首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Many protein kinases are characterized by at least two structural forms corresponding to the highest level of activity (active) and low or no activity, (inactive). Further, protein dynamics is an important consideration in understanding the molecular and mechanistic basis of enzyme function. In this work, we use protein kinase A (PKA) as the model system and perform microsecond range molecular dynamics (MD) simulations on six variants which differ from one another in terms of active and inactive form, with or without bound ligands, C‐terminal tail and phosphorylation at the activation loop. We find that the root mean square fluctuations in the MD simulations are generally higher for the inactive forms than the active forms. This difference is statistically significant. The higher dynamics of inactive states has significant contributions from ATP binding loop, catalytic loop, and αG helix. Simulations with and without C‐terminal tail show this differential dynamics as well, with lower dynamics both in the active and inactive forms if C‐terminal tail is present. Similarly, the dynamics associated with the inactive form is higher irrespective of the phosphorylation status of Thr 197. A relatively stable stature of active kinases may be better suited for binding of substrates and detachment of the product. Also, phosphoryl group transfer from ATP to the phosphosite on the substrate requires precise transient coordination of chemical entities from three different molecules, which may be facilitated by the higher stability of the active state.  相似文献   

3.
Src kinase plays an important role in integrin signaling by regulating cytoskeletal organization and cell remodeling. Previous in vivo studies have revealed that the SH3 domain of c‐Src kinase directly associates with the C‐terminus of β3 integrin cytoplasmic tail. Here, we explore this binding interface with a combination of different spectroscopic and computational methods. Chemical shift mapping, PRE, transferred NOE and CD data were used to obtain a docked model of the complex. This model suggests a different binding mode from the one proposed through previous studies wherein, the C‐terminal end of β3 spans the region in between the RT and n‐Src loops of SH3 domain. Furthermore, we show that tyrosine phosphorylation of β3 prevents this interaction, supporting the notion of a constitutive interaction between β3 integrin and Src kinase.  相似文献   

4.
Integrins are heterodimeric cell‐surface proteins that play important roles during developmental and pathological processes. Diverse human pathologies involve integrin adhesion including thrombotic diseases, inflammation, tumour progression, fibrosis, and infectious diseases. Although in the past decade, novel integrin‐inhibitor drugs have been developed for integrin‐based medical applications, the structural determinants modulating integrin‐ligands recognition mechanisms are still poorly understood, reducing the number of integrin subtype exclusive antagonists. In this scenario, we have very recently showed, by means of chemical and biological assays, that a chimeric peptide (named RGDechi), containing a cyclic RGD motif linked to an echistatin C‐terminal fragment, is able to interact with the components of integrin family with variable affinities, the highest for αvβ3. Here, in order to understand the mechanistic details driving the molecular recognition mechanism of αvβ3 by RGDechi, we have performed a detailed structural and dynamics characterization of the free peptide by natural abundance nuclear magnetic resonance (NMR) spectroscopy. Our data indicate that RGDechi presents in solution an heterogeneous conformational ensemble characterized by a more constrained and rigid pentacyclic ring and a largely unstructured acyclic region. Moreover, we propose that the molecular recognition of αvβ3 integrin by RGDechi occurs by a combination of conformational selection and induced fit mechanisms. Finally, our study indicates that a detailed NMR characterization, by means of natural abundance 15N and 13C, of a mostly unstructured bioactive peptide may provide the molecular basis to get essential structural insights into the binding mechanism to the biological partner.  相似文献   

