首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Sialic acids from the erythrocyte (RBC) membrane of a patient suffering from polycythemia vera, a malignant orphan disorder of hematopoietic cells, was studied using GC/MS. We found that the sialic acid diversity of these membranes was drastically reduced since only four entities were identified: Neu5Ac (91.5%) and its 1,7 lactone Neu5Ac1,7L (7.5%) which is absent in normal RBC, Neu4,5Ac(2) (0.50%) and Neu4,5Ac(2) 9Lt (0.50%); in normal RBC, Neu5,7Ac(2), Neu5,9Ac(2), Neu5Ac9Lt, Neu5Ac8S and Neu, as well as traces of Kdn, were also present. Neu5Gc and its O-alkylated or O-acetylated derivatives, which are considered by various authors as cancer markers, were not detected.  相似文献   

2.
Sialic acid (Sia) is a family of acidic nine-carbon sugars that occupies the nonreducing terminus of glycan chains. Diversity of Sia is achieved by variation in the linkage to the underlying sugar and modification of the Sia molecule. Here we identified Sia-dependent epitope specificity for GL7, a rat monoclonal antibody, to probe germinal centers upon T cell-dependent immunity. GL7 recognizes sialylated glycan(s), the alpha2,6-linked N-acetylneuraminic acid (Neu5Ac) on a lactosamine glycan chain(s), in both Sia modification- and Sia linkage-dependent manners. In mouse germinal center B cells, the expression of the GL7 epitope was upregulated due to the in situ repression of CMP-Neu5Ac hydroxylase (Cmah), the enzyme responsible for Sia modification of Neu5Ac to Neu5Gc. Such Cmah repression caused activation-dependent dynamic reduction of CD22 ligand expression without losing alpha2,6-linked sialylation in germinal centers. The in vivo function of Cmah was analyzed using gene-disrupted mice. Phenotypic analyses showed that Neu5Gc glycan functions as a negative regulator for B-cell activation in assays of T-cell-independent immunization response and splenic B-cell proliferation. Thus, Neu5Gc is required for optimal negative regulation, and the reaction is specifically suppressed in activated B cells, i.e., germinal center B cells.  相似文献   

3.
The common sialic acids of mammalian cells are N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). Humans are an exception, because of a mutation in CMP-sialic acid hydroxylase, which occurred after our common ancestor with great apes. We asked if the resulting loss of Neu5Gc and increase in Neu5Ac in humans alters the biology of the siglecs, which are Ig superfamily members that recognize sialic acids. Human siglec-1 (sialoadhesin) strongly prefers Neu5Ac over Neu5Gc. Thus, humans have a higher density of siglec-1 ligands than great apes. Siglec-1-positive macrophages in humans are found primarily in the perifollicular zone, whereas in chimpanzees they also occur in the marginal zone and surrounding the periarteriolar lymphocyte sheaths. Although only a subset of chimpanzee macrophages express siglec-1, most human macrophages are positive. A known evolutionary difference is the strong preference of mouse siglec-2 (CD22) for Neu5Gc, contrasting with human siglec-2, which binds Neu5Ac equally well. To ask when the preference for Neu5Gc was adjusted in the human lineage, we cloned the first three extracellular domains of siglec-2 from all of the great apes and examined their preference. In fact, siglec-2 had evolved a higher degree of recognition flexibility before Neu5Gc was lost in humans. Human siglec-3 (CD33) and siglec-6 (obesity-binding protein 1) also recognize both Neu5Ac and Neu5Gc, and siglec-5 may have some preference for Neu5Gc. Others showed that siglec-4a (myelin-associated glycoprotein) prefers Neu5Ac over Neu5Gc. Thus, the human loss of Neu5Gc may alter biological processes involving siglec-1, and possibly, siglec-4a or -5.  相似文献   

