首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
All major ABO blood alleles are found in most populations worldwide, whereas the majority of Native Americans are nearly exclusively in the O group. O allele molecular characterization could aid in elucidating the possible causes of group O predominance in Native American populations. In this work, we studied exon 6 and 7 sequence diversity in 180 O blood group individuals from four different Mesoamerican populations. Additionally, a comparative analysis of genetic diversity and population structure including South American populations was performed. Results revealed no significant differences among Mesoamerican and South American groups, but showed significant differences within population groups attributable to previously detected differences in genetic drift and founder effects throughout the American continent. Interestingly, in all American populations, the same set of haplotypes O1, O1v, and O1v(G542A) was present, suggesting the following: (1) that they constitute the main genetic pool of the founding population of the Americas and (2) that they derive from the same ancestral source, partially supporting the single founding population hypothesis. In addition, the consistent and restricted presence of the G542A mutation in Native Americans compared to worldwide populations allows it to be employed as an Ancestry informative marker (AIM). Present knowledge of the peopling of the Americas allows the prediction of the way in which the G542A mutation could have emerged in Beringia, probably during the differentiation process of Asian lineages that gave rise to the founding population of the continent. Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Most genetic studies on the origins of Native Americans have examined data from mtDNA and Y‐chromosome DNA. To complement these studies and to broaden our understanding of the origin of Native American populations, we present an analysis of 1,873 X‐chromosomes representing Native American (n = 438) and other continental populations (n = 1,435). We genotyped 36 polymorphic sites, forming an informative haplotype within an 8‐kb DNA segment spanning exon 44 of the dystrophin gene. The data reveal continuity from a common Eurasian ancestry between Europeans, Siberians, and Native Americans. However, the loss of two haplotypes frequent in Eurasia (18.8 and 7%) and the rise in frequency of a third haplotype rare elsewhere, indicate a major population bottleneck in the peopling of the Americas. Although genetic drift appears to have played a greater role in the genetic differentiation of Native Americans than in the latitudinally distributed Eurasians, we also observe a signal of a differentiated ancestry of southern and northern populations that cannot be simply explained by the serial southward dilution of genetic diversity. It is possible that the distribution of X‐chromosome lineages reflects the genetic structure of the population of Beringia, itself issued from founder effects and a source of subsequent southern colonization(s). Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
BACKGROUND/AIMS: The Tobago Afro-Caribbean population is a valuable resource for studying the genetics of diseases that show significant differences in prevalence between populations of African descent and populations of other ancestries. Empirical confirmation of low European and Native American admixture may help in clarifying the ethnic variation in risk for such diseases. We hypothesize that the degree of European and Native American admixture in the Tobago population is low. METHODS: Admixture was estimated in a random sample of 220 men, from a population-based prostate cancer screening survey of 3,082 Tobago males, aged 40 to 79 years. We used a set of six autosomal markers with large allele frequency differences between the major ethnic populations involved in the admixture process, Europeans, Native Americans and West Africans. RESULTS: The ancestral proportions of Tobago population are estimated as 94.0+/-1.2% African, 4.6+/-3.4% European and 1.4+/-3.6% Native American. CONCLUSIONS: We conclude that Tobago Afro-Caribbean men are predominantly of West African ancestry, with minimal European and Native American admixture. The Tobago population, thus, may carry a higher burden of high-risk alleles of African origin for certain diseases than the more admixed African-American population. Conversely, this population may benefit from a higher prevalence of protective alleles of African origin.  相似文献   

