首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
山西野生有毒植物组成   总被引:5,自引:1,他引:4  
有毒植物是能引起人类或其它生物中毒死亡或有机体长期或暂时性伤害的植物。但是,有毒植物也有积极有益的一面.在人类生活、生产中起着很大作用。本文中重点介绍了山西有毒植物的组成.计47科、105属、150种.其中草本植物126种,木本植物24种.并对有毒部位与毒性作了说明.最后对有毒植物应用前景作了简要分析。  相似文献   

2.
Mechanisms of plant species impacts on ecosystem nitrogen cycling   总被引:16,自引:0,他引:16  
Plant species are hypothesized to impact ecosystem nitrogen cycling in two distinctly different ways. First, differences in nitrogen use efficiency can lead to positive feedbacks on the rate of nitrogen cycling. Alternatively, plant species can also control the inputs and losses of nitrogen from ecosystems. Our current understanding of litter decomposition shows that most nitrogen present within litter is not released during decomposition but incorporated into soil organic matter. This nitrogen retention is caused by an increase in the relative nitrogen content in decomposing litter and a much lower carbon‐to‐nitrogen ratio of soil organic matter. The long time lag between plant litter formation and the actual release of nitrogen from the litter results in a bottleneck, which prevents feedbacks of plant quality differences on nitrogen cycling. Instead, rates of gross nitrogen mineralization, which are often an order of magnitude higher than net mineralization, indicate that nitrogen cycling within ecosystems is dominated by a microbial nitrogen loop. Nitrogen is released from the soil organic matter and incorporated into microbial biomass. Upon their death, the nitrogen is again incorporated into the soil organic matter. However, this microbial nitrogen loop is driven by plant‐supplied carbon and provides a strong negative feedback through nitrogen cycling on plant productivity. Evidence supporting this hypothesis is strong for temperate grassland ecosystems. For other terrestrial ecosystems, such as forests, tropical and boreal regions, the data are much more limited. Thus, current evidence does not support the view that differences in the efficiency of plant nitrogen use lead to positive feedbacks. In contrast, soil microbes are the dominant factor structuring ecosystem nitrogen cycling. Soil microbes derive nitrogen from the decomposition of soil organic matter, but this microbial activity is driven by recent plant carbon inputs. Changes in plant carbon inputs, resulting from plant species shifts, lead to a negative feedback through microbial nitrogen immobilization. In contrast, there is abundant evidence that plant species impact nitrogen inputs and losses, such as: atmospheric deposition, fire‐induced losses, nitrogen leaching, and nitrogen fixation, which is driven by carbon supply from plants to nitrogen fixers. Additionally, plants can influence the activity and composition of soil microbial communities, which has the potential to lead to differences in nitrification, denitrification and trace nitrogen gas losses. Plant species also impact herbivore behaviour and thereby have the potential to lead to animal‐facilitated movement of nitrogen between ecosystems. Thus, current evidence supports the view that plant species can have large impacts on ecosystem nitrogen cycling. However, species impacts are not caused by differences in plant quantity and quality, but by plant species impacts on nitrogen inputs and losses.  相似文献   

3.
Aim Plant communities across the temperate zone are changing in response to successional processes and human‐induced disturbances. Here, we assess how upland forest under‐ and overstorey community composition has changed along an edaphic gradient. Location Northern Wisconsin, USA. Methods Forest sites initially sampled in the 1950s were resampled for overstorey composition and diversity, basal area, and understorey composition and diversity. We used clustering methods to identify groups of stands based on overstorey composition, and we used similarity indices, ordination and diversity indices to evaluate changes in species abundance and overall community structure. Results Sites clustered into four overstorey groups along the edaphic gradient: ‘hemlock’ sites dominated by hemlock in 1950, ‘mesic’ sites dominated by northern hardwoods, ‘dry’ sites with a significant pine inclusion in the canopy and diverse ‘dry‐mesic’ sites in the middle. Collectively, forests gained maple, ash and cherry while losing pines, birches and red oaks. The hemlock forest sites gained hardwoods, while the dry‐mesic sites shifted towards a more mesic hardwood composition. Only the driest sites have remained relatively stable in species composition. Main conclusions These trends reflect both ‘mesification’ and homogenization among northern forests. Highly diverse mid‐gradient and mesic hemlock‐dominated stands are transitioning to maple dominance. Fire suppression may be favouring invasions of more mesic plants into historically drier sites, while high deer abundance likely limits hemlock regeneration. If current trends continue, maples will dominate the majority of northern forests, with significant losses of local native species richness and substantial shifts in understorey composition.  相似文献   