4.
N-Acetylneuraminic acid (Neu5Ac) andN-glycoloylneuraminic acid (Neu5Gc) are distributed widely in nature. Using a Carbopac PA-1 anion exchange column, we have determined the ratios of Neu5Ac and Neu5Gc in hydrolysates of platelets and their precursors: a rat promegakaryoblastic (RPM) cell line and a human megakaryoblastic leukemia cell line (MEG-01). The ratio of Neu5Gc:Neu5Ac in cultured RPM cells is 16:1, whereas in platelet rich plasma and cultured MEG-01 cells it is 1:38 and 1:28, respectively. The nature of these sialic acids from RPM cells was verified using thin layer chromatography and liquid secondary ion mass spectrometry. The relevance of increased Neu5Gc levels in early stages of development is discussed.Abbreviations Neu5Ac N-acetylneuraminic acid - Neu5Gc N-glycoloylneuraminic acid - RPM rat promegakaryoblast - MEG-01 human megakaryoblastic leukaemia cell line - PAD pulsed amperometric detection - WGA wheat germ agglutinin - FCS foetal calf serum - PPEADF phosphatidylethanolamine dipalmitoyl - LSIMS liquid secondary ion mass spectrometry - HPAEC high performance anion exchange chromatography - TBA thiobarbituric acid  相似文献   

5.
The presence of Neu5Ac on promastigotes of Leishmania donovani, the causative organism of Indian visceral leishmaniasis, has been reported recently. Here we report the occurrence of Neu5Ac as a major component on amastigotes, as well as Neu5Gc, Neu5,9Ac2 and Neu9Ac5Gc as indicated by fluorimetric high performance liquid chromatography and gas liquid chromatography/electron impact mass spectrometry. Furthermore, binding studies with Sambucus nigra agglutinin (SNA), Maackia amurensis agglutinin (MAA), and various Siglecs, showed the presence of both (alpha2 --> 6)- and (alpha2 --> 3)-linked sialic acids; their binding was reduced after sialidase pretreatment. Western blotting of amastigote membrane glycoproteins with SNA demonstrated the presence of two sialoglycoconjugates of Mr values of 164000 and 150000. Similarly, binding of MAA demonstrated the presence of five distinct sialoglycans corresponding to molecular masses of 188, 162, 136, 137 and 124 kDa. Achatinin-H, a lectin that preferentially identifies 9-O-acetylated sialic acid (alpha2 --> 6)-linked to GalNAc, demonstrated the occurrence of two 9-O-acetylated sialoglycans with Mr 158000 and 150000, and was corroborated by flow cytometry; this binding was abolished by recombinant 9-O-acetylesterase pretreatment. Our results indicate that Neu5Ac [(alpha2 --> 6)- and (alpha2 --> 3)-linked], as well as Neu5Gc and their 9-O-acetyl derivatives, constitute components of the amastigote cell surface of L. donovani.  相似文献   

6.
Plants are a low-cost and contamination-free factory for the production of recombinant pharmaceutical proteins. However, plant-made pharmaceuticals differ from their mammalian homologues by the structure of their N -linked glycans. For instance, most mammalian glycoproteins harbour terminal sialic acids that control their half-life in the bloodstream. The absence of the whole sialylation machinery in plants is of major concern as non-sialylated plant-made pharmaceuticals may not perform at their full potential in humans, because of their removal from the circulation through the involvement of hepatic cell receptors. In this context, we have investigated the synthesis of N -acetylneuraminic acid (Neu5Ac) in the cytosol of plants by either the re-routing of the endogenous 3-deoxy- d - manno -2-octulosonic acid (Kdo) biosynthetic pathway or the expression of microbial Neu5Ac-synthesizing enzymes. In this paper, we demonstrate that the plant Kdo-8P synthase is not able to use N -acetyl d -mannosamine as a substrate, and thus re-routing of the Kdo pathway for the synthesis of Neu5Ac is not possible. Consequently, we expressed genes encoding Neu5Ac lyase from Escherichia coli and Neu5Ac synthase ( neuB2 ) from Campylobacter jejuni in plants. These resulted in the production of functional enzymes in the cytosol, which in turn can catalyse the synthesis of Neu5Ac in vitro . Experiments were carried out on two models, Bright Yellow 2 (BY2) tobacco cells and Medicago sativa (alfalfa), the perennial legume crop.  相似文献   

