首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Objective

Despite a great number of studies analysing the effects of microgravity on stem cell proliferation and differentiation, few of them have focused on real‐time imaging estimates in space. Herein, we utilized the TZ‐1 cargo spacecraft, automatic cell culture equipment and live cell imaging techniques to examine the effects of real microgravity on the proliferation and differentiation of mouse embryonic stem cells (mESCs).

Materials and methods

Oct4‐GFP, Brachyury‐GFP mESC and Oct4‐GFP mESC‐derived EBs were used as experimental samples in the TZ‐1 spaceflight mission. These samples were seeded into chambers, cultured in an automatic cell culture device and were transported into space during the TZ‐1 mission. Over 15 days of spaceflight, bright field and fluorescent images of cell growth were taken in micrography, and the medium was changed every day. Real‐time image data were transferred to the ground for analysis.

Results

Space microgravity maintains stemness and long‐term survival of mESCs, promising 3D aggregate formation. Although microgravity did not significantly prevent the migration of EBs on the ECM substrate, it did prevent terminal differentiation of cells.

Conclusions

This study demonstrates that space microgravity might play a potential role in supporting 3D cell growth and maintenance of stemness in embryonic stem cells, while it may negatively affect terminal differentiation.
  相似文献   

2.
Embryonic stem (ES) cells can be valuable for monitoring differentiation processes and for improving applications in basic developmental biology. The application of ES cells can be a useful tool for drug discovery and toxicology. Therefore, we suggest the high-throughput screening (HTS) system based on ES cells in this study. Firstly, we optimized the feeder-free condition and seeding cell number which can maintained for at least 7 days without over-confluency. We analyzed the system by cell viability, proliferation activity, RT-PCR and morphologic/immunohistochemical evaluations. The optimal cell seeding number was 30/well that was maintained the typical colonial morphology over 9 d with 1,000 U/ml LIF in the limited space. The cell in optimized condition expressed ALP, SSEA-1, Oct 4 and Nanog and the genetic expressions showed similar to protein expressions. The cell lineage marker expressions showed faint or none. The cell viability and proliferation activity were increased in time-dependent manner in our optimized HTS system. In conclusion, the novel HTS system using ES cells can by useful for developing models for drug discovery as well as toxicological screening in the near future.  相似文献   

3.
4.
Three‐dimensional (3D) culture provides a biomimicry of the naive microenvironment that can support cell proliferation, differentiation, and regeneration. Some growth factors, such as epidermal growth factor (EGF), facilitate normal meiosis during oocyte maturation in vivo. In this study, a scaffold‐based 3D coculture system using purified alginate was applied to induce oocyte differentiation from mouse embryonic stem cells (mESCs). mESCs were induced to differentiate into oocyte‐like cells using embryoid body protocol in the two‐dimensional or 3D microenvironment in vitro. To increase the efficiency of the oocyte‐like cell differentiation from mESCs, we employed a coculture system using ovarian granulosa cells in the presence or absence of epidermal growth factor (+EGF or ?EGF) for 14 days and then the cells were assessed for germ cell differentiation, meiotic progression, and oocyte maturation markers. The cultures exposed to EGF in the alginate‐based 3D microenvironment showed the highest level of premeiotic (Oct4 and Mvh), meiotic (Scp1, Scp3, Stra8, and Rec8), and oocyte maturation (Gdf9, Cx37, and Zp2) marker genes (p < .05) in comparison to other groups. According to the gene‐expression patterns, we can conclude that alginate‐based 3D coculture system provided a highly efficient protocol for oocyte‐like cell differentiation from mESCs. The data showed that this culture system along with EGF improved the rate of in vitro oocyte‐like cell differentiation.  相似文献   

