首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
By taking advantage of microflow injection chemiluminescence analysis, we developed a distinctive microfluidic bioassay method based on G‐Quadruplex DNAzyme‐enhanced chemiluminescence for the determination of K+ in human serum. AGRO100, the G‐rich oligonucleotide with high hemin binding affinity was primarily selected as a K+ recognition element. In the presence of K+, AGRO100 folded into G‐quadruplex and bound hemin to form DNAzyme, which catalyzed the oxidation of luminol by H2O2 to produce chemiluminescence. The intensity of chemiluminescence increased with the K+ concentration. In the study, the DNAzyme showed both long‐term stability and high catalytic activity; other common cations at their physiological concentration did not cause notable interference. With only 6.7 × 10?13 mol of AGRO100 consumption per sample, a linear response of K+ ranged from 1 to 300 µmol/L, the concentration detection limit 0.69 µmol/L (S/N = 3) and the absolute detection limit 1.38 × 10?12 mol were obtained. The precision of 10 replicate measurements of 60 µmol/L K+ was found to be 1.72% (relative standard deviation). The accuracy of the method was demonstrated by analyzing real human serum samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Two different mechanisms of inhibition of chemiluminescence in the oxidation of luminol by sodium hypochlorite were found. Most substances investigated in these experiments acted by scavenging NaOCI. This mechanism was independent of the concentration of hydrogen peroxide and the incubation time between luminol and inhibitors. The most potent inhibitors were substances containing SH groups. Compounds with amino groups as a target for HOCI/OCI? to yield chloramines were much less effective inhibitors. Another mechanism of inhibition was found for catalase. It depended on the presence of hydrogen peroxide in the incubation medium and the incubation time between luminol and catalase. The enzyme inhibited the luminescence by removing H2O2 at molar concentrations much smaller than those found for all other inhibitors. Our results confirm the present models of the mechanism of generation of luminescence in luminol oxidation.  相似文献   

3.
A simple and sensitive flow‐injection (FI) method for the determination of nitrate and nitrite in natural waters, based on luminol chemiluminescence (CL) detection, is reported. Nitrate was reduced online to nitrite via a copperized cadmium (Cu–Cd) column and then reacted with acidic hydrogen peroxide to form peroxynitrous acid. CL emission was observed from the oxidation of luminol in an alkaline medium in the presence of the peroxynitrite anion. The limits of detection (S:N = 3) were 0.02 and 0.01 µg N/L, with sample throughputs of 40 and 90 /h for nitrate and nitrite, respectively. Calibration graphs were linear over the range 0.02–50 and 0.01–50 µg N/L [R2 = 0.9984 (n = 8) and R2 = 0.9965 (n = 7)] for nitrate and nitrite, respectively, with relative standard deviations (RSDs; n = 3) in the range 1.8–4.6%. The key chemical and physical variables (reagent concentrations, buffer pH, flow rates, sample volume, Cu–Cd reductor column length) were optimized and potential interferences investigated. The effect of cations [Ca(II), Mg(II), Co(II), Fe(II) and Cu(II)] was masked online with EDTA. Common anions (PO43?, SO42? and HCO3?) did not interfere at their maximum admissible concentrations in freshwaters. The effect of salinity on the luminol CL reaction with and without nitrate and nitrite (2 and 0.5 µg N/L, respectively) was also investigated. The method was successfully applied to freshwaters and the results obtained were in good agreement with those obtained by an automated segmented flow analyser reference method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
