首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major hallmark of mutant superoxide dismutase (SOD1)‐linked familial amyotrophic lateral sclerosis is SOD1‐immunopositive inclusions found within motor neurons. The mechanism by which SOD1 becomes aggregated, however, remains unclear. In this study, we aimed to investigate the role of nitrosative stress and S‐nitrosylation of protein disulfide isomerase (PDI) in the formation of SOD1 aggregates. Our data show that with disease progression inducible nitric oxide synthase (iNOS) was up‐regulated, which generated high levels of nitric oxide (NO) and subsequently induced S‐nitrosylation of PDI in the spinal cord of mutant SOD1 transgenic mice. This was further confirmed by in vitro observation that treating SH‐SY5Y cells with NO donor S‐nitrosocysteine triggered a dose‐dependent formation of S‐nitrosylated PDI. When mutant SOD1 was over‐expressed in SH‐SY5Y cells, the iNOS expression was up‐regulated, and NO generation was consequently increased. Furthermore, both S‐nitrosylation of PDI and the formation of mutant SOD1 aggregates were detected in the cells expressing mutant SOD1G93A. Blocking NO generation with the NOS inhibitor N‐nitro‐l ‐arginine attenuated the S‐nitrosylation of PDI and inhibited the formation of mutant SOD1 aggregates. We conclude that NO‐mediated S‐nitrosylation of PDI is a contributing factor to the accumulation of mutant SOD1 aggregates in amyotrophic lateral sclerosis.  相似文献   

2.
Abstract: Although cycasin (methylazoxymethanol β- d -glucoside) is proposed to be a significant etiological factor for the prototypical neurodegenerative disorder Western Pacific amyotrophic lateral sclerosis and parkinsonism-dementia complex, the mechanism underlying transport of cycasin across the blood-brain barrier (BBB) is unknown. We examined cycasin transport in cultured bovine brain endothelial cells, a major element of the BBB. Cycasin was taken up into endothelial cells in a dose-dependent manner with maximal uptake observed at a concentration of 10 µ M . Cycasin uptake was significantly inhibited by α-methyl- d -glucoside, a specific analogue for the Na+-dependent glucose transporter (SGLT), by the SGLT inhibitor phlorizin, by replacement of extracellular NaCl with LiCl, and by dinitrophenol (DNP), an inhibitor of energy metabolism. In addition, cycasin produced inward currents in a whole-cell voltage clamp configuration. Peak currents were observed at 10 µ M with a trend toward reduction at higher concentrations, and currents were clearly blocked by α-methyl- d -glucoside, phlorizin, and DNP. In addition, cycasin never evoked currents in Na+-free extracellular solution. These results suggest that cycasin is selectively transported across brain endothelial cells, possibly across the BBB by a Na+/energy-dependent glucose transporter.  相似文献   

3.
Performance status (PS) frequently improves occurs in cancer patients who have been infused with their own lymphokine‐activated killer T cells (LAK‐T). In the present study, a culture supernatant of LAK‐T (LAK‐T sup) administered to 8‐week‐old rats caused neurogenesis as evidenced by increased 5‐ethynyl‐2′‐deoxyuridine staining of brain tissues. Intravenous injection of granulocyte‐macrophage colony stimulating factor (GM‐CSF), a major cytokine in LAK‐T sup, had a similar effect. Furthermore, LAK‐T sup induced Ca++ increase in rat hippocampal brain slices that was detected in neuronal cells by emission of Fluo‐8 NW at 520 nm. The same effect was observed with an rGM‐CSF solution. GM‐CSF may activate neuronal cells by stimulating the glial cells that surround and attach to them. If so, GM‐CSF and LAK‐T sup may improve the motor neurons of patients with amyotrophic lateral sclerosis. The neurogenerative effect of GM‐CSF in LAK‐T sup may also help improve brain function in aged adults including those with dementia such as Alzheimer's disease.  相似文献   

