首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fourier‐transform infrared (FT‐IR) spectroscopy was employed to investigate potential lyophilization‐induced changes in the secondary structure of lipases from Candida antarctica B and Pseudomonas cepacia. The secondary structure elements were determined by curve fitting of the amide III bands of the two lipases in the lyophilized state in KBr pellets and in solution. It was found that lyophilization decreased the α‐helix and increased the β‐sheet content. However, FT‐IR analysis of crosslinked enzyme crystals of Pseudomonas cepacia lipase also indicated an increase in the β‐sheet content, which appears despite the fact that the enzyme, being in the crystallized state, should possess native conformation. This result partially questions the suitability of FT‐IR for analysis of the structure of solid proteins, at least as far as the β‐sheet content is concerned, because it is possible that the method overestimates the β‐sheets by measuring other hydrogen‐bonded nonperiodic intermolecular structures. No significant modification was observed when lipase from Pseudomonas cepacia was lyophilized in the presence of methoxypoly(ethylene glycol). © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 64: 545–551, 1999.  相似文献   

2.
Soybean calmodulin isoform 4 (sCaM4) is a plant calcium‐binding protein, regulating cellular responses to the second messenger Ca2+. We have found that the metal ion free (apo‐) form of sCaM4 possesses a half unfolded structure, with the N‐terminal domain unfolded and the C‐terminal domain folded. This result was unexpected as the apo‐forms of both soybean calmodulin isoform 1 (sCaM1) and mammalian CaM (mCaM) are fully folded. Because of the fact that free Mg2+ ions are always present at high concentrations in cells (0.5–2 mM), we suggest that Mg2+ should be bound to sCaM4 in nonactivated cells. CD studies revealed that in the presence of Mg2+ the initially unfolded N‐terminal domain of sCaM4 folds into an α‐helix‐rich structure, similar to the Ca2+ form. We have used the NMR backbone residual dipolar coupling restraints 1DNH, 1DCαHα, and 1DC′Cα to determine the solution structure of the N‐terminal domain of Mg2+‐sCaM4 (Mg2+‐sCaM4‐NT). Compared with the known structure of Ca2+‐sCaM4, the structure of the Mg2+‐sCaM4‐NT does not fully open the hydrophobic pocket, which was further confirmed by the use of the fluorescent probe ANS. Tryptophan fluorescence experiments were used to study the interactions between Mg2+‐sCaM4 and CaM‐binding peptides derived from smooth muscle myosin light chain kinase and plant glutamate decarboxylase. These results suggest that Mg2+‐sCaM4 does not bind to Ca2+‐CaM target peptides and therefore is functionally similar to apo‐mCaM. The Mg2+‐ and apo‐structures of the sCaM4‐NT provide unique insights into the structure and function of some plant calmodulins in resting cells.  相似文献   

3.
Severcan F  Haris PI 《Biopolymers》2003,69(4):440-447
Pig citrate synthase (PCS) can be used as a model enzyme to gain some insight into the structural basis of protein thermostability. The thermal unfolding characteristics of the specific secondary structure elements within PCS were monitored in detail by following changes in its amide I band components. The result of our study indicates that PCS undergoes irreversible thermal denaturation. Detailed analysis reveals that the different secondary structures display a multistep transition with a major and a minor transition at different temperatures and a very small initial transition at the same temperature (30 degrees C). A plot of temperature-induced changes in (1)H-(2)H exchange, the decrease in the absorbance of the alpha-helical structures, and the increase in the absorbance of aggregated structures all have in common a multistep transition, the minor one centered at 45 degrees C and the major one around 59 degrees C. In contrast, a band that is tentatively assigned to loop structures displays these same minor and major transitions but at lower temperatures (39 and 52 degrees C, respectively). The transition, which occurs at 39-45 degrees C, is not associated with the appearance of aggregated structures. This transition may reflect a change in the tertiary structure of the protein. However, the final transition, which occurs at a higher temperature (52-59 degrees C), reflects unfolding and aggregation of the polypeptide chains. The Fourier transform infrared (FTIR) analysis suggests that PCS has a thermolabile region that unfolds first, some 7 degrees C below the main unfolding of the protein. We propose that this reflects the unfolding of the highly flexible loop segments, which in turn triggers the unfolding of the predominantly helical core structure of PCS.  相似文献   