4.
We have initiated a study of ancient male migrations from Siberia to the Americas using Y chromosome polymorphisms. The first polymorphism examined, a C→T transition at nucleotide position 181 of the DYS199 locus, was previously reported only in Native American populations. To investigate the origin of this DYS199 polymorphism, we screened Y chromosomes from a number of Siberian, Asian, and Native American populations for this and other markers. This survey detected the T allele in all five Native American populations studied at an average frequency of 61%, and in two of nine native Siberian populations, the Siberian Eskimo (21%) and the Chukchi (17%). This finding suggested that the DYS199 T allele may have originated in Beringia and was then spread throughout the New World by the founding populations of the major subgroups of modern Native Americans. We further characterized Native American Y chromosome variation by analyzing two additional Y chromosome polymorphisms, the DYS287 Y Alu polymorphic (YAP) element insertion and a YAP-associated A→G transition at DYS271, both commonly found in Africans. We found neither African allele associated with the DYS199 T allele in any of the Native American or native Siberian populations. However, we did find DYS287 YAP+ individuals who harbored the DYS199 C allele in one Native American population, the Mixe, and in one Asian group, the Tibetans. A correlation of these Y chromosome alleles in Native Americans with those of the DYS1 locus, as detected by the p49a/p49f (p49a,f) probes on TaqI-digested genomic DNA, revealed a complete association of DYS1 alleles (p49a,f haplotypes) 13, 18, 66, 67 and 69 with the DYS199 T allele, while DYS1 alleles 8 and 63 were associated with both the DYS199 C and T allele. Received: 18 November 1996 / Accepted: 19 May 1997  相似文献   

5.
The three-wave migration hypothesis of Greenberg et al. has permeated the genetic literature on the peopling of the Americas. Greenberg et al. proposed that Na-Dene, Aleut-Eskimo and Amerind are language phyla which represent separate migrations from Asia to the Americas. We show that a unique allele at autosomal microsatellite locus D9S1120 is present in all sampled North and South American populations, including the Na-Dene and Aleut-Eskimo, and in related Western Beringian groups, at an average frequency of 31.7%. This allele was not observed in any sampled putative Asian source populations or in other worldwide populations. Neither selection nor admixture explains the distribution of this regionally specific marker. The simplest explanation for the ubiquity of this allele across the Americas is that the same founding population contributed a large fraction of ancestry to all modern Native American populations.  相似文献   

6.
Admixture mapping (AM) is a promising method for the identification of genetic risk factors for complex traits and diseases showing prevalence differences among populations. Efficient application of this method requires the use of a genomewide panel of ancestry-informative markers (AIMs) to infer the population of origin of chromosomal regions in admixed individuals. Genomewide AM panels with markers showing high frequency differences between West African and European populations are already available for disease-gene discovery in African Americans. However, no such a map is yet available for Hispanic/Latino populations, which are the result of two-way admixture between Native American and European populations or of three-way admixture of Native American, European, and West African populations. Here, we report a genomewide AM panel with 2,120 AIMs showing high frequency differences between Native American and European populations. The average intermarker genetic distance is ~1.7 cM. The panel was identified by genotyping, with the Affymetrix GeneChip Human Mapping 500K array, a population sample with European ancestry, a Mesoamerican sample comprising Maya and Nahua from Mexico, and a South American sample comprising Aymara/Quechua from Bolivia and Quechua from Peru. The main criteria for marker selection were both high information content for Native American/European ancestry (measured as the standardized variance of the allele frequencies, also known as "f value") and small frequency differences between the Mesoamerican and South American samples. This genomewide AM panel will make it possible to apply AM approaches in many admixed populations throughout the Americas.  相似文献   

7.
A molecular characterization of alleles O1, O1variant (O1v), and the mutation G542A of the ABO blood group was performed in two Amerindian populations of Chile, the Aymara (n = 84) and the Huilliche (n = 75). In addition, a sample of 82 individuals of Santiago belonging to the mixed Chilean population was typed for comparative purposes. The polymorphisms which allow for molecular differentiation of different alleles of the O blood group were studied in genomic DNA. The mutations G188, G261-, G542A, T646A, and C771T, described for alleles O1, O1v, and G542A, were determined using the PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) technique. All individuals studied were group O homozygotes for the deletion G261-, which defines the O1 alleles. Results obtained indicate that allele O1v exhibits frequencies of 0.65, 0.81, and 0.60 in Aymara, Huilliche, and Santiago populations, respectively. The frequencies of allele O1(G542A) were 0.119, 0.113, and 0.079 in the same populations. Frequencies for alleles O1 and O1v obtained in the Chilean populations studied concur with the results obtained by other authors, respecting the greater frequency of allele O1v as well as with its heterogeneous distribution in aboriginal South American populations. In Chilean populations, Allele G542A exhibits lower frequencies than those described for indigenous populations from Brazil and may be used as an Amerind admixture marker.  相似文献   