4.
Frontotemporal dementia (FTD), the second most common form of dementia in people under 65 years of age, is characterized by progressive atrophy of the frontal and/or temporal lobes. FTD overlaps extensively with the motor neuron disease amyotrophic lateral sclerosis (ALS), especially at the genetic level. Both FTD and ALS can be caused by many mutations in the same set of genes; the most prevalent of these mutations is a GGGGCC repeat expansion in the first intron of C9ORF72. As shown by recent intensive studies, some key cellular pathways are dysregulated in the ALS‐FTD spectrum disorder, including autophagy, nucleocytoplasmic transport, DNA damage repair, pre‐mRNA splicing, stress granule dynamics, and others. These exciting advances reveal the complexity of the pathogenic mechanisms of FTD and ALS and suggest promising molecular targets for future therapeutic interventions in these devastating disorders.  相似文献   

5.
TAR DNA ‐binding protein 43 (TDP ‐43) is an RNA ‐binding protein and a major component of protein aggregates found in amyotrophic lateral sclerosis and several other neurodegenerative diseases. TDP ‐43 exists as a full‐length protein and as two shorter forms of 25 and 35 kD a. Full‐length mutant TDP ‐43s found in amyotrophic lateral sclerosis patients re‐localize from the nucleus to the cytoplasm and in part to mitochondria, where they exert a toxic role associated with neurodegeneration. However, induction of mitochondrial damage by TDP ‐43 fragments is yet to be clarified. In this work, we show that the mitochondrial 35 kD a truncated form of TDP ‐43 is restricted to the intermembrane space, while the full‐length forms also localize in the mitochondrial matrix in cultured neuronal NSC ‐34 cells. Interestingly, the full‐length forms clearly affect mitochondrial metabolism and morphology, possibly via their ability to inhibit the expression of Complex I subunits encoded by the mitochondrial‐transcribed mRNA s, while the 35 kD a form does not. In the light of the known differential contribution of the full‐length and short isoforms to generate toxic aggregates, we propose that the presence of full‐length TDP ‐43s in the matrix is a primary cause of mitochondrial damage. This in turn may cause oxidative stress inducing toxic oligomers formation, in which short TDP ‐43 forms play a major role.

  相似文献   

6.
Copper (Cu) is a vital redox dynamic metal that is possibly poisonous in superfluous. Metals can traditionally or intricately cause propagation in reactive oxygen species (ROS) accretion in cells and this may effect in programmed cell death. Accumulation of Cu causes necrosis that looks to be facilitated by DNA damage, followed by activation of P53. Cu dyshomeostasis has also been concerned in neurodegenerative disorders such as Alzheimer, Amyotrophic lateral sclerosis (ALS) or Menkes disease and is directly related to neurodegenerative syndrome that usually produces senile dementia. These mortal syndromes are closely related with an immense damage of neurons and synaptic failure in the brain. This review focuses on copper mediated neurological disorders with insights into amyotrophic lateral sclerosis, Alzheimer and Menkes disease.  相似文献   

7.
8.
9.
10.
Cyclodipeptides, formed from two amino acids by cyclodehydration, are produced naturally by many organisms, and are known to possess a large number of biological activities. In this study, we found that cyclo (l ‐Pro‐l ‐Pro) and cyclo (d ‐Pro‐d ‐Pro) (where Pro is proline) could induce defence responses and systemic resistance in Nicotiana benthamiana. Treatment with the two cyclodipeptides led to a reduction in disease severity by Phytophthora nicotianae and Tobacco mosaic virus (TMV) infections compared with controls. Both cyclopeptides triggered stomatal closure, induced reactive oxygen species production and stimulated cytosolic calcium ion and nitric oxide production in guard cells. In addition, the application of cyclodipeptides significantly up‐regulated the expression of the plant defence gene PR‐1a and the PR‐1a protein, and increased cellular salicylic acid (SA) levels. These results suggest that the SA‐dependent defence pathway is involved in cyclodipeptide‐mediated pathogen resistance in N. benthamiana. We report the systemic resistance induced by cyclodipeptides, which sheds light on the potential of cyclodipeptides for the control of plant diseases.  相似文献   