4.
FTIR spectroscopy has been applied to study the coordination structures of Mg2+ and Ca2+ ions bound in Akazara scallop troponin C (TnC), which contains only a single Ca2+ binding site. The region of the COO- antisymmetric stretch provides information about the coordination modes of COO- groups to the metal ions: bidentate, unidentate, or pseudo-bridging. Two bands were observed at 1584 and 1567 cm-1 in the apo state, whereas additional bands were observed at 1543 and 1601 cm-1 in the Ca2+-bound and Mg2+-bound states, respectively. The intensity of the band at 1567 cm-1 in the Mg2+-bound state was identical to that in the apo state. Therefore, the side-chain COO- group of Glu142 at the 12th position in the Ca2+-binding site coordinates to Ca2+ in the bidentate mode but does not interact with Mg2+ directly. A slight upshift of COO- antisymmetric stretch due to Asp side-chains was also observed upon Mg2+ and Ca2+ binding. This indicates that the COO- groups of Asp131 and Asp133 interact with both Ca2+ and Mg2+ in the pseudo-bridging mode. Therefore, the present study directly demonstrated that the coordination structure of Mg2+ was different from that of Ca2+ in the Ca2+-binding site. In contrast to vertebrate TnC, most of the secondary structures remained unchanged among apo, Mg2+-bound and Ca2+-bound states of Akazara scallop TnC, as spectral changes upon either Ca2+ or Mg2+ binding were very small in the infrared amide-I' region as well as in the CD spectra. Fluorescence spectroscopy indicated that the spectral changes upon Ca2+ binding were larger than that upon Mg2+ binding. Moreover, gel-filtration experiments indicated that the molecular sizes of TnC had the order apo TnC > Mg2+-bound TnC > Ca2+-bound TnC. These results suggest that the tertiary structures are different in the Ca2+- and Mg2+-bound states. The present study may provide direct evidence that the side-chain COO- groups in the Ca2+-binding site are directly involved in the functional on/off mechanism of the activation of Akazara scallop TnC.  相似文献   

5.
Mg2+ binds to calmodulin without inducing the changes in secondary structure that are characteristic of Ca2+ binding, or the exposure of hydrophobic surfaces that are involved in typical Ca2+-dependent target interactions. The binding of Mg2+ does, however, produce significant spectroscopic changes in residues located in the Ca2+-binding loops, and the Mg-calmodulin complex is significantly different from apo-calmodulin in loop conformation. Direct measurement of Mg2+ binding constants, and the effects of Mg2+ on Ca2+ binding to calmodulin, are consistent with specific binding of Mg2+, in competition with Ca2+. Mg2+ increases the thermodynamic stability of calmodulin, and we conclude that under resting, nonstimulated conditions, cellular Mg2+ has a direct role in conferring stability on both domains of apo-calmodulin. Apo-calmodulin binds typical target sequences from skeletal muscle myosin light chain kinase and neuromodulin with Kd approximately 70-90 nM (at low ionic strength). These affinities are virtually unchanged by 5 mM Mg2+, in marked contrast to the strong enhancement of peptide affinity induced by Ca2+. Under conditions of stimulation and increased [Ca2+], Mg2+ has a role in directing the mode of initial target binding preferentially to the C-domain of calmodulin, due to the opposite relative affinities for binding of Ca2+ and Mg2+ to the two domains. Mg2+ thus amplifies the intrinsic differences of the domains, in a target specific manner. It also contributes to setting the Ca2+ threshold for enzyme activation and increases the importance of a partially Ca2+-saturated calmodulin-target complex that can act as a regulatory kinetic and equilibrium intermediate in Ca2+-dependent target interactions.  相似文献   