7.
Sialic acid aldolases or N-acetylneuraminate lyases (NanAs) catalyze the reversible aldol cleavage of N-acetylneuraminic acid (Neu5Ac) to form pyruvate and N-acetyl-D: -mannosamine (ManNAc). A capillary electrophoresis assay was developed to directly characterize the activities of NanAs in both Neu5Ac cleavage and Neu5Ac synthesis directions. The assay was used to obtain the pH profile and the kinetic data of a NanA cloned from Pasteurella multocida P-1059 (PmNanA) and a previously reported recombinant Escherichia coli K12 NanA (EcNanA). Both enzymes are active in a broad pH range of 6.0-9.0 in both reaction directions and have similar kinetic parameters. Substrates specificity studies showed that 5-O-methyl-ManNAc, a ManNAc derivative, can be used efficiently as a substrate by PmNanA, but not efficiently by EcNanA, for the synthesis of 8-O-methyl Neu5Ac. In addition, PmNanA (250 mg l(-1) culture) has a higher expression level (2.5-fold) than EcNanA (94 mg l(-1) culture). The higher expression level and a broader substrate tolerance make PmNanA a better catalyst than EcNanA for the chemoenzymatic synthesis of sialic acids and their derivatives.  相似文献   

8.
E A Muchmore 《Glycobiology》1992,2(4):337-343
The changes in expression of sialic acids in Sprague-Dawley rats in the prenatal and early postnatal time period have been examined in multiple organs, both visceral and non-visceral. In all organs examined, there is a dramatic increase in both N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) shortly after birth. The bulk of the sialic acid is present in the ganglioside fraction in all tissues examined. As total amounts of sialic acid present in gangliosides decrease, the proportion present in the low molecular weight cytosolic fraction increases. A curious observation is that Neu5Ac hydroxylase activity is present at the time of the increase in sialic acid, but its activity does not correlate with Neu5Gc expression after the early postnatal period. This implies that Neu5Gc expression has another level of regulation besides CMP-Neu5Ac hydroxylase activity.  相似文献   

9.
The interaction of the galactose-recognizing receptor from rat peritoneal macrophages with ligands containing terminal galactose residues, such as asialoorosomucoid, desialylated erythrocytes or lymphocytes, can be inhibited by free N-acetylneuraminic acid (Neu5Ac) and oligosaccharides or glycoproteins containing this sugar in terminal position. This effect of Neu5Ac on the receptor is specific. The other naturally occurring or most of synthetic neuraminic acid derivatives tested do not exhibit an equivalent inhibitory potency as Neu5Ac. Although free Neu5Ac inhibits 5-fold stronger (K50 = 0.2mM) than free galactose, clustering of Neu5Ac in oligosaccharides and glycoproteins does not lead to stronger inhibition, which is in contrast to galactose-containing ligands. A more branched (triantennary) sialooligosaccharide inhibits less than biantennary and unbranched sialooligosaccharides. This may be the reason, why complex sialic acid-containing ligands like native orosomucoid or blood cells are not bound and internalized by the macrophages. The dissociation of asialoorosomucoid from the receptor is slow under the influence of Neu5Ac and requires relatively high concentrations of this sugar, whereas the dissociation mediated by galactose is rapid and requires lower concentrations. An allosteric influence of Neu5Ac on the binding of galactose by the receptor is discussed.  相似文献   

10.
To identify sialic acid binding proteins from complex proteomes, three photocrosslinking affinity-based probes were constructed using Neu5Ac (5 and 6) and Neu5Ac2en (7) scaffolds. Kinetic inhibition assays and Western blotting revealed the Neu5Ac2en-based 7 to be an effective probe for the labeling of a purified gut microbial sialidase (BDI_2946) and a purified human sialic acid binding protein (hCD33). Additionally, LC–MS/MS affinity-based protein profiling verified the ability of 7 to enrich a low-abundance sialic acid binding protein (complement factor H) from human serum thus validating the utility of this probe in a complex context.  相似文献   