5.
Obtustatin is a potent and selective inhibitor of the alpha1beta1 integrin in vitro and of angiogenesis in vivo. It possesses an integrin recognition loop that harbors, in a lateral position, the inhibitory 21KTS23 motif. We report an analysis of the dynamics of the backbone and side-chain atoms of obtustatin by homonuclear NMR methods. Angular mobility has been calculated for 90 assigned cross-peaks from 22 off-resonance rotating frame nuclear Overhauser effect spectroscopy spectra recorded at three magnetic fields. Our results suggest that the integrin binding loop and the C-terminal tail display concerted motions, which can be interpreted by hinge effects. Among the integrin-binding motif, threonine 22 and serine 23 exhibit the lowest and the highest side-chain flexibility, respectively. It is noteworthy that the side chain of threonine 22 is not solvent-exposed, although based on synthetic peptides it appears to be the most critical residue for the inhibitory activity of obtustatin on the binding of integrin alpha1beta1 to collagen IV. Instead, the side chain of threonine 22 is oriented toward the loop center and hydrogen-bonded to residues Thr25 and Ser26. This network of interactions explains the restrained mobility of threonine 22 and suggests that its functional importance lies in maintaining the active conformation of the alpha1beta1 inhibitory loop.  相似文献   

6.
Histatin‐5 (Hst‐5, DSHAKRHHGYKRKFHEKHHSHRGY) is a member of a histidine‐rich peptide family secreted by major salivary glands, exhibiting high fungicidal activity against Candida albicans. In the present work, we demonstrate the 3D structure of the head‐to‐tail cyclic variant of Hst‐5 in TFE solution determined using NMR spectroscopy and molecular dynamics simulations. The cyclic histatin‐5 reveals a helix‐loop‐helix motif with α‐helices at positions Ala4‐His7 and Lys11‐Ser20. Both helical segments are arranged relative to each other at an angle of ca. 142°. The head‐to‐tail cyclization increases amphipathicity of the peptide, this, however, does not affect its antimicrobial potency. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
Cdc25B phosphatases are involved in cell cycle checkpoints and have become a possible target for developing new anticancer drugs. A more rational design of Cdc25B ligands would benefit from detailed knowledge of its tertiary structure. The conformational flexibility of the C‐terminal region of the Cdc25B catalytic domain has been debated recently and suggested to play an important structural role. Here, a combination of experimental NMR measurements and molecular dynamics simulations for the complete catalytic domain of the Cdc25B phosphatase is presented. The stability of the C‐terminal α‐helix is confirmed, but the last 20 residues in the complete catalytic domain are very flexible, partially occlude the active site and may establish transient contacts with the protein core. This flexibility in the C‐terminal tail may modulate the molecular recognition of natural substrates and competitive inhibitors by Cdc25B. Proteins 2016; 84:1567–1575. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
Jagged‐1, one of the five Notch ligands in man, is a membrane‐spanning protein made of a large extracellular region and a 125‐residue cytoplasmic tail bearing a C‐terminal PDZ recognition motif (1213RMEYIV1218). Binding of Jagged‐1 intracellular region to the PDZ domain of afadin, a protein located at cell–cell adherens junctions, couples Notch signaling with the adhesion system and the cytoskeleton. Using NMR chemical shift perturbation and surface plasmon resonance, we studied the interaction between the PDZ domain of afadin (AF6_PDZ) and a series of polypeptides comprising the PDZ‐binding motif. Chemical shift mapping of AF6_PDZ upon binding of ligands of different length (6, 24, and 133 residues) showed that the interaction is strictly local and involves only the binding groove in the PDZ. The recombinant protein corresponding to the entire intracellular region of Jagged‐1, J1_ic, is mainly disordered in solution, and chemical shift mapping of J1_ic in the presence of AF6_PDZ showed that binding is not coupled to folding. Binding studies on a series of 24‐residue peptides phosphorylated at different positions showed that phosphorylation of the tyrosine at position ‐2 of the PDZ‐binding motif decreases its affinity for AF6_PDZ, and may play a role in the modulation of this interaction. Finally, we show that the R1213Q mutation located in the PDZ‐binding motif and associated with extrahepatic biliary atresia increases the affinity for AF6_PDZ, suggesting that this syndrome may arise from an imbalance in the coupling of Notch signaling to the cytoskeleton. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
A novel lipid transfer protein, designated as Ag‐LTP, was isolated from aerial parts of the dill Anethum graveolens L. Structural, antimicrobial, and lipid binding properties of the protein were studied. Complete amino acid sequence of Ag‐LTP was determined. The protein has molecular mass of 9524.4 Da, consists of 93 amino acid residues including eight cysteines forming four disulfide bonds. The recombinant Ag‐LTP was overexpressed in Escherichia coli and purified. NMR investigation shows that the Ag‐LTP spatial structure contains four α ‐helices, forming the internal hydrophobic cavity, and a long C‐terminal tail. The measured volume of the Ag‐LTP hydrophobic cavity is equal to ~800 A3, which is much larger than those of other plant LTP1s. Ag‐LTP has weak antifungal activity and unpronounced lipid binding specificity but effectively binds plant hormone jasmonic acid. Our results afford further molecular insight into biological functions of LTP in plants. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
Borrelia burgdorferi gene product BB0323 is required for cell fission and pathogen persistence in vivo. Here, we show that BB0323, which is conserved among globally prevalent infectious strains, supports normal spirochaete growth and morphology even at early phases of cell division. We demonstrate that native BB0323 undergoes proteolytic processing at the C‐terminus, at a site after the first 202 N‐terminal amino acids. We further identified a periplasmic BB0323 binding protein in B. burgdorferi, annotated as BB0104, having serine protease activity responsible for the primary cleavage of BB0323 to produce discrete N‐ and C‐terminal polypeptides. These two BB0323 polypeptides interact with each other, and either individually or as a complex, are associated with multiple functions in spirochaete biology and infectivity. While N‐terminal BB0323 is adequate to support cell fission, the C‐terminal LysM domain is dispensable for this process, despite its ability to bind B. burgdorferi peptidoglycan. However, the LysM domain or the precisely processed BB0323 product is essential for mammalian infection. As BB0323 is a membrane protein crucial for B. burgdorferi survival in vivo, exploring its function may suggest novel ways to interrupt infection while enhancing our understanding of the intricate spirochaete fission process.  相似文献   