4.
1. Settlement timing is often an important factor in interspecific herbivore interactions, as early‐arriving species may encounter higher resource availability and/or avoid induced defences. Despite the general importance of priority effects to the outcome of herbivore interactions, there has been little exploration of such interactions on woody host plants where their impact can only be measured over multiple years. 2. In the eastern U.S.A., two invasive species, the hemlock woolly adelgid Adelges tsugae and the elongate hemlock scale Fiorinia externa, share a native host, eastern hemlock Tsuga canadensis. Their interaction and its consequences were investigated for plant growth – hemlock saplings that had been inoculated with either A. tsugae or F. externa, starting in spring 2007, were cross‐infested with the other insect in spring 2009. A set of uninfested trees was simultaneously infested with A. tsugae, F. externa, both, or neither insect (= control), and insect density and plant growth was assessed in all treatments. 3. Adelges tsugae settlement rates did not differ if it settled alone or simultaneously with F. externa, but were ~45% lower on trees previously infested with F. externa. There was no difference in F. externa settlement rates, and plant growth did not differ substantively between any of the herbivore treatments. 4. At a temporal scale (i.e. multiple growing seasons) appropriate to interactions between woody plants and their herbivores, this work demonstrates that plant‐mediated priority effects can substantially affect herbivore settlement and thus the outcome of interspecific competition.  相似文献   

5.
This report summarizes our current knowledge of leaf-level physiological processes that regulate carbon gain and water loss of the dominant tree species in an old-growth forest at the Wind River Canopy Crane Research Facility. Analysis includes measurements of photosynthesis, respiration, stomatal conductance, water potential, stable carbon isotope values, and biogenic hydrocarbon emissions from Douglas-fir (Pseudotsuga menziesii), western hemlock (Tsuga heterophylla), and western red cedar (Thuja plicata). Leaf-level information is used to scale fluxes up to the canopy to estimate gross primary production using a physiology-based process model. Both light-saturated and in situ photosynthesis exhibit pronounced vertical gradients through the canopy, but are consistently highest in Douglas-fir, intermediate in western hemlock, and lowest in western red cedar. Net photosynthesis and stomatal conductance are strongly dependent on vapor-pressure deficit in Douglas-fir, and decline through the course of a seasonal drought. Foliar respiration is similar for Douglas-fir and western hemlock, and lowest for western red cedar. Water-use efficiency varied with species and tree height, as indexed using stable carbon isotopes values for foliage. Leaf water potential is most negative for Douglas-fir and similar for western hemlock and western red cedar. Terpene fluxes from foliage equal approximately 1% of the net carbon loss from the forest. Modeled estimates based on physiological measurements show gross primary productivity (GPP) to be about 22 Mg C m–2 y–1. Physiological studies will be necessary to further refine estimates of stand-level carbon balance and to make long-term predictions of changes in carbon balance due to changes in forest structure, species composition, and climate.  相似文献   

6.
植物对重金属锌耐性机理的研究进展   总被引:4,自引:1,他引:3  
Zn是植物必需的营养元素,同时也是一种常见的有毒重金属元素.由于长期的环境选择和适应进化,植物相应对Zn~(2+)产生了耐性,可减轻或避免Zn~(2+)的毒害.植物对锌耐性机制有:菌根和细胞膜对Zn~(2+)吸收的阻止和控制,其中控制Zn~(2+)的细胞膜跨膜转运器主要有(ZIP)类、阳离子扩散促进器(CDF)类和B-type ATPase (HMA)类;金属硫蛋白(MTs)、植物螯合素(PCs)和有机酸等Zn~(2+)螯合物质的体内螯合解毒;体内区室化分隔以及通过抗氧化系统和渗透调节物质的代谢调节等.本文从生理和分子水平上综述了植物对Zn~(2+)耐性机理的研究进展,并在此基础上提出目前存在的问题和今后研究的重点领域,为该领域的相关研究提供资料和借鉴.  相似文献   