6.
Fourier transform infrared spectroscopy has been used to monitor lipid-protein interaction and protein secondary structure in native and reconstituted sarcoplasmic reticulum vesicles. Studies of the temperature dependence of the CH2 symmetric stretching frequency reveal no cooperative phase transitions in purified sarcoplasmic reticulum or in vesicles reconstituted with dioleoylphosphatidylcholine, although a continuous introduction of disorder into the lipid acyl chains is observed as the temperature is raised. In addition, temperature-dependent changes are observed in the Amide I and Amide II vibrations arising from protein peptide bonds. A comparison of lipid order in native sarcoplasmic reticulum and its lipid extract showed that the introduction of protein is accompanied by a slight increase in lipid order. Reconstitution of Ca2+-ATPase from sarcoplasmic reticulum with dipalmitoylphosphatidylcholine (lipid/protein ratio 30:1), reveals a perturbed lipid melting event broadened and reduced in midpoint temperature from multilamellar lipid vesicles. The onset of melting (27–28°C) correlates well with the onset of ATPase activity and confirms a suggestion (Hesketh, T.R., Smith G.A., Houslay M.D., McGill, K.A., Birdsall, N.J.M., Metcalfe, J.C. and Warren, G.B. (1976) Biochemistry 15, 4145–4151) that a liquid crystalline environment is a requirement for optimal protein function. Finally, Ca2+-ATPase has been reconstituted into binary lipid mixtures of DOPC and acyl-chain perdeuterated DPPC. The effect of protein on the structure and melting behavior of each lipid component was monitored. The protein appears to preferentially interact with the DOPC component.  相似文献   

7.
Polcalcins are small EF‐hand proteins believed to assist in regulating pollen‐tube growth. Phl p 7, from timothy grass (Phleum pratense), crystallizes as a domain‐swapped dimer at low pH. This study describes the solution structures of the recombinant protein in buffered saline at pH 6.0, containing either 5.0 mM EDTA, 5.0 mM Mg2+, or 100 μM Ca2+. Phl p 7 is monomeric in all three ligation states. In the apo‐form, both EF‐hand motifs reside in the closed conformation, with roughly antiparallel N‐ and C‐terminal helical segments. In 5.0 mM Mg2+, the divalent ion is bound by EF‐hand 2, perturbing interhelical angles and imposing more regular helical structure. The structure of Ca2+‐bound Phl p 7 resembles that previously reported for Bet v 4—likewise exposing apolar surface to the solvent. Occluded in the apo‐ and Mg2+‐bound forms, this surface presumably provides the docking site for Phl p 7 targets. Unlike Bet v 4, EF‐hand 2 in Phl p 7 includes five potential anionic ligands, due to replacement of the consensus serine residue at –x (residue 55 in Phl p 7) with aspartate. In the Phl p 7 crystal structure, D55 functions as a helix cap for helix D. In solution, however, D55 apparently serves as a ligand to the bound Ca2+. When Mg2+ resides in site 2, the D55 carboxylate withdraws to a distance consistent with a role as an outer‐sphere ligand. 15N relaxation data, collected at 600 MHz, indicate that backbone mobility is limited in all three ligation states. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) has been used to compare the structure of β-lactoglobulin, the major component of whey proteins, in solution and in its functional gel state. To induce variation in the conformation of β-lactoglobulin under a set of gelling conditions, the effect of heating temperature, pH, and high pressure homogenization on the conformation sensitive amide I band in the infrared spectra of both solutions and gels has been investigated. The results showed that gelification process has a pronounced effect upon β-lactoglobulin secondary structure, leading to the formation of intermolecular hydrogen-bonding β-sheet structure as evidenced by the appearance of a strong band at 1614 cm−1 at the expense of other regular structures. These results confirm that this structure may be essential for the formation of a gel network as it was previously shown for other globular proteins. However, this study reveals, for the first time, that there is a close relationship between conformation of β-lactoglobulin in solution and its capacity to form a gel. Indeed, it is shown that conditions which promote predominance of intermolecular β-sheet in solution such as pH 4, prevent the formation of gel in conditions used by increasing thermal stability of β-lactoglobulin. On the basis of these findings, it is suggested that by controlling the extent of intermolecular β-structure of the protein in solution, it is possible to modify the ability of protein to form a gel and as a consequence to control the properties of gels.  相似文献   