11.
Platelet aggregation is the consequence of the binding of extracellular bivalent ligands such as fibrinogen and von Willebrand factor to the high affinity, active state of integrin αIIbβ3. This state is achieved through a so‐called “inside‐out” mechanism characterized by the membrane‐assisted formation of a complex between the F2 and F3 subdomains of intracellular protein talin and the integrin β3 tail. Here, we present the results of multi‐microsecond, all‐atom molecular dynamics simulations carried on the complete transmembrane (TM) and C‐terminal (CT) domains of αIIbβ3 integrin in an explicit lipid‐water environment, and in the presence or absence of the talin‐1 F2 and F3 subdomains. These large‐scale simulations provide unprecedented molecular‐level insights into the talin‐driven inside‐out activation of αIIbβ3 integrin. Specifically, they suggest a preferred conformation of the complete αIIbβ3 TM/CT domains in a lipid‐water environment, and testable hypotheses of key intermolecular interactions between αIIbβ3 integrin and the F2/F3 domains of talin‐1. Notably, not only do these simulations give support to a stable left‐handed reverse turn conformation of the αIIb juxtamembrane motif rather than a helical turn, but they raise the question as to whether TM helix separation is required for talin‐driven integrin activation. Proteins 2014; 82:3231–3240. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
The cytoskeletal protein talin activates integrin receptors by binding of its FERM domain to the cytoplasmic tail of β‐integrin. Talin also couples integrins to the actin cytoskeleton, largely by binding to and activating the cytoskeletal protein vinculin, which binds to F‐actin through the agency of its five‐helix bundle tail (Vt) domain. Talin activates vinculin by means of buried amphipathic α‐helices coined vinculin binding sites (VBSs) that reside within numerous four‐ and five‐helix bundle domains that comprise the central talin rod, which are released from their buried locales by means of mechanical tension on the integrin:talin complex. In turn, these VBSs bind to the N‐terminal seven‐helix bundle (Vh1) domain of vinculin, creating an entirely new helix bundle that severs its head‐tail interactions. Interestingly, talin harbors a second integrin binding site coined IBS2 that consists of two five‐helix bundle domains that also contain a VBS (VBS50). Here we report the crystal structure of VBS50 in complex with vinculin at 2.3 Å resolution and show that intramolecular interactions of VBS50 within IBS2 are much more extensive versus its interactions with vinculin. Indeed, the IBS2‐vinculin interaction only occurs at physiological temperature and the affinity of VBS50 for vinculin is about 30 times less than other VBSs. The data support a model where integrin binding destabilizes IBS2 to allow it to bind to vinculin.  相似文献   