A flow injection system with chemiluminescence detection for the determination of asulam, enhancer of the system luminol–H2O2–horseradish peroxidase, is proposed. The method shows a moderate selectivity against other pesticides usually present in formulations of herbicides and in water. The procedure was applied to the determination of asulam in tap water samples and a recovery study was carried out in order to validate the method. The obtained results show acceptable recovery values (between 88.3 and 93.9%). The detection limit for asulam was 0.12 ng/mL. The precision of the method expressed as relative standard deviation was 1.55% (n = 8), at the 19 ng/mL level. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Isoamyl nitrite is used as a therapeutic reagent for cardiac angina and as an antidote for cyanide poisoning, but it is abused because of its euphoric properties. Therefore, a method to determine isoamyl nitrite is required in many fields, including pharmaceutical and forensic studies. In this study, a simple, rapid and sensitive method for the determination of isoamyl nitrite was developed using a flow injection analysis system equipped with a chemiluminescence detector and on‐line photoreactor. This method is based on on‐line ultraviolet irradiation of isoamyl nitrite and subsequent luminol chemiluminescence detection without the addition of an oxidant. A linear standard curve was obtained up to 1.0 μM of isoamyl nitrite with a detection limit (blank + 3SD) of 0.03 μM. The method was successfully applied to determine isoamyl nitrite content in pharmaceutical preparations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
A remarkable method for the highly sensitive detection of phenylalanine and tryptophan based on a chemiluminescence (CL) assay was reported. It was found that fluorescent copper nanoclusters capped with cysteine (Cys‐CuNCs) strongly enhance the weak CL signal resulting from the reaction between luminol and H2O2. Of the amino acids tested, phenylalanine and tryptophan could enhance the above CL system sensitively. Under optimum conditions, this method was satisfactorily described by a linear calibration curve over a range of 1.0 × 10?6 to 2.7 × 10?5 M for phenylalanine and 1.0 × 10?7 to 3.0 × 10?5 M for tryptophan, respectively. The effect of various parameters such as Cys‐CuNC concentration, H2O2 concentration and pH on the intensity of the CL system were also studied. The main experimental advantage of the proposed method was its selectivity for two amino acids compared with others. To evaluate the applicability of the method to the analysis of a real biological sample it was used to determine tryptophan and phenylalanine in human serum and remarkable results were obtained.  相似文献   

7.
A rapid and sensitive flow‐injection chemiluminescence (FI–CL) method is described for the determination of diazepam based on its reaction with N‐bromosuccinimide (NBS) in alkaline medium in the presence of dichlorofluorescein (DCF) as an effective energy‐transfer agent. Under optimum conditions, the proposed method allowed the measurement of diazepam over the range of 2.0 × 10?6 to 2.0 × 10?4 mol/L with a detection limit of 5.0 × 10?7 mol/L. The relative standard deviation for 11 parallel measurements of 2.0 × 10?5 mol/L diazepam was 2.1%. The method was applied satisfactorily for the determination of diazepam in pharmaceutical preparations, and the results agree well with those obtained by spectrophotometry. The use of the proposed system for the determination of diazepam in urine and plasma samples was also tested. The possible mechanism of the chemiluminescence reaction is discussed briefly. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
A simple flow injection method is reported for the determination of thyroxine, based on its inhibition effect on luminol-iron(II) chemiluminescence in alkaline medium in the presence of molecular oxygen. The detection limits (2s) for d- and l-thyroxine are 0.08 and 0.1 mg/L, respectively, with a sample throughput of 100/h. The calibration data for d- and l-thyroxine over the range 0.2-1.0 mg/L gives correlation coefficients (r(2)) of 0.9915 and 0.984 with relative standard deviations (RSD; n = 4) in the range 1.2-2.8%. The effects of some organic compounds was studied on luminol-iron(II) CL system for thyroxine determination. The method was applied to pharmaceutical thyroxine tablets and the results obtained (in the range 50.5 +/- 2.0-51.6 +/- 1.2 microg l-thyroxine/tablet) were in reasonable agreement with the value quoted.  相似文献   

9.