9.
Sarcoplasmic reticulum Ca2+-ATPase structure and organization in the membrane has been studied by infrared spectroscopy by decomposition of the amide I band. Besides the component bands assignable to secondary structure elements such as alpha-helix, beta-sheet, etc...., two unusual bands, one at 1,645 cm(-1) in H2O buffer and the other at 1,625 cm(-1) in D2O buffer are present. By perturbing the protein using temperature and limited proteolysis, the band at 1,645 cm(-1) is tentatively assigned to alpha-helical segments located in the cytoplasmic domain and coupled to beta-sheet structure, whereas the band at 1,625 cm(-1) arises probably from monomer-monomer contacts in the native oligomeric protein. The secondary structure obtained is 33% alpha-helical segments in the transmembrane plus stalk domain; 20% alpha-helix and 22% beta-sheet in the cytoplasmic domain plus 19% turns and 6% unordered structure. Thermal unfolding of Ca2+-ATPase is a complex process that cannot be described as a two-state denaturation. The results obtained are compatible with the idea that the protein is an oligomer at room temperature. The loss of the 1,625 cm(-1) band upon heating would be consistent with a disruption of the oligomers in a process that later gives rise to aggregates (appearance of the 1,618 cm(-1) band). This picture would also be compatible with early results suggesting that processes governing Ca2+ accumulation and ATPase activity are uncoupled at temperatures above 37 degrees C, so that while ATPase activity proceeds at high rates, Ca2+ accumulation is inhibited.  相似文献   

10.
The secondary structure transitions of regenerated silk fibroin (RSF) under different external perturbations have been studied extensively, except for pressure. In this work, time‐resolved infrared spectroscopy with the attenuated total reflectance (ATR) accessory was employed to follow the secondary structure transitions of RSF in its wet film under low pressure. It has been found that pressure alone is favorable only to the formation of β‐sheet structure. Under constant pressure there is an optimum amount of D2O in the wet film (D2O : film = 2:1) so as to provide the optimal condition for the reorganization of the secondary structure and to have the largest formation of β‐sheet structure. Under constant amount of D2O and constant pressure, the secondary structure transitions of RSF in its wet film can be divided into three stages along with time. In the first stage, random coil, α‐helix, and β‐turn were quickly transformed into β‐sheet. In the second stage, random coil and β‐turn were relatively slowly transformed into β‐sheet and α‐helix, and the content of α‐helix was recovered to the value prior to the application of pressure. In the third and final stage, no measurable changes can be found for each secondary structure. This study may be helpful to understand the secondary structure changes of silk fibroin in silkworm's glands under hydrostatic pressure.  相似文献   

11.
In the present study, Fourier‐transform infrared spectroscopy (FTIR) is investigated as a method to measure connective tissue components that are important for the quality of Atlantic cod filets (Gadus morhua L.). The Atlantic cod used in this study originated from a feeding trial, which found that fish fed a high starch diet contained relative more collagen type I, while fish fed a low starch (LS) diet contained relative more glycosaminoglycans (GAGs) in the connective tissue. FTIR spectra of pure commercial collagen type I and GAGs were acquired to identify spectral markers and compare them with FTIR spectra and images from connective tissue. Using principal component analysis, high and LS diets were separated due to collagen type I in the spectral region 1800 to 800 cm?1. The spatial distribution of collagen type I and GAGs were further investigated by FTIR imaging in combination with immunohistochemistry. Pixel‐wise correlation images were calculated between preprocessed connective tissue images and preprocessed pure components spectra of collagen type I and GAGs, respectively. For collagen, the FTIR images reveal a collagen distribution that closely resembles the collagen distribution as imaged by immunohistochemistry. For GAGs, the concentration is very low. Still, the FTIR images detect the most GAGs rich regions.   相似文献   