8.
Colombia is a country with great geographic heterogeneity and marked regional differences in pre‐Columbian native population density and in the extent of past African and European immigration. As a result, Colombia has one of the most diverse populations in Latin America. Here we evaluated ancestry in over 1,700 individuals from 24 Colombian populations using biparental (autosomal and X‐Chromosome), maternal (mtDNA), and paternal (Y‐chromosome) markers. Autosomal ancestry varies markedly both within and between regions, confirming the great genetic diversity of the Colombian population. The X‐chromosome, mtDNA, and Y‐chromosome data indicate that there is a pattern across regions indicative of admixture involving predominantly Native American women and European and African men. Am J Phys Anthropol 143:13–20, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Hispanic and African American populations exhibit an increased risk of obesity compared with populations of European origin, a feature that may be related to inherited risk alleles from Native American and West African parental populations. However, a relationship between West African ancestry and obesity-related traits, such as body mass index (BMI), fat mass (FM), and fat-free mass (FFM), and with bone mineral density (BMD) in African American women has only recently been reported. In order to evaluate further the influence of ancestry on body composition phenotypes, we studied a Hispanic population with substantial European, West African, and Native American admixture. We ascertained a sample of Puerto Rican women living in New York (n=64), for whom we measured BMI and body composition variables, such as FM, FFM, percent body fat, and BMD. Additionally, skin pigmentation was measured as the melanin index by reflectance spectroscopy. We genotyped 35 autosomal ancestry informative markers and estimated population and individual ancestral proportions in terms of European, West African, and Native American contributions to this population. The ancestry proportions corresponding to the three parental populations are: 53.3±2.8% European, 29.1±2.3% West African, and 17.6±2.4% Native American. We detected significant genetic structure in this population with a number of different tests. A highly significant correlation was found between skin pigmentation and individual ancestry (R2=0.597, P<0.001) that was not attributable to differences in socioeconomic status. A significant association was also found between BMD and European admixture (R2=0.065, P=0.042), but no such correlation was evident with BMI or the remaining body composition measurements. We discuss the implications of our findings for the potential use of this Hispanic population for admixture mapping.  相似文献   

10.
To scrutinize the male ancestry of extant Native American populations, we examined eight biallelic and six microsatellite polymorphisms from the nonrecombining portion of the Y chromosome, in 438 individuals from 24 Native American populations (1 Na Dené and 23 South Amerinds) and in 404 Mongolians. One of the biallelic markers typed is a recently identified mutation (M242) characterizing a novel founder Native American haplogroup. The distribution, relatedness, and diversity of Y lineages in Native Americans indicate a differentiated male ancestry for populations from North and South America, strongly supporting a diverse demographic history for populations from these areas. These data are consistent with the occurrence of two major male migrations from southern/central Siberia to the Americas (with the second migration being restricted to North America) and a shared ancestry in central Asia for some of the initial migrants to Europe and the Americas. The microsatellite diversity and distribution of a Y lineage specific to South America (Q-M19) indicates that certain Amerind populations have been isolated since the initial colonization of the region, suggesting an early onset for tribalization of Native Americans. Age estimates based on Y-chromosome microsatellite diversity place the initial settlement of the American continent at approximately 14,000 years ago, in relative agreement with the age of well-established archaeological evidence.  相似文献   