A novel flow‐injection chemiluminescence method was developed for the selective determination of human immunoglobulin G (IgG) in the presence of thiomersal by changing the flow rates of peristaltic pump. The study was based on the independence and additivity of the CL signals of human IgG and thiomersal in the galangin–potassium permanganate–polyphosphoric acid system. In meantime, two equations relating to the concentrations of mixing solutions of human IgG and thiomersal vs the CL intensity were established and solved, on the basis of which the content of thiomersal included in samples was simultaneously determined too. The enhanced CL intensity was in proportion to concerntrations in the range 8.0 × 10?7 to 8.0 × 10?5 g/mL for human IgG and 1.0 × 10?7 to 2.0 × 10?6 g/mL for thiomersal with the detection limits of 5.0 × 10?7 g/mL for human IgG and 6.0 × 10?8 g/mL for thiomersal, respectively. The relative standard deviation for 1.0 × 10?5 g/mL human IgG was 0.8% and for 2.0 × 10?7 g/mL thiomersal it was 2.0% (n = 10). The proposed method was applied to determine three synthetic samples with recoveries of 91.5–109.5%. In addition, the possible chemiluminescence mechanisms are discussed as well. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
A Waseem  M Yaqoob  A Nabi 《Luminescence》2004,19(6):333-338
A simple and rapid fl ow injection method is reported for the determination of iron in blood serum after acid digestion with HNO3 and HClO4, based on luminol CL detection in the absence of added oxidant. The detection limit (3 s) was 1.0 nmol/L with a sample throughput of 120/h. The calibration graph was linear over the range 0.001-1.0 micromol/L (r2 = 0.9974), with relative standard deviations (RSD) (n = 4) in the range 3.2-5%. The effect of interfering cations (Ca(II), Mg(II), Cu(II), Cd(II), Pb(II), Mn(II), Zn(II), Ni(II), Co(II) and Fe(III)) and anions (Cl-, SO4(2-), HCO3-, NO3-, NO2-) were studied using a luminol CL system for Fe(II) determination. The method was applied to normal blood serum and the results (1.32 +/- 0.08-1.74 +/- 0.05 mg/L) were compared with those from a spectrophotometric reference method (1.34 +/- 0.06-1.80 +/- 0.10 mg/L), which agree fairly well with the overall reference range in blood.  相似文献   

11.
Rapid, simple and highly sensitive flow‐injection (FI) chemiluminescence (CL) and flow‐injection electrogenerated chemiluminescence (ECL) methods were developed for the determination of escitalopram oxalate (ESC), a selective serotonin reuptake inhibitor used as an antidepressant drug. The CL method was based on the CL reaction of ESC with acidic cerium(IV) and tris(2,2'‐bipyridyl)ruthenium(II) (Ru). Various experimental parameters affecting CL intensity were carefully studied and optimised. The method enabled the determination of 0.001‐50 µg/mL of ESC in bulk form with a correlation coefficient r = 0.9999. The limit of detection (LOD) was 0.01 ng/mL (S/N = 3). The ECL method was based on the ECL reaction of Ru with the drug in an acidic medium, permitting the determination of ESC in the range of 0.00001‐70 µg/mL with r = 0.9999 and LOD of 1 x 10‐4 ng/mL. The proposed methods were applied to the determination of ESC in commercial tablets. The results were compared statistically with those obtained from a published method using t‐ and F‐tests. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
In this study, a sensitive and simple flow‐injection chemiluminescence (CL) method was developed for the quantitative analysis of haemoglobin. The method is based on the ability of haemoglobin to enhance the CL signal generated by a H2O2–K4Fe(CN)6–fluorescein alkaline system enhanced by CdTe quantum dots. Under the optimized conditions, haemoglobin can be detected in concentration range 7.35 × 10–9–2.5 × 10–6 mol/L, with a detection limit (3σ) of 1.8 × 10–9 mol/L and a relative standard deviation (RSD; for 5 × 10–7 mol/L haemoglobin) of 2.06% (n = 11). The present CL method was successfully applied for the determination of haemoglobin in three kinds of blood samples taken from an infant, an adult man, an adult woman and two reference samples. Compared with previous reports, the CL method described in this work is simple and rapid, with high sensitivity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The chemiluminescence (CL) behaviour of the luminol–potassium periodate system enhanced by CdTe quantum dots capped with thioglycolic acid (TGA–CdTe QDs) was studied using kinetic experiments, CL spectra, UV–vis absorption spectra and fluorescence spectra. The production of oxygen‐containing reactant intermediates (O2?? and OH?) in the present CL system was verified by CL. The possible CL mechanism was discussed in detail. Furthermore, theophylline (THP) was determined based on its enhancement of the CL intensity of the CdTe QDs–luminol–potassium periodate system coupled with a flow‐injection technique. Under these optimized conditions, the linear range was found to be from 1.0 × 10?8 to 1.0 × 10?5 g/mL with a detection limit of 2.8 × 10?9 g/mL (3σ). The recoveries for the determination of THP in tablets were from 98.2 to 99.6%.  相似文献   

14.
