U g?1 cdw was obtained and (S)‐ 6 was produced in 3.3 mM as the sole product. E. coli (P450pyrTM‐GDH) represents the most productive system known thus far for P450‐catalyzed hydroxylations with cofactor recycling, and the hydroxylations with E. coli (P450pyrTM‐GDH) provide with simple and useful syntheses of (S)‐ 2 , (S)‐ 4 , and (S)‐ 6 that are valuable pharmaceutical intermediates and difficult to prepare. Biotechnol. Bioeng. 2013; 110: 363–373. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Glucose catabolism of Pseudomonas putida is carried out exclusively through the Entner–Doudoroff (ED) pathway due to the absence of 6‐phosphofructokinase. In order to activate the Embden–Meyerhof–Parnas (EMP) route we transferred the pfkA gene from Escherichia coli to a P. putida wild‐type strain as well as to an eda mutant, i.e. lacking 2‐keto‐3‐deoxy‐6‐phosphogluconate aldolase. PfkAE. coli failed to redirect the carbon flow from the ED route towards the EMP pathway, suggesting that ED was essential for sugar catabolism. The presence of PfkAE. coli was detrimental for growth, which could be traced to the reduction of ATP and NAD(P)H pools along with alteration of the NAD(P)H/NADP+ ratio. Pseudomonas putida cells carrying PfkAE. coli became highly sensitive to diamide and hydrogen peroxide, the response to which is very demanding of NADPH. The inhibitory effect of PfkAE. coli could in part be relieved by methionine, the synthesis of which relies much on NADPH. These results expose the role of the ED pathway for generating the redox currency (NADPH) that is required for counteracting oxidative stress. It is thus likely that environmental bacteria that favour the ED pathway over the EMP pathway do so in order to gear their aerobic metabolism to endure oxidative‐related insults.  相似文献   

19.
Quorum sensing (QS) exists widely among bacteria, enabling a transition to multicellular behaviour after bacterial populations reach a particular density. The coordination of multicellularity enables biotechnological application, dissolution of biofilms, coordination of virulence, and so forth. Here, a method to elicit and subsequently disperse multicellular behaviour among QS‐negative cells is developed using magnetic nanoparticle assembly. We fabricated magnetic nanoparticles (MNPs, ~5 nm) that electrostatically collect wild‐type (WT) Escherichia coli BL21 cells and brings them into proximity of bioengineered E. coli [CT104 (W3110 lsrFG? luxS? pCT6 + pET‐DsRed)] reporter cells that exhibit a QS response after receiving autoinducer‐2 (AI‐2). By shortening the distance between WT and reporter cells (e.g., increasing local available AI‐2 concentrations), the QS response signalling was amplified four‐fold compared to that in native conditions without assembly. This study suggests potential applications in facilitating intercellular communication and modulating multicellular behaviours based on user‐specified designs.  相似文献   

20.
Aims: To examine the relationships between population growth and biological characters of the plant‐growth‐promoting rhizobacterium Paenibacillus polymyxa GBR‐1. Methods and Results: Population growth, colony formation, starch‐hydrolytic activity, and ginseng root rot caused by P. polymyxa GBR‐1 isolated from a rotten ginseng root were examined in vitro and in vivo at high [1 × 108 colony‐forming units (CFU) ml?1] and low (1 × 106 CFU ml?1) initial inoculum densities. Paenibacillus polymyxa GBR‐1 showed strong starch‐hydrolytic activity on modified starch agar with relatively low starch content, but only at certain incubation temperatures (18 and 23°C); the high‐density inoculum produced bacterial colonies about nine times thicker than those formed from the lower inoculum density. Light, scanning electron, and transmission electron microscopy showed that the thick colonies from the high‐density inoculum were filled with extracellular polymeric substances (EPS), in which a relatively small number of ovoid‐rod‐shaped bacterial cells (mostly endospore‐bearing cells) were distributed. In contrast, the thin colonies from the low‐density inoculum were composed of massive vegetative cells with a rectangular rod shape and minimum EPS. Fluorescent in situ hybridization (FISH) revealed that the β‐amylase gene was expressed only in bacterial cells from the thick colonies formed from the high‐density inoculum, but not in those from the low‐density inoculum. The culture filtrate from the thick colonies produced a hydrolytic clear zone on modified starch agar, degraded starch granules in various manners, and produced rot symptoms on ginseng root tissues. Conclusions: The biological properties of colony formation, starch hydrolysis, and ginseng tissue rotting by P. polymyxa GBR‐1 are interrelated; they are influenced by the initial bacterial population density but not by the in situ and the final population densities. Significance and Impact of the Study: Knowledge of disease‐inducing characters of P. polymyxa GBR‐1 can be used in the development of biocontrol strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号