首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Escherichia coli K4 synthesizes a capsular polysaccharide (CPS) consisting of a fructose-branched chondroitin (GalNAc-GlcA(fructose)n), which is a biosynthetic precursor of chondroitin sulfate. Here, the role of kfoE in the modification of the chondroitin backbone was investigated using knock-out and recombinant complementation experiments. kfoE disruption and complementation had no significant effect on cell growth. CPS production was increased by 15 % in the knock-out strain, and decreased by 21 % in the knock-out strain complemented with recombinant kfoE. CPS extracted from the knock-out strain was chondroitin, whereas CPS extracted from the complemented strain was a fructose-branched chondroitin. The results demonstrated that the kfoE gene product altered the fructose group at the C3 position of the GlcA residue during production of K4CPS.  相似文献   

2.

Background  

The bacteria Escherichia coli K4 produces a capsular polysaccharide (K4 CPS) whose backbone is similar to the non sulphated chondroitin chain. The chondroitin sulphate is one of the major components of the extra-cellular matrix of the vertebrate connective tissues and a high value molecule, widely employed as active principle in the treatment of osteoarthritis. It is usually obtained by extraction from animal tissues, but the risk of virus contaminations, as well as the scarceness of raw material, makes this productive process unsafe and unable to satisfy the growing market demand. In previous studies a new biotechnological process to produce chondroitin from Escherichia coli K4 capsular polysaccharide was investigated and a 1.4 g·L-1 K4 CPS concentration was reached using fed-batch fermentation techniques. In this work, on the trail of these results, we exploited new fermentation strategies to further improve the capsular polysaccharide production.  相似文献   

3.
Recently, the possibility of producing fructosylated chondroitin from the capsular polysaccharide of Escherichia coli O5:K4:H4, in fed‐batch and microfiltration experiments was assessed on a 2 L bioreactor. In this work, a first scale‐up step was set on a 22 L membrane reactor with modified baffles to insert ad hoc designed microfiltration modules permanently inside the bioreactor vessel. Moreover, the downstream polysaccharide purification process, recently established on the A¨?KTA cross‐flow instrument, was translated to a UNIFLUX‐10, a tangential flow filtration system suitable for prepilot scale. In particular, the microfiltered permeates obtained throughout the fermentation, and the supernatant recovered from the centrifuged broth at the end of the process, were treated as two separate samples in the following ultrafiltration procedure, and the differences in the two streams and how these affected the ultrafiltration/diafiltration process performance were analysed. The total amount of K4 capsular polysaccharide was about 85% in the broth and 15% in the microfiltered permeates. However, the downstream treatment was more efficient when applied to the latter. The major contaminant, the lipopolysaccharide, could easily be separated by a mild hydrolysis that also results in the elimination of the unwanted fructosyl residue, which is linked to the C‐3 of glucuronic acid residues. The tangential ultrafiltration/diafiltration protocols developed in a previous work were effectively scaled‐up, and therefore in this research proof of principle was established for the biotechnological production of chondroitin from the wild‐type strain E. coli O5:K4:H4. The complete downstream procedure yielded about 80% chondroitin with 90% purity. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 28: 1012–1018, 2012  相似文献   

4.
为了进一步提高大肠杆菌K4发酵生产果糖软骨素(K4CPS)的产量,将合成基因簇region 3启动子(PR3)3'端非翻译区(UTR)进行缺失突变,研究其对突变菌株K4CPS合成的影响。研究表明:在ops序列(RfaH蛋白结合位点)存在时,PR3启动子强度和K4CPS产量与UTR的长度变化无关;但ops序列缺失时,UTR的延长可导致PR3启动子的强度和K4CPS产量均低于对照菌株;反之,UTR的缩短能显著提高PR3启动子的强度,进而使K4CPS产量比原菌增加了46%,达到751 mg/L。  相似文献   

5.
Chondroitin sulfates (CSs) are linear glycosaminoglycans that have important applications in the medical and food industries. Engineering bacteria for the microbial production of CS will facilitate a one‐step, scalable production with good control over sulfation levels and positions in contrast to extraction from animal sources. To achieve this goal, Escherichia coli (E. coli) is engineered in this study using traditional metabolic engineering approaches to accumulate 3′‐phosphoadenosine‐5′‐phosphosulfate (PAPS), the universal sulfate donor. PAPS is one of the least‐explored components required for the biosynthesis of CS. The resulting engineered E. coli strain shows an ≈1000‐fold increase in intracellular PAPS concentrations. This study also reports, for the first time, in vitro biotransformation of CS using PAPS, chondroitin, and chondroitin‐4‐sulfotransferase (C4ST), all synthesized from different engineered E. coli strains. A 10.4‐fold increase is observed in the amount of CS produced by biotransformation by employing PAPS from the engineered PAPS‐accumulating strain. The data from the biotransformation experiments also help evaluate the reaction components that need improved production to achieve a one‐step microbial synthesis of CS. This will provide a new platform to produce CS.  相似文献   

6.