5.
6.
Neurotrophins and their receptors are known to play a role in the proliferation and survival of many different cell types of neuronal and non-neuronal lineages. In addition, there is much evidence in the literature showing that the p75 neurotrophin receptor (p75NTR), alone or in association with members of the family of Trk receptors, is expressed in a wide variety of stem cells, although its role in such cells has not been completely elucidated. In the present work we have investigated the expression of p75NTR and Trks in totipotent and pluripotent cells, the mouse pre-implantation embryo and embryonic stem and germ cells (ES and EG cells). p75NTR and TrkA can be first detected in the blastocyst from which ES cell lines are derived. Mouse ES cells retain p75NTR/TrkA expression. Nerve growth factor is the only neurotrophin able to stimulate ES cell growth in culture, without affecting the expression of stem cell markers, alkaline phosphatase, Oct4 and Nanog. Such proliferation effect was blocked by antagonizing either p75NTR or TrkA. Interestingly, immunoreactivity to anti-p75NTR antibodies is lost upon ES cell differentiation. The expression pattern of neurotrophin receptors in murine ES cells differs from human ES cells, that only express TrkB and C, and do not respond to NGF. In this paper we also show that, while primordial germ cells (PGC) do not express p75NTR, when they are made to revert to an ES-like phenotype, becoming EG cells, expression of p75NTR is turned on.  相似文献   

7.
低氧对胚胎干细胞增殖的影响   总被引:4,自引:1,他引:3  
目的:观察间歇性低氧和持续性低氧对体外培养的胚胎干细胞(ES细胞)增殖的影响.方法:利用细胞记数法和BrdU (5-溴脱氧尿苷)掺入的流式细胞分析检测细胞增殖,并用RT -PCR的方法检测低氧诱导因子(HIF-1a)的表达变化.结果:①将ES细胞分别放在低氧(3%~10% O2)和常氧(20% O2)的环境中培养24 h后,在低氧环境中培养的ES细胞数较常氧组明显减少;②将ES细胞分别给予间歇性低氧刺激(3%~10% O2),每天10 min,连续4 d后,发现3%低氧组较常氧对照组的细胞增殖明显升高.③用RT-PCR方法观察HIF-1a的表达与细胞增殖的关系,发现在常氧环境中培养的ES即有HIF-1a的表达,ES细胞在持续低氧24 h或间歇性低氧(3%~10% O2)刺激4 d后对HIF-1a的表达均无明显影响.结论:间歇性低氧(3% O2)可明显促进体外培养的ES细胞增殖,而持续性低氧抑制ES细胞增殖,间歇性低氧(3% O2)刺激促进ES细胞增殖的机制尚有待于进一步的研究.  相似文献   

8.
Feeder cells are usually used in culturing embryonic stem cells (ESCs) to maintain their undifferentiated and pluripotent status. To test whether mouse embryonic stem cells (mESCs) may be a source of feeder cells to support their own growth, 48 fibroblast-like cell lines were isolated from the same mouse embryoid bodies (mEBs) at three phases (10th day, 15th day, 20th day), and five of them, mostly derived from 15th day mEBs, were capable of maintaining mESCs in an undifferentiated and pluripotent state over 10 passages, even up to passage 20. mESCs cultured on the feeder system derived from these five cell lines expressed alkaline phosphatase and specific mESCs markers, including SSEA-1, Oct-4, Nanog, and formed mEBs in vitro and teratomas in vivo. These results suggest that mEB-derived fibroblasts (mEB-dFs) could serve as feeder cells that could sustain the undifferentiated growth and pluripotency of their own mESCs in culture. This study not only provides a novel feeder system for mESCs culture, avoiding a lot of disadvantages of commonly used mouse embryonic fibroblasts as feeder cells, but also indicates that fibroblast-like cells derived from mESCs take on different functions. Investigating the molecular mechanisms of these different functional fibroblast-like cells to act on mESCs will contribute to the understanding of the mechanisms of mESCs self-renewal.  相似文献   

9.
Telomerase is associated with cell proliferation capacity, protection and stabilization of chromosomes. TA (telomerase activity) can be detected in highly replicative cells, e.g. stem and cancer cells. Most available mESC (mouse embryonic stem cell) research is done with a few cell lines. The purpose of this study has been to evaluate the TA in different passages of newly isolated mESC. TRAP (Telomeric Repeat Amplification Protocol)-ELISA method was used in a semi-quantitative evaluation of TA. Three mESC lineages were investigated (CT2, CT3 and CT4) at three different passages (P13, P15 and P19). In contrast with previous studies, these mESC lines did not show the same TA throughout their passages, having initially low TA values, followed by a subsequent rise and stabilization.  相似文献   