11.
beta-N-Methylamino-L-alanine (BMAA) is a neurotoxic plant amino acid that has been implicated in the pathogenesis of the high incidence amyotrophic lateral sclerosis and related parkinsonism dementia of the western Pacific. Previous studies have demonstrated that BMAA is taken up into brain following intravenous or oral administration. To examine the kinetics and mechanism of brain transfer, BMAA influx across the blood-brain barrier was measured in rats using an in situ brain perfusion technique. BMAA influx was found to be saturable with a maximal transfer rate (Vmax) of 1.6 +/- 0.3 x 10(-3) mumol/s/g and a half-saturation constant (Km) of 2.9 +/- 0.7 mM based on total perfusate BMAA concentration. Uptake was sodium independent and inhibitable by excess L-leucine, but not by L-lysine, L-glutamate, or methylaminoisobutyric acid, indicative of transfer by the cerebrovascular large neutral amino acid carrier. L-BMAA competitively reduced brain influx of L-[14C]leucine, as expected for cross-inhibition. The results demonstrate that BMAA is taken up into brain by the large neutral amino acid carrier of the blood-brain barrier and suggest that uptake may be sensitive to the same factors that affect neutral amino acid transport, such as diet, metabolism, disease, and age.  相似文献   

12.
Following the report of an increased mortality among patients with amyotrophic lateral sclerosis given high daily doses of branched-chain aminoacids, we assessed the plasma concentrations of large neutral aminoacids and glutamic acid and the large neutral aminoacid brain influx in 24 amyotrophic lateral sclerosis patients receiving placebo or branched-chain aminoacids ( -leucine 12 g, -isoleucine 6 g, -valine 6 g daily), in 15 untreated amyotrophic lateral sclerosis patients and in 15 healthy volunteers. The branched-chain aminoacid plasma concentrations increased three- to six-fold in the treated group compared to the patients receiving placebo or no treatment and to the healthy controls. Plasma glutamic acid concentrations in healthy volunteers were 51.59±7.53 nmol/ml while in the amyotrophic lateral sclerosis patients receiving no treatment, placebo or branched-chain aminoacids were 92.33±12.15 nmol/ml, 91.21±15.86 nmol/ml and 95.08±17.96 nmol/ml respectively. The glutamic acid concentration was significantly higher (P<0.01) in amyotrophic lateral sclerosis patients than in healthy individuals. Plasma phenylalanine and tyrosine were lower in the amyotrophic lateral sclerosis patients than in healthy controls, regardless of treatment, whereas tryptophan levels were not significantly different. The branched-chain aminoacid brain influx of the treated group was 110-140% of that measured in the patients receiving placebo and in the healthy controls. The aromatic aminoacid brain influx was lower in the treated group than in the placebo group or healthy controls. An impairment of brain large neutral aminoacid availability might possible contribute to enhancing the progression of symptoms in patients with amyotrophic lateral sclerosis.  相似文献   

13.
The mechanism by which mutations in TAR DNA‐binding protein 43 (TDP‐43) cause neurodegeneration remains incompletely understood. In this issue of The EMBO Journal, Fratta et al ( 2018 ) describe how a point mutation in the C‐terminal low complexity domain of TDP‐43 leads to the skipping of otherwise constitutively conserved exons. In vivo, this mutation triggers late‐onset progressive neuromuscular disturbances, as seen in amyotrophic lateral sclerosis (ALS), suggesting that TDP‐43 splicing gain‐of‐function contributes to ALS pathogenesis.  相似文献   