11.
N-Acetyl-d-neuraminic acid (Neu5Ac) and its derivates are a very important group of biomolecules because these sugars occupy the terminal positions in numerous macromolecules, such as the glycans of glycoproteins, and are involved in many biological and pathological phenomena. The synthesis and applications of Neu5Ac are attracting much interest due to the potential applications of this compound in the pharmaceutical industry, such as in the synthesis of the anti-flu drug zanamivir. In this review article, we discuss existing knowledge on the biotechnological production and applications of Neu5Ac and also propose some guidelines for future studies.  相似文献   

12.
We have evaluated methods for separation, preparation, and characterization of alpha-2----8-linked oligomers of sialic acids (Neu5Ac and Neu5Gc) and deaminated neuraminic acid (KDN; 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid) recently found as a naturally occurring novel type of sialic acid analogue. (A) We examined preparative anion-exchange chromatography for fractionation and preparation of oligo(Neu5Ac), oligo(Neu5Gc), and oligo(KDN). (B) We also examined the TLC method for separation and differentiation of the partial acid hydrolysates of colominic acid, as well as polysialoglycoproteins (PSGP) and poly(KDN)-glycoproteins (KDN-gp) isolated from rainbow trout eggs, and for discrimination of lower oligomers of Neu5Ac, Neu5Gc, and KDN. (C) We developed the high-performance adsorption-partition chromatographic method for (a) separation of monomers and oligomers of three nonulosonates according to the difference in substituents at C-5 and the presence or absence of 9-O-acetyl groups in oligo(KDN) and (b) separation of three homologous series of lower oligomers according to the degree of polymerization. (D) We examined and compared high-performance anion-exchange chromatographic separation of 3H-labeled oligo(Neu5Ac), oligo(Neu5Gc), and oligo(KDN) alditols by using Mono-Q HR 5/5 resin. (E) We examined a method of selective and quantitative microprecipitation for separation and purification of oligomers and polymers of Neu5Ac by treating them with cetylpyridinium chloride. We also used PSGP and KDN-gp to test both the sensitivity and the selectivity of this method.  相似文献   

13.
The expression of O-acetylated sialic acids in human colonic mucins is developmentally regulated, and a reduction of O-acetylation has been found to be associated with the early stages of colorectal cancer. Despite this, however, little is known about the enzymatic process of sialic acid O-acetylation in human colonic mucosa. Recently, we have reported on a human colon sialate-7(9)-O-acetyltransferase capable of incorporating acetyl groups into sialic acids at the nucleotide-sugar level [Shen et al., Biol. Chem. 383 (2002), 307-317]. In this report, we show that the CMP-N-acetyl-neuraminic acid (CMP-Neu5Ac) and acetyl-CoA (AcCoA) transporters are critical components for the O-acetylation of CMP-Neu5Ac in Golgi lumen, with specific inhibition of either transporter leading to a reduction in the formation of CMP-5-N-acetyl-9-O-acetyl-neuraminic acid (CMP-Neu5,9Ac2). Moreover, the finding that 5-N-acetyl-9-O-acetyl-neuraminic acid (Neu5,9Ac2 could be transferred from neo-synthesised CMP-Neu5,9Ac2 to endogenous glycoproteins in the same Golgi vesicles, together with the observation that asialofetuin and asialo-human colon mucin are much better acceptors for Neu5,9Ac2 than asialo-bovine submandibular gland mucin, suggests that a sialyltransferase exists that preferentially utilises CMP-Neu5,9Ac2 as the donor substrate, transferring Neu5,9Ac2 to terminal Galbeta1,3(4)R- residues.  相似文献   

14.
Sialic acids are a family of structurally related sugars that are prevalent in mucosal surfaces, including the human intestine. In the gut, sialic acids have diverse biological roles at the interface of the host epithelium and the microbiota. N-acetylneuraminic acid (Neu5Ac), the best studied sialic acid, is a nutrient source for bacteria and, when displayed on the cell surface, a binding site for host immune factors, viruses, and bacterial toxins. Neu5Ac is extensively modified by host and microbial enzymes, and the impacts of Neu5Ac derivatives on host–microbe interactions, and generally on human and microbial biology, remain underexplored. In this mini-review, we highlight recent reports describing how host and microbial proteins differentiate Neu5Ac and its derivatives, draw attention to gaps in knowledge related to sialic acid biology, and suggest cutting-edge methodologies that may expand our appreciation and understanding of Neu5Ac in health and disease.  相似文献   