10.
11.
Feeder cells are commonly used to culture embryonic stem cells to maintain their undifferentiated and pluripotent status. Conventionally, mouse embryonic fibroblasts (MEFs), supplemented with leukemia inhibitory factor (LIF), are used as feeder cells to support the growth of mouse embryonic stem cells (mESCs) in culture. To prepare for fresh MEF feeder or for MEF-conditioned medium, sacrifice of mouse fetuses repeatedly is unavoidable in these tedious culture systems. Here we report the discovery of a human endothelial cell line (ECV-304 cell line) that efficiently supports growth of mESCs LIF-free conditions. mESCs that were successfully cultured for eight to 20 passages on ECV-304 feeders showed morphological characteristics similar to cells cultured in traditional feeder cell systems. These cells expressed the stem cell markers Oct3/4, Nanog, Sox2, and SSEA-1. Furthermore, cells cultured on the ECV-304 cell line were able to differentiate into three germ layers and were able to generate chimeric mice. Compared with traditional culture systems, there is no requirement for mouse fetuses and exogenous LIF does not need to be added to the culture system. As a stable cell line, the ECV-304 cell line efficiently replaces MEFs as an effective feeder system and allows the efficient expansion of mESCs.  相似文献   

12.
Goat embryonic stem (ES)-like cells could be isolated from primary materials-inner cell masses (ICMs) and remain undifferentiated for eight passages in a new culture system containing mouse ES cell conditioned medium (ESCCM) and on a feeder layer of mouse embryo fibroblasts (MEFs). However, when cultured in medium without mouse ESCCM, goat ES-like cells could not survive for more than three passages. In addition, no ES-like cells could be obtained when ICMs were cultured on goat embryo fibroblasts or the primary materials-whole goat blastocysts were cultured on MEFs. Goat ES-like cells isolated from ICMs had a normal karyotype and highly expressed alkaline phosphatase. Multiple differentiation potency of the ES-like cells was confirmed by differentiation into neural cells and fibroblast-like cells in vitro. These results suggest that mouse ES cells might secrete factors playing important roles in promoting goat ES-like cells' self-renewal, moreover, the feeder layers and primary materials could also influence the successful isolation of goat ES-like cells.  相似文献   

13.
14.
Msi1 (Musashi 1) is regarded as a marker for neural and intestinal epithelial stem cells. However, it is still unclear whether Msi1‐positive cells derived from mouse embryonic stem cells have the ability to differentiate into neural or intestinal epithelial cells. A pMsi1–GFP (green fluorescent protein) reporter plasmid was constructed in order to sort Msi1‐positive cells out of the differentiated cell population. The GFP‐positive cells (i.e. Msi1‐positive cells) were sorted by FACS and were hypodermically engrafted into the backs of NOD/SCID (non‐obese diabetic/severe combined immunodeficient) mice. The presence of neural and intestinal epithelial cells in the grafts was detected. Msi1 was highly expressed in the GFP‐positive cells, but not in the GFP‐negative cells. The markers for neural cells (Nestin and Tubulin β III) and intestinal epithelial cells [FABP2 (fatty acid binding protein 2), Lyz (lysozyme) and ChA (chromogranin A)] were more highly expressed in the grafts from Msi1‐positive cells than those from Msi1‐negative cells (P<0.05). The grafts from the Msi1‐negative cells contained more mesodermal‐like tissues than those from the Msi1‐positive cells. The pMsi1–GFP vector can be used to sort Msi1‐positive cells from a cell population derived from mouse embryonic stem cells. The Msi1‐positive cells can differentiate into neural and intestinal epithelial‐like cells in vivo.  相似文献   