11.
The majority of Native Americans nearly exclusively belong to group O of the ABO blood group system. Several hypotheses have been formulated to explain this observation, primarily differing by the presumption that the observed patterns of ABO diversity are due to the processes of the initial peopling of the Americas or due to subsequent events, especially the demographic consequences in the wake of European contact. A promising strategy to reveal possible diachronic ABO frequency changes is the molecular genetic analysis of relevant genetic markers in precontact populations. A previous study by Halverson and Bolnick [Am J Phys Anthropol 137 (2008) 342‐347] already accomplished this for indigenous North American populations. Here we present the first study to analyze ABO blood types from pre‐Columbian individuals from South America using molecular genetic methods and comparing them to several extant South American, North American, and Siberian populations. We tried to determine ABO blood types for 59 individuals from the southern Peruvian highlands dating to ~650 to 1250 AD using a newly developed multiplex PCR/SBE assay coamplifying the fragments relevant for blood type determination and three highly discriminating autosomal STRs. Analysis was successful for 31 individuals and revealed that all are exclusively in the O group, predominantly carrying the O02 (01v) allele. No significant difference could be observed between the ancient and modern Native American populations, while all significantly differed from the extant Siberian populations, supporting the suggestion that low ABO diversity results from founder effects during the initial peopling of the Americas. Am J Phys Anthropol 149:242–249, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
It is well-known that population substructure may lead to confounding in case–control association studies. Here, we examined genetic structure in a large racially and ethnically diverse sample consisting of five ethnic groups of the Multiethnic Cohort study (African Americans, Japanese Americans, Latinos, European Americans and Native Hawaiians) using 2,509 SNPs distributed across the genome. Principal component analysis on 6,213 study participants, 18 Native Americans and 11 HapMap III populations revealed four important principal components (PCs): the first two separated Asians, Europeans and Africans, and the third and fourth corresponded to Native American and Native Hawaiian (Polynesian) ancestry, respectively. Individual ethnic composition derived from self-reported parental information matched well to genetic ancestry for Japanese and European Americans. STRUCTURE-estimated individual ancestral proportions for African Americans and Latinos are consistent with previous reports. We quantified the East Asian (mean 27%), European (mean 27%) and Polynesian (mean 46%) ancestral proportions for the first time, to our knowledge, for Native Hawaiians. Simulations based on realistic settings of case–control studies nested in the Multiethnic Cohort found that the effect of population stratification was modest and readily corrected by adjusting for race/ethnicity or by adjusting for top PCs derived from all SNPs or from ancestry informative markers; the power of these approaches was similar when averaged across causal variants simulated based on allele frequencies of the 2,509 genotyped markers. The bias may be large in case-only analysis of gene by gene interactions but it can be corrected by top PCs derived from all SNPs.  相似文献   

13.

Objectives

Since 2010, genome-wide data from hundreds of ancient Native Americans have contributed to the understanding of Americas' prehistory. However, these samples have never been studied as a single dataset, and distinct relationships among themselves and with present-day populations may have never come to light. Here, we reassess genomic diversity and population structure of 223 ancient Native Americans published between 2010 and 2019.

Materials and Methods

The genomic data from ancient Americas was merged with a worldwide reference panel of 278 present-day genomes from the Simons Genome Diversity Project and then analyzed through ADMIXTURE, D-statistics, PCA, t-SNE, and UMAP.

Results

We find largely similar population structures in ancient and present-day Americas. However, the population structure of contemporary Native Americans, traced here to at least 10,000 years before present, is noticeably less diverse than their ancient counterparts, a possible outcome of the European contact. Additionally, in the past there were greater levels of population structure in North than in South America, except for ancient Brazil, which harbors comparatively high degrees of structure. Moreover, we find a component of genetic ancestry in the ancient dataset that is closely related to that of present-day Oceanic populations but does not correspond to the previously reported Australasian signal. Lastly, we report an expansion of the Ancient Beringian ancestry, previously reported for only one sample.