15.
Chen  FT; Dobashi  TS; Evangelista  RA 《Glycobiology》1998,8(11):1045-1052
A method for quantitative analysis of monosaccharides including N- acetylneuraminic acid derived from sialic acid-containing oligosaccharides and glycoproteins is presented. The analysis is based on the combination of chemical and enzymatic methods coupled with capillary electrophoretic (CE) separation and laser-induced fluorescence (LIF) detection. The present method utilizes a simplified acid hydrolysis procedure consisting of mild hydrolysis (0.1 M TFA) to release sialic acid and strong acid hydrolysis (2.0 N TFA) to produce amino and neutral sugars. Amino sugars released from strong acid hydrolysis of oligosaccharides and glycoproteins were reacetylated and derivatized with 8-aminopyrene-1,3,6-trisulfonate (APTS) along with neutral sugars in the presence of sodium cyanoborohydride to yield quantitatively the highly stable fluorescent APTS adducts. N- acetylneuraminic acid (Neu5Ac), a major component of most mammalian glycoproteins, was converted in a fast specific reaction by the action of neuraminic acid aldolase (N-acylneuraminate pyruvate-lyase EC 4.1.3.3) to N-acetylmannosamine (ManNAc) and pyruvate. ManNAc was then derivatized with APTS in the same manner as the other monosaccharides. This method was demonstrated for the quantitation of pure Neu5Ac and the species derived from mild acid hydrolysis of 6'-sialyl-N- acetyllactosamine and bovine fetuin glycan. Quantitative recovery of the N-acetylmannosamine was obtained from a known amount of Neu5Ac in a mixture of seven other monosaccharides or from the sialylated oligosaccharides occurring in glycoproteins. The sequence of procedures consists of acid hydrolysis, enzymatic conversion and APTS derivatization which produced quantitative recovery of APTS- monosaccharide adducts. The detection limits for sugars derivatized with APTS and detected by CE-LIF are 100 pmol for Neu5Ac and 50 pmol for the other sugars.   相似文献   

16.
17.
Egg yolk, a large proportion of the egg, was studied for the preparation ofN-acetylneuraminic acid (Neu5Ac). The delipidated hen egg yolk (DEY; 500 kg containing 0.2% w/w, Neu5Ac) was hydrolysed with HCl (pH 1.4) at 80 °C and neutralized with NaOH (pH 6.0). The mixture was filtered and electrodialysed until the conductivity was 240 µS cm–1. The filtrate was applied on a column of Dowex HCR-W2 (20–50 mesh), followed by a column of Dowex 1-X8 (200–400 mesh). The latter column was washed with water, and then eluted with a linear gradient of HCO2H (0–2m). The eluates containing Neu5Ac were concentrated using a reverse osmosis membrane and, finally, rotary evaporated at 40 °C. The residue was then lyophilized to yield 500 g Neu5Ac. The purity of Neu5Ac was >98% (TBA method). HPLC, NMR spectroscopy and TLC chromatography of the product obtained from the DEY showed that Neu5Ac was the sole derivative present in egg yolk. The DEY, a byproduct from egg processing plants, was found to be an excellent source for the large-scale preparation of Neu5Ac.Abbreviations Neu5Ac N-acetylneuraminic acid - Neu5Gc N-glycolylneuraminic acid - DEY delipidated egg yolk - HPLC high performance liquid chromatography - TLC thin layer chromatography - NMR nuclear magnetic resonance - IR infrared spectroscopy Presented at the 11th International Symposium on Glycoconjugates, Toronto, Canada.  相似文献   