12.
The triggering of Ca2+ signaling pathways relies on Ca2+/Mg2+ specificity of proteins mediating these pathways. Two homologous milk Ca2+‐binding proteins, bovine α‐lactalbumin (bLA) and equine lysozyme (EQL), were analyzed using the simplest “four‐state” scheme of metal‐ and temperature‐induced structural changes in a protein. The association of Ca2+/Mg2+ by native proteins is entropy‐driven. Both proteins exhibit strong temperature dependences of apparent affinities to Ca2+ and Mg2+, due to low thermal stabilities of their apo‐forms and relatively high unfavorable enthalpies of Mg2+ association. The ratios of their apparent affinities to Ca2+ and Mg2+, being unusually high at low temperatures (5.3–6.5 orders of magnitude), reach the values inherent to classical EF‐hand motifs at physiological temperatures. The comparison of phase diagrams predicted within the model of competitive Ca2+ and Mg2+ binding with experimental data strongly suggests that the association of Ca2+ and Mg2+ ions with bLA is a competitive process, whereas the primary Mg2+ site of EQL is different from its Ca2+‐binding site. The later conclusion is corroborated by qualitatively different molar ellipticity changes in near‐UV region accompanying Mg2+ and Ca2+ association. The Ca2+/Mg2+ selectivity of Mg2+‐site of EQL is below an order of magnitude. EQL exhibits a distinct Mg2+‐specific site, probably arising as an adaptation to the extracellular environment. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
Aggregation of Aβ peptides is a seminal event in Alzheimer's disease. Detailed understanding of the Aβ assembly process would facilitate the targeting and design of fibrillogenesis inhibitors. Here, conformational studies using FTIR spectroscopy are presented. As a model peptide, the 11–28 fragment of Aβ was used. This model peptide is known to contain the core region responsible for Aβ aggregation. The structural behavior of the peptide during aggregation provoked by the addition of water to Aβ(11–28) solution in hexafluoroisopropanol was compared with the properties of its variants corresponding to natural, clinically relevant mutants at positions 21–23 (A21G, E22K, E22G, E22Q and D23N). The results showed that the aggregation of the peptides proceeds via a helical intermediate, and it is possible that the formation of α‐helical structures is preceded by creation of 310‐helix/310‐turn structures. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
We have shown by theoretical studies of alanine peptides that the CαDα stretch frequency could be particularly useful for determining peptide structure because of its sensitivity to the φ,ψ torsion angles at the Cα atom. To demonstrate that this is a robust methodology worthy of experimental exploration, we have also shown that this mode is even more determinative of conformation in aqueous solution, mainly as a result of the development of differential Cα? Dα···O(water) interactions. As further assurance, we now determine the influence of the side chain on this band, showing for aliphatic, a polar, and an aromatic side chains that the dependence is minor and explaining why this is also expected for other side chains. These results should stimulate new experimental methodologies in the field of peptide structure determination. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 1065–1071, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

15.
Ca2+ signalling in neurons through calmodulin (CaM) has a prominent function in regulating synaptic vesicle trafficking, transport, and fusion. Importantly, Ca2+–CaM binds a conserved region in the priming proteins Munc13‐1 and ubMunc13‐2 and thus regulates synaptic neurotransmitter release in neurons in response to residual Ca2+ signals. We solved the structure of Ca2+4–CaM in complex with the CaM‐binding domain of Munc13‐1, which features a novel 1‐5‐8‐26 CaM‐binding motif with two separated mobile structural modules, each involving a CaM domain. Photoaffinity labelling data reveal the same modular architecture in the complex with the ubMunc13‐2 isoform. The N‐module can be dissociated with EGTA to form the half‐loaded Munc13/Ca2+2–CaM complex. The Ca2+ regulation of these Munc13 isoforms can therefore be explained by the modular nature of the Munc13/Ca2+–CaM interactions, where the C‐module provides a high‐affinity interaction activated at nanomolar [Ca2+]i, whereas the N‐module acts as a sensor at micromolar [Ca2+]i. This Ca2+/CaM‐binding mode of Munc13 likely constitutes a key molecular correlate of the characteristic Ca2+‐dependent modulation of short‐term synaptic plasticity.  相似文献   

16.
Polyvinyl pyrrolidone (PVP) crowned chrysene nanoparticles (CHYNPs) were prepared by using a reprecipitation method. Dynamic light scattering (DLS) and scanning electron microscope (SEM) studies indicate that the monodispersed spherical nanoparticles bear a negative charge on their surfaces. The bathochromic spectral shift in the UV–visible and fluorescence spectrum of CHYNPs from chrysene (CHY) in acetone solution supports the J‐ type aggregation of nanoparticles. The aggregation‐induced enhanced emission of CHYNPs at 486 and 522 nm decreases by increasing the concentration of the Ca2+ ion solution. It can display an ON–OFF type fluorescence response with high selectivity towards Ca2+ ions aqueous medium. Furthermore, the in situ generated PVP–CHYNPs–Ca2+ ensemble could recover the quenched fluorescence upon the addition of fluoride anions resulting in an OFF–ON type sensor. The present method has a correlation coefficient R2 = 0.988 with a detection limit of 1.22 μg/mL for Ca2+ in the aqueous medium. The fluorescence changes of PVP crowned CHYNPs upon the addition of Ca2+ and F? can be utilized as an INHIBIT logic gate at the molecular level, using Ca2+ and F? chemical inputs and the fluorescence intensity signal as output.  相似文献   