Discussion

Overall, our findings support a complex scenario for the settlement of the Americas, accommodating the occurrence of founder effects and the emergence of ancestral mixing events at the regional level.  相似文献   

14.
Summary Southern African Bantu-speaking negroid and San populations were examined with regard to the glucose-6-phosphate dehydrogenase (G6PD) PvuII restriction fragment length polymorphism (RFLP) showing alleles of 4kb and 1.6 kb, called Type 1 and Type 2, respectively. The standardized disequilibrium coefficient for the electrophoretic G6PD types and PvuII alleles in the Southern African population was 0.28. The molecular lesion causing the GdA mutation is the same in the San and Southern African negroid populations. GdA chromosomes are found in association with both the Type 1 and Type 2 alleles, whereas none of the 62 GdB chromosomes from the Southern African populations had the Type 2 allele. Five of the 44 GdB chromosomes studied in the American Black population had the Type 2 allele, indicating that the GdB allele in the two populations may have different origins. The presence of all 3 A deficiency mutations in the G6PD A gene, in a region where the ancestral population was thought to have predominantly G6PD B, may be explained by their origin in Africa after the divergence of the races.  相似文献   

15.
Before the arrival of the Spaniards in Nicaragua, diverse Native American groups inhabited the territory. In colonial times, Native Nicaraguan populations interacted with Europeans and slaves from Africa. To ascertain the extent of this genetic admixture and provide genetic evidence about the origin of the Nicaraguan ancestors, we analyzed the mitochondrial control region (HVSI and HVSII), 17 Y chromosome STRs, and 15 autosomal STRs in 165 Mestizo individuals from Nicaragua. To carry out interpopulation comparisons, HVSI sequences from 29 American populations were compiled from the literature. The results reveal a close relationship between Oto‐manguean, Uto‐Aztecan, Mayan groups from Mexico, and a Chibchan group to Nicaraguan lineages. The Native American contribution to present‐day Nicaraguan Mestizos accounts for most of the maternal lineages, whereas the majority of Nicaraguan Y chromosome haplogroups can be traced back to a West Eurasian origin. Pairwise Fst distances based on Y‐STRs between Nicaragua and European, African and Native American populations show that Nicaragua is much closer to Europeans than the other populations. Additionally, admixture proportions based on autosomal STRs indicate a predominantly Spanish contribution. Our study reveals that the Nicaraguan Mestizo population harbors a high proportion of European male and Native American female substrate. Finally, the amount of African ancestry is also interesting, probably because of the contribution of Spanish conquerors with NorthAfrican genetic traces or that of West African slaves. Am J Phys Anthropol, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Colombia, located in the north of the South American subcontinent is a country of great interest for population genetic studies given its high ethnic and cultural diversity represented by the admixed population, 102 indigenous peoples and African descent populations. In this study, an analysis of the genetic structure and ancestry was performed based on 46 ancestry informative INDEL markers (AIM-INDELs) and considering the genealogical and demographic variables of 451 unrelated individuals belonging to nine Native American, two African American, and four multiple ancestry populations. Measures of genetic diversity, ancestry components, and genetic substructure were analyzed to build a population model typical of the northernmost part of the South American continent. The model suggests three types of populations: Native American, African American, and multiple ancestry. The results support hypotheses posed by other authors about issues like the peopling of South America and the existence of two types of Native American ancestry. This last finding could be crucial for future research on the peopling of Colombia and South America in that a single origin of all indigenous communities should not be assumed. It then would be necessary to consider other events that could explain their genetic variability and complexity throughout the continent.  相似文献   

17.
Gastric cancer is one of the most lethal types of cancer and its incidence varies worldwide, with the Andean region of South America showing high incidence rates. We evaluated the genetic structure of the population from Lima (Peru) and performed a case-control genetic association study to test the contribution of African, European, or Native American ancestry to risk for gastric cancer, controlling for the effect of non-genetic factors. A wide set of socioeconomic, dietary, and clinic information was collected for each participant in the study and ancestry was estimated based on 103 ancestry informative markers. Although the urban population from Lima is usually considered as mestizo (i.e., admixed from Africans, Europeans, and Native Americans), we observed a high fraction of Native American ancestry (78.4% for the cases and 74.6% for the controls) and a very low African ancestry (<5%). We determined that higher Native American individual ancestry is associated with gastric cancer, but socioeconomic factors associated both with gastric cancer and Native American ethnicity account for this association. Therefore, the high incidence of gastric cancer in Peru does not seem to be related to susceptibility alleles common in this population. Instead, our result suggests a predominant role for ethnic-associated socioeconomic factors and disparities in access to health services. Since Native Americans are a neglected group in genomic studies, we suggest that the population from Lima and other large cities from Western South America with high Native American ancestry background may be convenient targets for epidemiological studies focused on this ethnic group.  相似文献   