A novel flow‐injection chemiluminescence method for the determination of melamine in urine and plasma was developed. It was found that melamine can remarkably enhance chemiluminescence emission from the luminol–K3Fe(CN)6 system in an alkaline medium. Under the optimum conditions, chemiluminescence intensity had a good linear relationship with the concentration of melamine in the range 9.0 × 10–9–7.0 × 10–6 g/mL, with a correlation coefficient of 0.9992. The detection limit (3σ) was 3.5 ng/mL. The method has been applied to determine the concentration of melamine in samples using liquid–liquid extraction. Average recoveries of melamine were 102.6% in urine samples and 95.1% in plasma samples. The method provided a reproducible and stable approach for the sensitive detection of melamine in urine and plasma samples. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
A simple and sensitive flow‐injection chemiluminescence (CL) method has been developed for the determination of gentamicin sulfate. The method is based on the inhibitory effect of gentamicin on the CL emission accompanying oxidation of luminol by H2O2 in an alkaline medium in the presence of Cu(II) as a catalyst. Inhibition was caused by the formation of a strong complex between analyte and the catalyst. Experimental variables, including the concentrations of luminol (µmol/L), H2O2 (mol/L), Cu(II) (mol/L) and NaOH (mol/L), were optimized using a central composite design. Under optimum conditions, the plot of CL intensity versus gentamicin concentration was found to have two linear ranges. One range was at low concentrations from 1.0 to 10.0 mg/L and the other was from 10.0 to 30.0 mg/L. Precision was calculated by analyzing samples containing 5.0 mg/L gentamicin (n = 11) and the relative standard deviation (RSD) was 1.7%. Also, a high injection throughput of 120 samples/h was achieved. This method was successfully applied to the determination of gentamicin sulfate in pharmaceutical formulations and water samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A novel flow injection chemiluminescence method is proposed for determination of cholesterol in this paper. The cholesterol oxidase was immobilized onto sol–gel and prepared as an enzymatic reaction column. The determination of cholesterol was performed by quantitative determination of hydrogen peroxide produced from an enzymatic reaction. The luminol–H2O2–metal chelate diperiodatocuprate(III) system ensured that the method was highly sensitive and selective. Free cholesterol was determined over the range 5.0 × 10–8 mol/L–5.0 × 10–7 mol/L, with a limit of detection (3σ) of 1.9 × 10–8 mol/L. The relative standard deviation (RSD) for 2.5 × 10–7 mol/L was 2.7% (n = 7). The proposed method offered the advantages of sensitivity, selectivity, simplicity and rapidity for free cholesterol determination, and was successfully applied to the direct determination of free cholesterol in serum. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The main purpose of this study was to develop an inexpensive, simple, rapid and sensitive chemiluminescence (CL) method for the determination of glutamine (Gln) using a flow‐injection (FI) system. Gln was found to strongly inhibit the CL signal of the luminol–H2O2–CuSO4 system in Na2B4O7 solution. A new FI‐CL method was developed for the determination of Gln. Parameters affecting the reproducibility and CL detection were optimized systematically. Under the optimized conditions, the corresponding linear regression equation was established over the range of 5.0 × 10?7 to 2.5 × 10?6 mol/L with the detection limit of 1.8 × 10?8 mol/L. The relative standard deviation was found to be 1.8% for 11 replicate determinations of 1.5 × 10?6 mol/L Gln. The proposed method has been satisfactorily applied for the determination of Gln in real samples (Marzulene‐s granules) with recoveries in the range of 98.7–108.6%. The minimum sampling rate was about 100 samples/h. The possible mechanism of this inhibitory CL was studied by fluorescence spectrophotometer and UV–vis spectrophotometer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Guowei Wang  Fang Zhao  Ying Gao 《Luminescence》2014,29(8):1008-1013