7.
Pipecolic acid naturally occurs in microorganisms, plants, and animals, where it plays many roles, including the interactions between these organisms, and is a key constituent of many natural and synthetic bioactive molecules. This article provides a review of current knowledge on the natural occurrence of pipecolic acid and the known and potential significance of its L‐ and D‐enantiomers in different scientific disciplines. Knowledge gaps with perspectives for future research identified within this article include the roles of the L‐ versus the D‐enantiomer of pipecolic acid in plant resistance, nutrient acquisition, and decontamination of polluted soils, as well as rhizosphere ecology and medical issues. Chirality 25:823–831, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
Zuzana Münzbergová 《Oikos》2006,115(3):443-452
Recently it has been suggested that ploidy level of a plant population may have important effects on plant‐animal interactions. Plant‐animal interactions can also be strongly altered by factors such as plant population size and habitat conditions. It is, however, not known how these factors interact to shape the overall pattern of plant‐animal interactions. I studied the interaction between a perennial plant, Aster amellus, and a monophagous herbivorous moth, Coleophora obscenella, and investigated the effect of ploidy level of the plant population, plant population size, isolation and habitat conditions on density of the insect, damage by the insect, and plant performance. Ploidy level, plant population size and habitat conditions, but not isolation, strongly influence plant‐herbivore interactions. Furthermore, there are significant interactions between effects of ploidy level and plant population size and between ploidy level and isolation. Hexaploid plants suffer higher seed damage by the herbivore, but their seed production is still higher than that of diploids. Herbivores thus partly limit the evolutionary success of the hexaploid plants. Plant‐animal interactions are also strongly determined by plant population size. Small populations of A. amellus (below forty flowering ramets) host no C. obscenella larvae, indicating a minimum A. amellus population size that can sustain a viable C. obscenella population. Negative and positive effects of plant population size balance and result in no relationship between plant population size and number of developed seeds per flower head. The results also show a significant interaction between ploidy level and plant population size, indicating that the increase in density of C. obscenella larvae with plant population size is greater in hexaploid than in diploid populations. The results also indicate that the effect of ploidy level on plant‐herbivore interactions can be altered by plant population size, which suggests that plant‐herbivore interactions are driven by a complex of interactions among different factors. Studying each factor separately could thus lead to biased conclusions about patterns of interactions in such systems.  相似文献   

9.
1. Omnivorous predators can protect plants from herbivores, but may also consume plant material themselves. Omnivores and their purely herbivorous prey have previously been thought to respond similarly to host‐plant quality. However, different responses of omnivores and herbivores to their shared host plants may influence the fitness, trophic identity, and population dynamics of the omnivores. 2. The aim of the present study was to show that an omnivorous heteropteran (Anthocoris nemorum L.) and two strictly herbivorous prey species respond differently to different genotypes of their shared host plant, Salix. Some plant genotypes were sub‐optimal for the omnivore, although suitable for the herbivores, and vice versa. 3. The contrasting patterns of plant suitability for the omnivore and the herbivores highlight an interaction between plant genotype and omnivores' access to animal food. Plant genotypes that were sub‐optimal for the omnivore when herbivores were experimentally excluded became the best host plants when herbivores were present, as in the latter situation additional prey became available. By contrast, the quality of plant genotypes that were intrinsically suitable for omnivores, did not improve when herbivores were present as these plant genotypes were intrinsically sub‐optimal for herbivores, thus providing omnivores with almost no additional animal food. 4. The differential responses of omnivores and their prey to the same host‐plant genotypes should allow omnivores to colonise sub‐optimal host plants in their capacity as predators, and to colonise more suitable host plants in their capacity as herbivores. It may thus be difficult for Salix to escape herbivory entirely, as it will rarely be unsuitable for both omnivores and pure herbivores at the same time.  相似文献   