18.
Until recently, the settlement of the Americas seemed largely divorced from the out‐of‐Africa dispersal of anatomically modern humans, which began at least 50,000 years ago. Native Americans were thought to represent a small subset of the Eurasian population that migrated to the Western Hemisphere less than 15,000 years ago. Archeological discoveries since 2000 reveal, however, that Homo sapiens occupied the high‐latitude region between Northeast Asia and northwest North America (that is, Beringia) before 30,000 years ago and the Last Glacial Maximum (LGM). The settlement of Beringia now appears to have been part of modern human dispersal in northern Eurasia. A 2007 model, the Beringian Standstill Hypothesis, which is based on analysis of mitochondrial DNA (mtDNA) in living people, derives Native Americans from a population that occupied Beringia during the LGM. The model suggests a parallel between ancestral Native Americans and modern human populations that retreated to refugia in other parts of the world during the arid LGM. It is supported by evidence of comparatively mild climates and rich biota in south‐central Beringia at this time (30,000‐15,000 years ago). These and other developments suggest that the settlement of the Americas may be integrated with the global dispersal of modern humans.  相似文献   

19.
Elevated hematocrits, which are found in many high-altitude populations, increase the oxygen-carrying capacity of blood and may represent an adaptation to hypoxic environments. However, as high hematocrit increases blood viscosity, which in turn is associated with hypertension and heart disease, it may be advantageous for high-altitude populations to limit other factors that contribute to increased blood viscosity. One such factor is the plasma concentration of the coagulation protein fibrinogen. Several common polymorphisms in the β-fibrinogen gene have been identified that affect fibrinogen concentrations. We determined the allele frequencies of three of these polymorphisms (G/A-455(HaeIII), C/T-148(HindIII), and G/A+448(MnlI)) in sample groups drawn from three populations: Quechua-speaking natives living at over 3,200 m in the Peruvian Andes, North American natives (Na-Dene) from coastal British Columbia, and Caucasian North Americans. The frequencies of the alleles previously shown to be associated with increased fibrinogen levels were so low in the Quechuas that their presence could be accounted for solely by genetic admixture with Caucasians. Frequencies in the Na-Dene, a Native American group unrelated to the Quechua, were not significantly different from those in Caucasians. Am J Phys Anthropol 109:181–186, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

20.

Background

Population history can be reflected in group genetic ancestry, where genomic variation captured by the mitochondrial DNA (mtDNA) and non-recombining portion of the Y chromosome (NRY) can separate female- and male-specific admixture processes. Genetic ancestry may influence genetic association studies due to differences in individual admixture within recently admixed populations like African Americans.

Principal Findings

We evaluated the genetic ancestry of Senegalese as well as European Americans and African Americans from Philadelphia. Senegalese mtDNA consisted of ∼12% U haplotypes (U6 and U5b1b haplotypes, common in North Africa) while the NRY haplotypes belonged solely to haplogroup E. In Philadelphia, we observed varying degrees of admixture. While African Americans have 9–10% mtDNAs and ∼31% NRYs of European origin, these results are not mirrored in the mtDNA/NRY pools of European Americans: they have less than 7% mtDNAs and less than 2% NRYs from non-European sources. Additionally, there is <2% Native American contribution to Philadelphian African American ancestry and the admixture from combined mtDNA/NRY estimates is consistent with the admixture derived from autosomal genetic data. To further dissect these estimates, we have analyzed our samples in the context of different demographic groups in the Americas.

Conclusions

We found that sex-biased admixture in African-derived populations is present throughout the Americas, with continual influence of European males, while Native American females contribute mainly to populations of the Caribbean and South America. The high non-European female contribution to the pool of European-derived populations is consistently characteristic of Iberian colonization. These data suggest that genomic data correlate well with historical records of colonization in the Americas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号