A novel post‐chemiluminescence (PCL) reaction was discovered when lercanidipine was injected into the CL reaction mixture of N‐chlorosuccinimide with alkaline eosin Y in the presence of cetyltrimethylammonium bromide (CTAB), where eosin Y was used as the CL reagent and CTAB as the surfactant. Based on this observation, a simple and highly sensitive PCL method combined with a flow injection (FI) technique was developed for the assay of lercanidipine. Under optimum conditions, the CL signal was linearly related to the concentration of lercanidipine in the range 7.0 × 10‐10 to 3.0 × 10‐6 g/mL with a detection limit of 2.3 × 10‐10 g/mL (3σ). The relative standard deviation (RSD) was 2.1% for 1.0 × 10‐8 g/mL lercanidipine (n = 13). The proposed method had been applied to the estimation of lercanidipine in tablets and human serum samples with satisfactory results. The possible CL mechanism is also discussed briefly. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
We explored the behaviour of a series of phenolic acids used as enhancers or inhibitors of luminol chemiluminescence by three different methods to determine if behaviour was associated with phenolic acid structure and redox character. All the phenolic acids inhibited chemiluminescence when hexacyanoferrate(III) was reacted with the phenolic acids before adding luminol. The redox character of these compounds was clearly related to structure. When hexacyanoferrate(III)-luminol-O2 chemiluminescence was initiated by phenolic acid-luminol mixtures some phenolic acids behaved as enhancers of chemiluminescence, and others as inhibitors. We propose a mechanism to explain these findings. We found direct relationships between the redox character of the phenolic acids and the enhancement or inhibition of the chemiluminescence of the luminol–H2O2–peroxidase system and we propose mechanism to explain these phenomena.  相似文献   

20.
Na Li  Shubiao Ni 《Luminescence》2014,29(8):1130-1134
The use of noble metal nanoparticles (NPs) as reductants in chemiluminescence (CL) has been reported only rarely owing to their high oxidation potentials. Interestingly, nucleophiles could dramatically lower the oxidation potential of Ag NPs, such that in the presence of nucleophiles Ag NPS could be used as reductants to induce the CL emission of luminol, an important CL reagent widely used in forensic analysis for the detection of trace amounts of blood. Although nucleophiles are indispensible in Ag NP‐luminol CL, only inorganic nucleophiles such as Cl, Br, I and S2O32‐ have been shown to be efficient. The effects of organic nucleophiles on CL remain unexplored. In this study, 20 standard amino acids were evaluated as novel organic nucleophiles in Ag NP‐luminol CL. Histidine, lysine and arginine could initiate CL emission; the others could not. It is proposed that the different behaviors of 20 standard amino acids in the CL reactions derive from the interface chemistry between Ag NPs and these amino acids. UV/vis absorption spectra were studied to validate the interface chemistry. In addition, imidazole and histidine were chosen as a model pair to compare the behavior of the monodentate nucleophile with that of the corresponding multidentate nucleophile in Ag NP‐luminol CL. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号