17.
The roles of protein undernutrition as well as selenium (Se) and zinc (Zn) supplementation on the ability of calmodulin (CaM) to activate erythrocyte ghost membrane (EGM) Ca2+‐ATPase and the calmodulin genes and protein expressions in rat's cortex and cerebellum were investigated. Rats on adequate protein diet and protein‐undernourished (PU) rats were fed with diet containing 16% and 5% casein, respectively, for a period of 10 weeks. The rats were then supplemented with Se and Zn at a concentration of 0.15 and 227 mg l−1, respectively, in drinking water for 3 weeks. The results obtained from the study showed significant reductions in synaptosomal plasma membrane Ca2+‐ATPase (PMCA) activity, Ca2+/CaM activated EGM Ca2+ATPase activity and calmodulin genes and protein expressions in PU rats. Se or Zn supplementation improved the ability of Ca2+/CaM to activate EGM Ca2+‐ATPase and protein expressions. Se or Zn supplementation improved gene expression in the cerebellum but not in the cortex. Also, the activity of PMCA was significantly improved by Zn. In conclusion, it is postulated that Se and Zn might be beneficial antioxidants in protecting against neuronal dysfunction resulting from reduced level of calmodulin such as present in protein undernutrition. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, MAl2SixO2x+4:Eu2+/Eu3+ (Eu2+ + Eu3+ = 2%, molar ratio; M = Mg, Ca, Sr, Ba; x = 0, 0.5, 1, 1.5, 2) phosphors with different SiO2 concentrations (the ratio of SiO2 to MAl2O4 is n%, n = 0, 50, 100, 150, 200, respectively) were prepared by high‐temperature solid‐state reaction under atmospheric air conditions. Their structures and photoluminescent properties were systematically researched. The results indicate that Eu3+ ions have been reduced and Eu2+ ions are obtained in air through the self‐reduction mechanism. The alkaline earth metal ions and doping SiO2 strongly affect the crystalline phase and photoluminescent properties of samples, including microstructures, relative intensity of Eu2+ to Eu3+, location of emission lines/bands. It is interesting and important that the emission color and intensities of europium‐doped various phosphors which consist of aluminosilicate matrices prepared under atmospheric air conditions could be modulated by changing the kinds of alkaline earth metal and the content of SiO2.  相似文献   

19.
In the WAG/Rij rat, a model for human absence epilepsy, spike‐wave discharges (SWD) and absence epileptic behavior develop after the age of 3 months. The rostral part of the reticular thalamic nucleus (rRTN) is involved in SWD. Ca2+ channels play a central role in the initiation and maintenance of burst firing activity of thalamic cells. We hypothesize that a changed expression of α1‐subunits of one or more high voltage‐activated Ca2+ channel types in the rRTN underlies the development of SWD. To test this hypothesis we compared 3‐ and 6‐month‐old WAG/Rij rats with nonepileptic, age‐matched control rats. By immunocytochemistry, the expressions of α11.3‐, α12.1‐, α12.2‐, and α12.3‐subunits were shown in both strains, demonstrating the presence of Cav1.3, Cav2.1, Cav2.2, and Cav2.3 channels, respectively. Quantification of channel expression indicates that the development of SWD in WAG/Rij rats is concomitant with an increased expression of Cav2.1 channels in the rRTN. These channels are mainly presynaptic, as revealed by double immunofluorescence involving the presynapse marker syntaxin. The mechanism by which this increase could be related to the occurrence of SWD has been discussed. © 2004 Wiley Periodicals, Inc. J Neurobiol 58: 467–478, 2004  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号