14.
A pair of l ‐leucine (l ‐Leu) and d ‐leucine (d ‐Leu) was incorporated into α‐aminoisobutyric acid (Aib) peptide segments. The dominant conformations of four hexapeptides, Boc‐l ‐Leu‐Aib‐Aib‐Aib‐Aib‐l ‐Leu‐OMe (1a), Boc‐d ‐Leu‐Aib‐Aib‐Aib‐Aib‐l ‐Leu‐OMe (1b), Boc‐Aib‐Aib‐l ‐Leu‐l ‐Leu‐Aib‐Aib‐OMe (2a), and Boc‐Aib‐Aib‐d ‐Leu‐l ‐Leu‐Aib‐Aib‐OMe (2b), were investigated by IR, 1H NMR, CD spectra, and X‐ray crystallographic analysis. All peptides 1a,b and 2a,b formed 310‐helical structures in solution. X‐ray crystallographic analysis revealed that right‐handed (P) 310‐helices were present in 1a and 1b and a mixture of right‐handed (P) and left‐handed (M) 310‐helices was present in 2b in their crystalline states. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
A new microbial cyclic dipeptide (diketopiperazine), cyclo(d ‐Tyr‐d ‐Phe) was isolated for the first time from the ethyl acetate extract of fermented modified nutrient broth of Bacillus sp. N strain associated with rhabditid Entomopathogenic nematode. Antibacterial activity of the compound was determined by minimum inhibitory concentration and agar disc diffusion method against medically important bacteria and the compound recorded significant antibacterial against test bacteria. Highest activity was recorded against Staphylococcus epidermis (1 µg/ml) followed by Proteus mirabilis (2 µg/ml). The activity of cyclo(d ‐Tyr‐d ‐Phe) against S. epidermis is better than chloramphenicol, the standard antibiotics. Cyclo(d ‐Tyr‐d ‐Phe) recorded significant antitumor activity against A549 cells (IC50 value: 10 μM) and this compound recorded no cytotoxicity against factor signaling normal fibroblast cells up to 100 μM. Cyclo(d ‐Tyr‐d ‐Phe) induced significant morphological changes and DNA fragmentation associated with apoptosis in A549 cells. Acridine orange/ethidium bromide stained cells indicated apoptosis induction by cyclo(d ‐Tyr‐d ‐Phe). Flow cytometry analysis showed that the cyclo(d ‐Tyr‐d ‐Phe) did not induce cell cycle arrest. Effector molecule of apoptosis such as caspase‐3 was found activated in treated cells, suggesting apoptosis as the main mode of cell death. Antioxidant activity was evaluated by free radical scavenging and reducing power activity, and the compound recorded significant antioxidant activity. The free radical scavenging activity of cyclo(d ‐Tyr‐d ‐Phe) is almost equal to that of butylated hydroxyanisole, the standard antioxidant agent. We also compared the biological activity of natural cyclo(d ‐Tyr‐d ‐Phe) with synthetic cyclo(d ‐Tyr‐d ‐Phe) and cyclo(l ‐Tyr‐l ‐Phe). Natural and synthetic cyclo(d ‐Tyr‐d ‐Phe) recorded similar pattern of activity. Although synthetic cyclo(l ‐Tyr‐l ‐Phe) recorded lower activity. But in the case of reducing power activity, synthetic cyclo(l ‐Tyr‐l ‐Phe) recorded significant activity than natural and synthetic cyclo(d ‐Tyr‐d ‐Phe). The results of the present study reveals that cyclo(d ‐Tyr‐d ‐Phe) is more bioactive than cyclo(l ‐Tyr‐l ‐Phe). To the best of our knowledge, this is the first time that cyclo(d ‐Tyr‐d ‐Phe) has been isolated from microbial natural source and also the antibacterial, anticancer, and antioxidant activity of cyclo(d ‐Tyr‐d ‐Phe) is also reported for the first time. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
C9ORF72 expression is reduced in a substantial number of patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), which may contribute to disease pathogenesis. However, its normal molecular function remains unknown. In this issue of The EMBO Journal, Sellier et al ( 2016 ) identified a novel protein complex consisting of C9ORF72, WDR41, and SMCR8 that acts as a GDP‐GTP exchange factor (GEF) for RAB8a and RAB39b and is regulated by TBK1, whose partial loss of function also causes ALS and FTD. They further reveal a potential modulatory role for this novel complex in macroautophagy (autophagy), especially in the context of ataxin‐2 toxicity.  相似文献   

