首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study focuses on the age adjustment of statures estimated with the anatomical method. The research material includes 127 individuals from the Terry Collection. The cadaveric stature (CSTA)–skeletal height (SKH) ratios indicate that stature loss with age commences before SKH reduction. Testing three equations to estimate CSTA at the age at death and CSTA corrected to maximum stature from SKH indicates that the age correction of stature should reflect the pattern of age‐related stature loss to minimize estimation error. An equation that includes a continuous and linear age correction through the entire adult age range [Eq. (1)] results in curvilinear stature estimation error. This curvilinear stature estimation error can be largely avoided by applying a second linear equation [Eq. (2)] to only individuals older than 40 years. Our third equation [Eq. (3)], based on younger individuals who have not lost stature, can be used to estimate maximum stature. This equation can also be applied to individuals of unknown or highly uncertain age, because it provides reasonably accurate estimates until about 60/70 years at least for males. Am J Phys Anthropol 152:96–106, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
3.
Age‐at‐death estimation of an individual skeleton is important to forensic and biological anthropologists for identification and demographic analysis, but it has been shown that the current aging methods are often unreliable because of skeletal variation and taphonomic factors. Multifactorial methods have been shown to produce better results when determining age‐at‐death than single indicator methods. However, multifactorial methods are difficult to apply to single or poorly preserved skeletons, and they rarely provide the investigator with information about the reliability of the estimate. The goal of this research is to examine the validity of the Sugeno fuzzy integral as a multifactorial method for modeling age‐at‐death of an individual skeleton. This approach is novel because it produces an informed decision of age‐at‐death utilizing multiple age indicators while also taking into consideration the accuracies of the methods and the condition of the bone being examined. Additionally, the Sugeno fuzzy integral does not require the use of a population and it qualitatively produces easily interpreted graphical results. Examples are presented applying three commonly used aging methods on a known‐age skeletal sample from the Terry Anatomical Collection. This method produces results that are more accurate and with smaller intervals than single indicator methods. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
5.
Fossils described as Vernanimalcula guizhouena, from the nearly 600 million‐year‐old Doushantuo Formation in South China, have been interpreted as the remains of bilaterian animals. As such they would represent the oldest putative record of bilaterian animals in Earth history, and they have been invoked in debate over this formative episode of early animal evolution. However, this interpretation is fallacious. We review the evidential basis of the biological interpretation of Vernanimalcula, concluding that the structures key to animal identity are effects of mineralization that do not represent biological tissues, and, furthermore, that it is not possible to derive its anatomical reconstruction on the basis of the available evidence. There is no evidential basis for interpreting Vernanimalcula as an animal, let alone a bilaterian. The conclusions of evolutionary studies that have relied upon the bilaterian interpretation of Vernanimalcula must be called into question.  相似文献   

6.
A key goal of aging research was to understand mechanisms underlying healthy aging and develop methods to promote the human healthspan. One approach is to identify gene regulations unique to healthy aging compared with aging in the general population (i.e., “common” aging). Here, we leveraged Genotype‐Tissue Expression (GTEx) project data to investigate “healthy” and “common” aging gene expression regulations at a tissue level in humans and their interconnection with diseases. Using GTEx donors' disease annotations, we defined a “healthy” aging cohort for each tissue. We then compared the age‐associated genes derived from this cohort with age‐associated genes from the “common” aging cohort which included all GTEx donors; we also compared the “healthy” and “common” aging gene expressions with various disease‐associated gene expressions to elucidate the relationships among “healthy,” “common” aging and disease. Our analyses showed that 1. GTEx “healthy” and “common” aging shared a large number of gene regulations; 2. Despite the substantial commonality, “healthy” and “common” aging genes also showed distinct function enrichment, and “common” aging genes had a higher enrichment for disease genes; 3. Disease‐associated gene regulations were overall different from aging gene regulations. However, for genes regulated by both, their regulation directions were largely consistent, implying some aging processes could increase the susceptibility to disease development; and 4. Possible protective mechanisms were associated with some “healthy” aging gene regulations. In summary, our work highlights several unique features of GTEx “healthy” aging program. This new knowledge could potentially be used to develop interventions to promote the human healthspan.  相似文献   