13.
Background information. Rho GTPases are important regulators of cytoskeleton dynamics and cell adhesion. RhoU/Wrch‐1 is a Rho GTPase which shares sequence similarities with Rac1 and Cdc42 (cell division cycle 42), but has also extended N‐ and C‐terminal domains. The N‐terminal extension promotes binding to SH3 (Src homology 3)‐domain‐containing adaptors, whereas the C‐terminal extension mediates membrane targeting through palmitoylation of its non‐conventional CAAX box. RhoU/Wrch‐1 possesses transforming activity, which is negatively regulated by its N‐terminal extension and depends on palmitoylation. Results. In the present study, we have shown that RhoU is localized to podosomes in osteoclasts and c‐Src‐expressing cells, and to focal adhesions of HeLa cells and fibroblasts. The N‐terminal extension and the palmitoylation site were dispensable, whereas the C‐terminal extension and effector binding loop were critical for RhoU targeting to focal adhesions. Moreover, the number of focal adhesions was reduced and their distribution changed upon expression of activated RhoU. Conversely, RhoU silencing increased the number of focal adhesions. As RhoU was only transiently associated with adhesion structures, this suggests that RhoU may modify adhesion turnover and cell migration rate. Indeed, we found that migration distances were increased in cells expressing activated RhoU and decreased when RhoU was knocked‐down. Conclusions. Our data indicate that RhoU localizes to adhesion structures, regulates their number and distribution and increases cell motility. It also suggests that the RhoU effector binding and C‐terminal domains are critical for these functions.  相似文献   

14.
In striated muscle, the binding of calcium to troponin C (TnC) results in the removal of the C‐terminal region of the inhibitory protein troponin I (TnI) from actin. While structural studies of the muscle system have been successful in determining the overall organization of most of the components involved in force generation at the atomic level, the structure and dynamics of the C‐terminal region of TnI remains controversial. This domain of TnI is highly flexible, and it has been proposed that this intrinsically disordered region (IDR) regulates contraction via a “fly‐casting” mechanism. Different structures have been presented for this region using different methodologies: a single α‐helix, a “mobile domain” containing a small β‐sheet, an unstructured region, and a two helix segment. To investigate whether this IDR has in fact any nascent structure, we have constructed a skeletal TnC‐TnI chimera that contains the N‐domain of TnC (1–90), a short linker (GGAGG), and the C‐terminal region of TnI (97–182) and have acquired 15N NMR relaxation data for this chimera. We compare the experimental relaxation parameters with those calculated from molecular dynamic simulations using four models based upon the structural studies. Our experimental results suggest that the C‐terminal region of TnI does not contain any defined secondary structure, supporting the “fly‐casting” mechanism. We interpret the presence of a “plateau” in the 15N NMR relaxation data as being an intrinsic property of IDRs. We also identified a more rigid adjacent region of TnI that has implications for muscle performance under ischemic conditions. Proteins 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