10.
通过野外及走访调查,对西双版纳野生有毒植物资源进行了调查,同时对其科属分布、生活型组成、毒性、有毒部位进行了分析。结果显示,西双版纳野生有毒植物289种,隶属于79科214属,其中优势科集中在豆科、大戟科、天南星科、夹竹桃科、芸香科,优势属为大戟属和茄属;生活型以草本植物居多,占36.68%;有毒部位以全株或全草有毒为主,占37.37%;毒性以小毒植物占大多数,剧毒植物有5种,大毒植物有11种。通过走访调查了解到,商陆、钩吻、相思子、曼陀罗、洋金花、油桐、蓖麻等有毒植物种类在民间曾多次发生误食中毒甚至死亡事例,需要特别注意识别。今后应加强对常见有毒植物的辨识与防范科普宣传,同时加强对有毒植物的开发和应用研究。  相似文献   

11.
许冬倩  郭双生 《广西植物》2015,35(1):133-136
微重力是最独特的空间环境条件之一,研究微重力对不同植物种类以及不同植物部位的影响是空间生物学的重要内容之一,对于建立生物再生式生命保障系统意义重大。生物再生式生命保障系统是未来开展长期载人空间活动的核心技术,其优势在于能在一个密闭的系统内持续再生氧气,水和食物等高等动物生活必需品,植物部件是生物再生式生命保障系统的重要组成部分。了解和掌握微重力对植物生长发育的影响,有助于采取有效的作业制度确保其正常生长发育和繁殖,是成功建立生物再生式生命保障系统的首要关键。该文就植物在空间探索中的地位和作用,地面模拟微重力的装置以及国内外有关微重力对植物的影响做一综述。现有的研究结果包括,未来长期的载人航天任务需要植物通过光合作用为生物再生式生命保障系统提供部分动物营养、洁净水以及清除系统中的固体废物和二氧化碳;三维随机回旋装置是目前地面上模拟微重力效应的主要装置之一,尤其适用于植物材料的长期模拟微重力处理;国内外有关微重力对植物影响的报道生理生化水平多集中在植物的生长发育和生理反应,比如表型变化或者与重力相关的激素或者钙离子的再分配,细胞或亚细胞水平主要有细胞壁、线粒体、叶绿体以及细胞骨架等,基因和蛋白质表达水平的研究对象主要为拟南芥。由于实验方法和材料之间的差异,微重力对不同植物或者植物不同部位在各个水平的影响效果并不一致,未来需要开展更多的相关研究工作。  相似文献   

12.
Decontamination of polluted soils using plants is based on the ability of plant species (including transgenic plants) to enhance bioavailability of pollutants in the rhizosphere and support growth of pollutant‐degrading microorganisms via root exudation and plant species‐specific composition of the exudates. In this work, we review current knowledge of enantiomers of low‐molecular‐weight (LMW) organic compounds with emphasis on their use in phytoremediation. Many research studies have been performed to search for plants suitable for decontamination of polluted soils. Nevertheless, the natural occurrence of L‐ versus D‐enantiomers of dominant compounds of plant root exudates which play different roles in the complexation of heavy metals, chemoattraction, and support of pollutant‐degrading microorganisms were not included in these studies. D‐enantiomers of aliphatic organic acids and amino acids or L‐enantiomers of carbohydrates occur in high concentrations in root exudates of some plant species, especially under stress, and are less stimulatory for plants to extract heavy metals or for rhizosphere microflora to degrade pollutants compared with L‐enantiomers (organic acids and amino acids) or D‐carbohydrates. Determining the ratio of L‐ versus D‐enantiomers of organic compounds as a criterion of plant suitability for decontamination of polluted soils and development of other types of bioremediation technologies need to be subjects of future research. Chirality 26:1–20, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Plant pathogens pose a significant threat to the food industry and food security accounting for 10–40% crop losses annually on a global scale. Economic losses from plant diseases are estimated at $300B for major food crops and are associated with reduced food availability and accessibility and also high food costs. Although strategies exist to reduce the impact of diseases in plants, many of these introduce harmful chemicals to our food chain. Therefore, it is important to understand and utilize plants' immune systems to control plant pathogens to enable more sustainable agriculture. Lipids are core components of cell membranes and as such are part of the first line of defense against pathogen attack. Recent developments in omics technologies have advanced our understanding of how plant membrane lipid biosynthesis, remodelling and/or signalling modulate plant responses to infection. Currently, there is limited information available in the scientific literature concerning lipid signalling targets and their biochemical and physiological consequences in response to plant pathogens. This review focusses on the functions of membrane lipid derivatives and their involvement in plant responses to pathogens as biotic stressors. We describe major plant defense systems including systemic‐acquired resistance, basal resistance, hypersensitivity and the gene‐for‐gene concept in this context.  相似文献   