7.
The transdiagnostic expression of psychotic experiences in common mental disorder (anxiety/depression/substance use disorder) is associated with a poorer prognosis, and a small minority of people may indeed develop a clinical picture that meets criteria for schizophrenia. However, it appears neither useful nor valid to observe early states of multidimensional psychopathology in young people through the “schizo”‐prism, and apply misleadingly simple, unnecessary and inefficient binary concepts of “risk” and “transition”. A review of the “ultra‐high risk” (UHR) or “clinical high risk” (CHR) literature indicates that UHR/CHR samples are highly heterogeneous and represent individuals diagnosed with common mental disorder (anxiety/depression/substance use disorder) and a degree of psychotic experiences. Epidemiological research has shown that psychotic experiences are a (possibly non‐causal) marker of the severity of multidimensional psychopathology, driving poor outcome, yet notions of “risk” and “transition” in UHR/CHR research are restrictively defined on the basis of positive psychotic phenomena alone, ignoring how baseline differences in multidimensional psychopathology may differentially impact course and outcome. The concepts of “risk” and “transition” in UHR/CHR research are measured on the same dimensional scale, yet are used to produce artificial diagnostic shifts. In fact, “transition” in UHR/CHR research occurs mainly as a function of variable sample enrichment strategies rather than the UHR/CHR “criteria” themselves. Furthermore, transition rates in UHR/CHR research are inflated as they do not exclude false positives associated with the natural fluctuation of dimensional expression of psychosis. Biological associations with “transition” thus likely represent false positive findings, as was the initial claim of strong effects of omega‐3 polyunsatured fatty acids in UHR samples. A large body of UHR/CHR intervention research has focused on the questionable outcome of “transition”, which shows lack of correlation with functional outcome. It may be more productive to consider the full range of person‐specific psychopathology in all young individuals who seek help for mental health problems, instead of “policing” youngsters for the transdiagnostic dimension of psychosis. Instead of the relatively inefficient medical high‐risk approach, a public health perspective, focusing on improved access to a low‐stigma, high‐hope, small scale and youth‐specific environment with acceptable language and interventions may represent a more useful and efficient strategy.  相似文献   

8.
9.
10.
11.
In an observational study on semi-free Barbary macaques it was investigated whether the phylogenetic roots of human laughter and smile can be traced back to the genus Macaca. On the basis of morphological similarity a ‘relaxed open-mouth display’ as the phylogenetic precursor of the laughter, and a ‘silent bared-teeth display’ as the possible ancestor of the smile can be distinguished in the repertory of the Barbary macaque. Behavioural sequences from focal animal protocols were analyzed in order to establish message and meaning of both displays. Relaxed open-mouth display is regularly observed in the play interactions of juveniles. It is associated with partner-directed behaviour, it is frequently answered by a relaxed open-mouth display of the receiver, and accompanied by a special vocalization. Although up to 50% of the juvenile's play partners were higher ranking than themselves voluntary participation was the rule. Most characteristically, the behaviour patterns shown by both play partners are highly symmetrical and synchronized. Silent bared-teeth display is typically accompanied by evasive or submissive body movements, and occurs primarily in dyadic interactions, mainly by the lower ranking individual. It is not an unidirectional sign of a linear dominance hierarchy, though. Silent bared-teeth display is a frequent answer to aggressive behaviour shown by the receiver. After its performance, an increase of body contact between sender and receiver was observed. Behavioural sequences of senders and receivers are complementary, but lose their asymmetry after occurrence of the display. It is concluded that these results further support Van Hooff 's (1972) view that human laughter and smile have different phylogenetic roots: while silent bared-teeth display is a signal of submission and appeasement, relaxed open-mouth display is rightly called the ‘play face’, and is an expression of fun.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号