17.
Following development, the avian brain continues to produce neurons throughout adulthood, which functionally integrate throughout the telencephalon, including the hippocampus. In food‐storing birds like the black‐capped chickadee (Poecile atricapillus), new neurons incorporated into the hippocampus are hypothesized to play a role in spatial learning. Previous results on the relation between hippocampal neurogenesis and spatial learning, however, are correlational. In this study, we experimentally suppressed hippocampal neuronal recruitment and tested for subsequent effects on spatial learning in adult chickadees. After chickadees exhibited significant learning, we treated birds with daily injections of either saline or methylazoxymethanol (MAM), a toxin that suppresses cell proliferation in the brain and monitored subsequent spatial learning. MAM treatment significantly reduced cell proliferation around the lateral ventricles and neuronal recruitment in the hippocampus, measured using the cell birth marker bromodeoxyuridine. MAM‐treated birds performed significantly worse than controls on the spatial learning task 12 days following the initiation of MAM treatment, a time when new neurons would begin functionally integrating into the hippocampus. This difference in learning, however, was limited to a single trial. MAM treatment did not affect any measure of body condition, suggesting learning impairments were not a product of non‐specific adverse effects of MAM. This is the first evidence of a potential causal link between hippocampal neurogenesis and spatial learning in birds. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 1002–1010, 2014  相似文献   

18.
In neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis and amyotrophic lateral sclerosis, neuroinflammation can lead to blood‐brain barrier (BBB) breakdown. After intravenous or intra‐arterial injection into mice, endothelial progenitor cells (EPCs) home to the damaged BBB to promote neurovascular repair. Autologous EPCs transfected to express specific therapeutic proteins offer an innovative therapeutic option. Here, we demonstrate that EPC transfection by electroporation with plasmids encoding the reporter protein GFP or an anti‐β‐amyloid antibody fragment (Fab) leads to secretion of each protein. We also demonstrate the secreted anti‐β‐amyloid Fab protein functions in β‐amyloid aggregate solubilization.  相似文献   

19.
Quercetin and other flavonoids have been reported to exhibit both antioxidant and pro‐oxidant properties. Most studies about the pro‐oxidative ability were conducted in the presence of metal ions, and the essential functional moiety of quercetin responsible for the pro‐oxidative effect is still unclear. In this study, we evaluated the pro‐oxidative abilities in the absence of metal ions of two quercetin derivatives, i.e., quercetin‐3′‐O‐β‐D ‐glucoside ( 1 ) and quercetin‐3‐Oβ‐D ‐glucoside ( 2 ), by assessing DNA cleavage and HO.‐radical production. The binding mode between these compounds and DNA was studied by fluorescence and viscometric titrations. The results showed that 1 can efficiently induce oxidative damage to plasmid DNA, while 2 shows poor activity. Both 1 and 2 bind to DNA via groove‐binding. These results proved that the α‐hydroxy‐β‐oxo‐α,β‐enone moiety contributes to the pro‐oxidative activity of quercetin.  相似文献   

20.
Neuronal and glial high‐affinity transporters regulate extracellular glutamate concentration, thereby terminating synaptic transmission and preventing neuronal excitotoxicity. Glutamate transporter activity has been shown to be modulated by protein kinase C (PKC) in cell culture. This is the first study to demonstrate such modulation in situ, by following the fate of the non‐metabolisable glutamate transporter substrate, d ‐aspartate. In the rat retina, pan‐isoform PKC inhibition with chelerythrine suppressed glutamate uptake by GLAST (glutamate/aspartate transporter), the dominant excitatory amino acid transporter localized to the glial Müller cells. This effect was mimicked by rottlerin but not by Gö6976, suggesting the involvement of the PKCδ isoform, but not PKCα, β or γ. Western blotting and immunohistochemical labeling revealed that the suppression of glutamate transport was not due to a change in transporter expression. Inhibition of PKCδ selectively suppressed GLAST but not neuronal glutamate transporter activity. These data suggest that the targeting of specific glutamate transporters with isoform‐specific modulators of PKC activity may have significant implications for the understanding of neurodegenerative conditions arising from compromised glutamate homeostasis, e.g. glaucoma and amyotrophic lateral sclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号