15.
16.
Cyclin-dependent kinase 1 (Cdk1) is indispensible for the early development of the embryo. However, its role in maintaining the undifferentiated state of the embryonic stem (ES) cells remains unknown. In this study, we dissected the function of Cdk1 in mouse ES cells by RNA-interference and gene expression analyses. Cdk1 expression is tightly correlated with the undifferentiated state of the ES cells. Upon differentiation, Cdk1 expression reduced drastically. Cdk1 knock-down by RNA interference resulted in the loss of proliferation and colony formation potential of the ES cells. Consequentially, expression of self-renewal genes was reduced while differentiation markers such as Cdx2 were induced. Our results suggest a role for Cdk1 in maintaining the unique undifferentiated and self-renewing state of the mouse ES cells.  相似文献   

17.
骨髓移植是目前治疗恶性白血病以及遗传性血液病最有效的方法之一。但是HLA相匹配的骨髓捐献者严重短缺,骨髓造血干细胞(hematopoietic stem cells,HSCs)体外培养困难,在体外修复患者骨髓造血干细胞技术不成熟,这些都大大限制了骨髓移植在临床上的应用。多能性胚胎干细胞(embryonic stem cells,ESCs)具有自我更新能力,在合适的培养条件下分化形成各种血系细胞,是造血干细胞的另一来源。在过去的二十多年里,血发生的研究是干细胞生物学中最为活跃的领域之一。小鼠及人的胚胎干细胞方面的研究最近取得了重大进展。这篇综述总结了近年来从胚胎干细胞获得造血干细胞的成就,以及在安全和技术上的障碍。胚胎干细胞诱导生成可移植性血干细胞的研究能够使我们更好地了解正常和异常造血发生的机制,同时也为造血干细胞的临床应用提供理论和实验依据。  相似文献   

18.
Expansion of mouse embryonic stem cells on microcarriers   总被引:1,自引:0,他引:1  
Embryonic stem (ES) cells have been shown to differentiate in vitro into a wide variety of cell types having significant potential for tissue regeneration. Therefore, the operational conditions for the ex vivo expansion and differentiation should be optimized for large-scale cultures. The expansion of mouse ES cells has been evaluated in static culture. However, in this system, culture parameters are difficult to monitor and scaling-up becomes time consuming. The use of stirred bioreactors facilitates the expansion of cells under controlled conditions but, for anchorage-dependent cells, a proper support is necessary. Cytodex-3, a microporous microcarrier made up of a dextran matrix with a collagen layer at the surface, was tested for its ability to support the expansion of the mouse S25 ES cell line in spinner flasks. The effect of inocula and microcarrier concentration on cell growth and metabolism were analyzed. Typically, after seeding, the cells exhibited a growth curve consisting of a short death or lag phase followed by an exponential phase leading to the maximum cell density of 2.5-3.9 x 10(6) cells/mL. Improved expansion was achieved using an inoculum of 5 x 10(4) cells/mL and a microcarrier concentration of 0.5 mg/mL. Medium replacement allowed the supply of the nutrients and the removal of waste products inhibiting cell growth, leading to the maintenance of the cultures in steady state for several days. These conditions favored the preservation of the S25 cells pluripotent state, as assessed by quantitative real-time PCR and immunostaining analysis.  相似文献   

19.
The influence of cytokine LIF (Leukemia Inhibitory Factor) on the viability, and proliferation of mouse embryonic stem cells (ESC) (R1 cell line) and their distribution by cell cycle stages has been investigated. LIF (5–20 ng/ml) increased growth of colonies and maintained high proliferative and pluripotent properties of R1 cells. LIF was also involved into the inhibition of spontaneous cell differentiation and apoptotic cell death; it also decreased the rations of S/G2 + M cell cycle and doubling-time of cell population.  相似文献   

20.
Embryonic stem cell (ESC) technology provides attractive perspectives for generating unlimited numbers of somatic cells for disease modeling and compound screening. A key prerequisite for these industrial applications are standardized and automated systems suitable for stem cell processing. Here we demonstrate that mouse and human ESC propagated by automated culture maintain their mean specific growth rates, their capacity for multi-germlayer differentiation, and the expression of the pluripotency-associated markers SSEA-1/Oct-4 and Tra-1-60/Tra-1-81/Oct-4, respectively. The feasibility of ESC culture automation may greatly facilitate the use of this versatile cell source for a variety of biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号