14.
Old-growth forest stands of mixed species composition provide the opportunity to study species-specific influences on soil properties. We monitored rates of nitrogen mineralization, nitrification and an index of ammonium and nitrate uptake in a mixed old-growth stand of Douglas-fir (Pseudotsuga menziesii), western hemlock (Tsuga heterophylla) and western redcedar (Thuja plicata) over a two-year period. Litter and mineral soil (0–10-cm depth) were sampled adjacent to ten large trees of each species. After initial characterization of litter and soil, buried bags were incubated in both layers for ca. 2-month intervals. Soil and litter pH was lowest near western hemlocks. Nitrification, nitrate concentrations, and percent uptake as nitrate differed among the tree species; rates were highest near western redcedars. For all species, percent nitrification and nitrate uptake rate were higher in soil than in litter. The results indicate species-specific effects on ammonium and nitrate production and uptake within this forest type.The research described in this article has been funded in part by the US Environmental Protection Agency. This document has been prepared at the EPA Environmental Research Laboratory in Corvallis, Oregon, through Contract No. 68-C8-0006 to ManTech Environmental Technology, Inc. It has been subjected to the Agency's peer and administrative review and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.The research described in this article has been funded in part by the US Environmental Protection Agency. This document has been prepared at the EPA Environmental Research Laboratory in Corvallis, Oregon, through Contract No. 68-C8-0006 to ManTech Environmental Technology, Inc. It has been subjected to the Agency's peer and administrative review and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.  相似文献   

15.
钾(K)作为植物所需的3种大量元素之一,参与体内诸多的生理和生化过程,对于植物的生长和发育极其重要。目前,国内外学者对植物吸收、运输和利用K+的研究已有一定深度,尤其以模式植物拟南芥(Arabidopsis thaliana(L.) Heynh.)为研究对象。其中,与K+吸收、转运相关的离子通道和转运蛋白一直都是研究热点。本文综合近年来国内外相关研究进展,主要阐述K+通道和转运蛋白,K+的吸收和运输,类钙调磷酸酶(Calcineurin B-Like, CBL)-CBL相互作用蛋白激酶(CBL-Interacting protein kinase, CIPK)信号途径,参与该信号转导的一些小信号分子,对K+研究方面存在的问题进行了总结,并对未来的研究方向进行了展望。  相似文献   

16.
Parasite proteinases have important functions in host-parasite interactions. Consequently, they have been investigated as targets for the control of both plant and animal parasites. Plant parasitic nematodes cause estimated annual losses to world agriculture of US$100 billion and, currently, their control often relies on highly toxic nematicides, with associated environmental risks. The potential of disrupting digestive proteinases for plant parasitic nematode control, via expression of proteinase inhibitors in transgenic plants, is summarized here by Catherine Lilley, Pauline Devlin, Peter Urwin and Howard Atkinson. They then consider whether the approach of expressing antinematode proteins in plants can be adapted for control of certain animal parasitic nematodes.  相似文献   