15.
Enteropathogenic Yersinia expresses several invasins that are fundamental virulence factors required for adherence and colonization of tissues in the host. Within the invasin‐family of Yersinia adhesins, to date only Invasin has been extensively studied at both structural and functional levels. In this work, we structurally characterize the recently identified inverse autotransporter InvasinE from Yersinia pseudotuberculosis (formerly InvasinD from Yersinia pseudotuberculosis strain IP31758) that belongs to the invasin‐family of proteins. The sequence of the C‐terminal adhesion domain of InvasinE differs significantly from that of other members of the Yersinia invasin‐family and its detailed cellular and molecular function remains elusive. In this work, we present the 1.7 Å crystal structure of the adhesion domain of InvasinE along with two Immunoglobulin‐like domains. The structure reveals a rod shaped architecture, confirmed by small angle X‐ray scattering in solution. The adhesion domain exhibits strong structural similarities to the C‐type lectin‐like domain of Yersinia pseudotuberculosis Invasin and enteropathogenic/enterohemorrhagic E. coli Intimin. However, despite the overall structural similarity, the C‐type lectin‐like domain in InvasinE lacks motifs required for Ca2+/carbohydrate binding as well as sequence or structural features critical for Tir binding in Intimin and β1‐integrin binding in Invasin, suggesting that InvasinE targets a distinct, yet unidentified molecule on the host‐cell surface. Although the biological role and target molecule of InvasinE remain to be elucidated, our structural data provide novel insights into the architecture of invasin‐family proteins and a platform for further studies towards unraveling the function of InvasinE in the context of infection and host colonization.  相似文献   

16.
The study of the process of HIV entry into the host cell and the creation of biomimetic nanosystems that are able to selectively bind viral particles and proteins is a high priority research area for the development of novel diagnostic tools and treatment of HIV infection. Recently, we described multilayer nanoparticles (nanotraps) with heparin surface and cationic peptides comprising the N‐terminal tail (Nt) and the second extracellular loop (ECL2) of CCR5 receptor, which could bind with high affinity some inflammatory chemokines, in particular, Rantes. Because of the similarity of the binding determinants in CCR5 structure, both for chemokines and gp120 HIV protein, here we expand this approach to the study of the interactions of these biomimetic nanosystems and their components with the peptide representing the V3 loop of the activated form of gp120. According to surface plasmon resonance results, a conformational rearrangement is involved in the process of V3 and CCR5 fragments binding. As in the case of Rantes, ECL2 peptide showed much higher affinity to V3 peptide than Nt (KD = 3.72 × 10?8 and 1.10 × 10?6 M, respectively). Heparin‐covered nanoparticles bearing CCR5 peptides effectively bound V3 as well. The presence of both heparin and the peptides in the structure of the nanotraps was shown to be crucial for the interaction with the V3 loop. Thus, short cationic peptides ECL2 and Nt proved to be excellent candidates for the design of CCR5 receptor mimetics.  相似文献   

17.
Integrin αVβ3 plays an important role in regulating cellular activities and in human diseases. Although the structure of αVβ3 has been studied by crystallography and electron microscopy, the detailed activation mechanism of integrin αVβ3 induced by fibronectin remains unclear. In this study, we investigated the conformational and dynamical motion changes of Mn2+‐bound integrin αVβ3 by binding to fibronectin with molecular dynamics simulations. Results showed that fibronectin binding to integrin αVβ3 caused the changes of the conformational flexibility of αVβ3 domains, the essential mode of motion for the domains of αV subunit and β3 subunit and the degrees of correlated motion of residues between the domains of αV subunit and β3 subunit of integrin αVβ3. The angle of Propeller domain with respect to the Calf‐2 domain of αV subunit and the angle of Hybrid domain with respect to βA domain of β3 subunit significantly increased when integrin αVβ3 was bound to fibronectin. These changes could result in the conformational change tendency of αVβ3 from a bend conformation to an extended conformation and lead to the open swing of Hybrid domain relative to βA domain of β3 subunit, which have demonstrated their importance for αVβ3 activation. Fibronectin binding to integrin αVβ3 significantly decreased the relative position of α1 helix to βA domain and that to metal ion‐dependent adhesion site, stabilized Mn2+ ions binding in integrin αVβ3 and changed fibronectin conformation, which are important for αVβ3 activation. Results from this study provide important molecular insight into the “outside‐in” activation mechanism of integrin αVβ3 by binding to fibronectin.  相似文献   