18.
We have recently identified two novel cysteine proteinase inhibitors from the skin of Atlantic salmon (Salmo salar L.), named salmon kininogen and salarin. In preliminary experiments, the proteins were found to be both N- as well as O-glycosylated. In the present study we show that both proteins carry biantennary alpha2,3-sialylated N-glycans. A very high amount of O-acetylated Neu5Ac units are present in the N-glycans, comprising about 60% di-O-acetylated species. Non-O-acetylated Neu5Ac make up less than 5% of the sialic acids in the N-glycans. A small number of Neu5Acalpha2-8Neu5Ac structures were observed in the N-glycans as well. O-glycans from both proteins were recovered by reductive beta-elimination and were identified by mass spectrometric methods as mono- and disialylated core type 1 tri- and tetrasaccharides. The method used for O-glycan isolation prevented the identification of possible O-acetylation in the O-glycan-bound sialic acids, but O-acetylation was observed in one O-glycosylated peptide isolated from trypsin digest of salarin. The chemical nature of the sialic acid modifications was further studied by liquid chromatography tandem mass spectrometry of 1,2-diamino-4,5-methylenedioxybenzene-derivatized sialic acids, revealing 7-, 8-, and 9- but no 4-O-acetylation. To our knowledge, these are the first observations of sialic acid O-acetylation in N-glycans on fish species and represent clearly the most extensive N-glycan O-acetylation described on any species.  相似文献   

19.
R Schauer  G Reuter  S Stoll 《Biochimie》1988,70(11):1511-1519
Sialate 9(4)-O-acetylesterases (EC 3.1.1.53) have been isolated from equine liver, bovine brain and influenza C virus. In this latter case, the esterase represents the receptor-destroying enzyme of the virus. The kinetic properties of these enzymes were determined with Neu5,9Ac2 and in part with 4-methylumbelliferyl acetate and Neu5,9Ac2-lactose. The Km values vary between 0.13 and 24 mM and the Vmax values from 0.55 to 11 U/mg of protein. The pH optima are in the range of 7.4-8.5, the molecular masses at 56,500 and 88,000 Da. In addition to a fast hydrolysis found for aromatic acetates, such as 4-methylumbelliferyl acetate or 4-nitrophenyl acetate, N-acetyl-9-O-acetylneuraminic acid is de-O-acetylated at the highest relative rate. Other substituents at the 9-position, such as lactoyl residues, or acetyl groups at other positions within the side chain are not hydrolyzed. Neu4,5Ac2, however, is a substrate for all 3 enzymes. The hydrolysis rates of this ester function, which renders sialic acids resistant to the action of sialidases, vary from 3 to 100% relative to Neu5,9Ac2. Whereas Neu5,9Ac2-lactose is hydrolyzed by the bovine and viral esterases, other O-acetylated sialic acids in glycoconjugates are only attacked by the enzyme from influenza C virus and not by that from bovine brain. The esterase from horse liver also releases 4-O-acetyl groups from equine submandibular gland mucin. By incubation with appropriate substrates and inhibition studies, carboxylesterase, amidase and choline esterase activities were excluded, as well as the cleavage of other acyls, e.g., butyryl groups. Thus, the enzymes investigated belong to the acetylesterases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Several bacteria causing meningitis, such as Escherichia coli K1, Streptococcus suis, Neisseria meningitidis, and group B Streptococci (GBS), produce sialic acid (Neu5Ac)-containing capsular polysaccharide (CPS). Biosynthesis of the Neu5Ac-containing CPS requires CMP-Neu5Ac as substrate, which is synthesized by CMP-Neu5Ac synthetase from CTP and Neu5Ac. In E. coli or GBS, the NeuA protein encoded by the neuA gene has been known encoding a bifunctional enzyme that possesses both CMP-Neu5Ac synthetase and O-acetylesterase activity. In this report, we found that the S. suis NeuA (SsNeuA) was also a bifunctional CMP-Neu5Ac synthetase/O-acetylesterase. Biochemical analyses revealed that the SsNeuA strictly de-O-acetylated CMP-O-acetyl-Neu5Ac, whereas the E. coli NeuA (EcNeuA) preferentially de-O-acetylated CMP-O-acetyl-Neu5Ac. E. coli devoid of NeuA O-acetylesterase activity was unable to produce capsule and only CMP-Neu5Ac synthetase activity of the EcNeuA or SsNeuA could not restore its ability to produce capsule. These results suggest that the O-acetylesterase is essential for the synthesis of capsular Neu5Ac in E. coli, probably in S. suis and GBS as well. Our findings are key to understanding the biosynthesis of capsular Neu5Ac in E. coli, S. suis and GBS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号