17.
Plant viruses can cause serious crop losses. Calcium homoeostasis is involved in the movement of animal viruses. We have examined whether intracellular calcium flux can interfere with spread of virus in plants. The calcium channel blocker verapamil, applied to Nicotiana tabacum cv. Xanthi‐nc plant leaves, interfered with Tobacco mosaic virus infection in treated and untreated leaves, reducing TMV lesion number by 68 and 71%, respectively. Verapamil interfered with calcium homoeostasis of leaf cells, evident by increased calcium efflux from leaf segments. This is a first effort to use calcium channel blockers as an inducer of systemic virus resistance in plants.  相似文献   

18.
Filipiak, P. & Zatoń, M. 2010: Plant and animal cuticle remains from the Lower Devonian of southern Poland and their palaeoenvironmental significance. Lethaia, Vol. 44, pp. 397–409. Assemblages of plant and arthropod remains are reported from the Lower Devonian clastic deposits of the Upper Silesian and Ma?opolska blocks in southern Poland. Most of the plant and animal remains are palynologically dated as Pragian–Emsian/Eifelian. The plant material comprises higher plant cuticles with stomata classified as Drephanophycus and Sawdonia, and more enigmatic remains (nematophytes) classified as Nematothallus, Cosmochlaina and tubular banded tubes. They are associated with abundant and diverse miospores. Animal remains consist of eurypterid respiratory organs, the morphology of which may presumably point to their advance physiological properties, and cuticular remains of eurypterid and probably scorpion origin, as well as some remains of unknown affinity. The presence of such mixed assemblages in the Lower Devonian of Poland indicate marginal‐marine and/or alluvial environments spreading in the southern margin of the Old Red Continent. The dominance of land‐derived plant remains and simultaneous scarcity of marine acritarchs indicate that the environment was very weakly influenced by marine conditions. If nematophytes were really related to extant liverworts, as suggested by some workers, they, together with the other associated spore‐producing plants, may strongly indicate moist environmental conditions, which may have offered suitable habitats for temporary eurypterid migrations onto land. □Cuticles, eurypterids, Lower Devonian, nematophytes, Poland, spores.  相似文献   

19.
Heterotrimeric G‐proteins are complexes that regulate important signalling pathways essential for growth and development in both plants and animals. Although plant cells are composed of the core components (Gα, Gβ and Gγ subunits) found in animal G‐proteins, the complexities of the architecture, function and signalling mechanisms of those in animals are dissimilar to those identified in some plants. Current studies on plant G‐proteins have improved knowledge of the essential physiological and agronomic properties, which when harnessed, could potentially impact global food security. Extensive studies on the molecular mechanisms underlying these properties in diverse plant species will be imperative in improving our current understanding of G‐protein signalling pathways involved in plant growth and development. The advancement of G‐protein signalling networks in distinct plant species could significantly aid in better crop development. This review summarizes current progress, novel discoveries and future prospects for this area in potential crop improvement.  相似文献   

20.
The objectives of this study were to quantify rates of nitrogen inputs to the forest floor, determine rates of nitrogen losses via leaching and to partition the sources of NO3 from healthy, declining, and salvage or preemptively cut eastern hemlock (Tsuga canadensis) stands in both an urban forest at the Arnold Arboretum in Boston, MA and a rural forest at Harvard Forest in Petersham, MA. Rates of nitrogen inputs (NH4 + and NO3 ) to the forest floor were 4–5 times greater, and rates of nitrogen losses via leachate were more than ten times greater, at the Arnold Arboretum compared to Harvard Forest. Nitrate that was lost via leachate at Harvard Forest came predominantly from atmospheric deposition inputs, whereas NO3 losses at the Arnold Arboretum came predominantly from nitrification. Although our study was limited to one urban and one rural site, our results suggest that current management regimes used to control the hemlock woolly adelgid (Adelges tsugae), such as salvage cutting, may be reducing nitrogen losses in urban areas due to rapid regrowth of vegetation and uptake of nitrogen by those plants. In contrast, preemptive cutting of trees in rural areas may be leading to proportionately greater losses of nitrogen in those sites, though the total magnitude of nitrogen lost is still smaller than in urban sites. Results of our study suggest that the combination of the hemlock woolly adelgid, nitrogen inputs, and management practices lead to changes in the movement and source of NO3 losses from eastern hemlock forest ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号