18.
Phosphorylation is considered a key event in the signalling and regulation of the μ opioid receptor (MOPr). Here, we used mass spectroscopy to determine the phosphorylation status of the C‐terminal tail of the rat MOPr expressed in human embryonic kidney 293 (HEK‐293) cells. Under basal conditions, MOPr is phosphorylated on Ser363 and Thr370, while in the presence of morphine or [D‐Ala2, NMe‐Phe4, Gly‐ol5]‐enkephalin (DAMGO), the COOH terminus is phosphorylated at three additional residues, Ser356, Thr357 and Ser375. Using N‐terminal glutathione S transferase (GST) fusion proteins of the cytoplasmic, C‐terminal tail of MOPr and point mutations of the same, we show that, in vitro, purified G protein‐coupled receptor kinase 2 (GRK2) phosphorylates Ser375, protein kinase C (PKC) phosphorylates Ser363, while CaMKII phosphorylates Thr370. Phosphorylation of the GST fusion protein of the C‐terminal tail of MOPr enhanced its ability to bind arrestin‐2 and ‐3. Hence, our study identifies both the basal and agonist‐stimulated phospho‐acceptor sites in the C‐terminal tail of MOPr, and suggests that the receptor is subject to phosphorylation and hence regulation by multiple protein kinases.  相似文献   

19.
Salmonella enterica serovar Typhimurium can induce both humoral and cell‐mediated responses when establishing itself in the host. These responses are primarily stimulated against the lipopolysaccharide and major outer membrane (OM) proteins. OmpA is one of these major OM proteins. It comprises a N‐terminal eight‐stranded β‐barrel transmembrane domain and a C‐terminal domain (OmpACTD). The OmpACTD and its homologs are believed to bind to peptidoglycan (PG) within the periplasm, maintaining bacterial osmotic homeostasis and modulating the permeability and integrity of the OM. Here we present the first crystal structures of the OmpACTD from two pathogens: S. typhimurium (STOmpACTD) in open and closed forms and causative agent of Lyme Disease Borrelia burgdorferi (BbOmpACTD), in closed form. In the open form of STOmpACTD, an aspartate residue from a long β2‐α3 loop points into the binding pocket, suggesting that an anion group such as a carboxylate group from PG is favored at the binding site. In the closed form of STOmpACTD and in the structure of BbOmpACTD, a sulfate group from the crystallization buffer is tightly bound at the binding site. The differences between the closed and open forms of STOmpACTD, suggest a large conformational change that includes an extension of α3 helix by ordering a part of β2‐α3 loop. We propose that the sulfate anion observed in these structures mimics the carboxylate group of PG when bound to STOmpACTD suggesting PG‐anchoring mechanism. In addition, the binding of PG or a ligand mimic may enhance dimerization of STOmpACTD, or possibly that of full length STOmpA.  相似文献   

20.
The ability of adhesion receptors to transmit biochemical signals and mechanical force across cell membranes depends on interactions with the actin cytoskeleton. Human filamins are large actin cross-linking proteins that connect integrins to the cytoskeleton. Filamin binding to the cytoplasmic tail of β integrins has been shown to prevent integrin activation in cells, which is important for controlling cell adhesion and migration. The molecular-level mechanism for filamin binding to integrin has been unclear, however, as it was recently demonstrated that filamin undergoes intramolecular auto-inhibition of integrin binding. In this study, using steered molecular dynamics simulations, we found that mechanical force applied to filamin can expose cryptic integrin binding sites. The forces required for this are considerably lower than those for filamin immunoglobulin domain unfolding. The mechanical-force-induced unfolding of filamin and exposure of integrin binding sites occur through stable intermediates where integrin binding is possible. Accordingly, our results support filamin's role as a mechanotransducer, since force-induced conformational changes allow binding of integrin and other transmembrane and intracellular proteins. This observed force-induced conformational change can also be one of possible mechanisms involved in the regulation of integrin activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号