Background  

Chondroitin sulphate is a complex polysaccharide having important structural and protective functions in animal tissues. Extracted from animals, this compound is used as a human anti-inflammatory drug. Among bacteria, Escherichia coli K4 produces a capsule containing a non-sulphate chondroitin and its development may provide an efficient and cheap fermentative production of the polysaccharide.  相似文献   

7.
The production of industrially relevant microbial polysaccharides has recently gained much interest. The capsular polysaccharide of Escherichia coli K4 is almost identical to chondroitin, a commercially valuable biopolymer that is so far obtained from animal tissues entailing complex and expensive extraction procedures. In the present study, the production of capsular polysaccharide by E. coli K4 was investigated taking into consideration a potential industrial application. Strain physiology was first characterized in shake flask experiments to determine the optimal culture conditions for the growth of the microorganism and correlate it to polysaccharide production. Results show that the concentration of carbon source greatly affects polysaccharide production, while the complex nitrogen source is mainly responsible for the build up of biomass. Small-scale batch processes were performed to further evaluate the effect of the initial carbon source concentration and of growth temperatures on polysaccharide production, finally leading to the establishment of the medium to use in following fermentation experiments on a bigger scale. The fed-batch strategy next developed on a 2-L reactor resulted in a maximum cell density of 56 gcww/L and a titre of capsular polysaccharide equal to 1.4 g/L, approximately ten- and fivefold higher than results obtained in shake flask and 2-L batch experiments, respectively. The release kinetics of K4 polysaccharide into the medium were also explored to gain insight into the mechanisms underlying a complex aspect of the strain physiology.  相似文献   

8.
This study is the first to report that Spirulina complex polysaccharides (CPS) suppress glioma growth by down‐regulating angiogenesis via a Toll‐like receptor 4 signal. Murine RSV‐M glioma cells were implanted s.c. into C3H/HeN mice and TLR4 mutant C3H/HeJ mice. Treatment with either Spirulina CPS or Escherichia coli (E. coli) lipopolysaccharides (LPS) strongly suppressed RSV‐M glioma cell growth in C3H/HeN, but not C3H/HeJ, mice. Glioma cells stimulated production of interleukin (IL)‐17 in both C3H/HeN and C3H/HeJ tumor‐bearing mice. Treatment with E. coli LPS induced much greater IL‐17 production in tumor‐bearing C3H/HeN mice than in tumor‐bearing C3H/HeJ mice. In C3H/HeN mice, treatment with Spirulina CPS suppressed growth of re‐transplanted glioma; however, treatment with E. coli LPS did not, suggesting that Spirulina CPS enhance the immune response. Administration of anti‐cluster of differentiation (CD)8, anti‐CD4, anti‐CD8 antibodies, and anti‐asialo GM1 antibodies enhanced tumor growth, suggesting that T cells and natural killer cells or macrophages are involved in suppression of tumor growth by Spirulina CPS. Although anti‐interferon‐γ antibodies had no effect on glioma cell growth, anti‐IL‐17 antibodies administered four days after tumor transplantation suppressed growth similarly to treatment with Spirulina CPS. Less angiogenesis was observed in gliomas from Spirulina CPS‐treated mice than in those from saline‐ or E. coli LPS‐treated mice. These findings suggest that, in C3H/HeN mice, Spirulina CPS antagonize glioma cell growth by down‐regulating angiogenesis, and that this down‐regulation is mediated in part by regulating IL‐17 production.  相似文献   

9.
Summary The production of the K4 polysaccharide was obtained for the first time extracellularly from a strain of Escherichia coli. The set up of the fermentation conditions led to the maximum fermentation yield, as extracellular K4, after 20 h. Purification and characterization of this K4 resulted in 200 mg/L of highly purified K4.  相似文献   

10.
Escherichia coli K1 causes disease in humans and birds. Its polysialic acid capsule can be O‐acetylated via phase‐variable expression of the acetyltransferase NeuO encoded by prophage CUS‐3. The role of capsule O‐acetylation in ecological adaptation or pathogenic invasion of E. coli K1 is largely unclear. A population genetics approach was performed to study the distribution of neuO among E. coli K1 isolates from human and avian sources. Multilocus sequence typing revealed 39 different sequence types (STs) among 183 E. coli K1 strains. The proportion of the ST95 complex (STC95) was 44%. NeuO was found in 98% of the STC95 strains, but only in 24% of other STs. Grouping of STs and prophage genotypes revealed a segregation of prophage types according to STs, suggesting coevolution of CUS‐3 and the E. coli K1 host. Within the STC95, which is known to harbour both human and avian pathogenic isolates, CUS‐3 genotypes were shared irrespective of the host species. Functional analysis of a variety of strain pairs revealed that NeuO‐mediated K1 capsule O‐acetylation enhanced desiccation resistance. In contrast, NeuO expression led to a reduced biofilm formation in biofilm positive E. coli K1 isolates. These findings suggest a delicate ecological balance of neuO‘on’/‘off’ switching.  相似文献   

11.
Objective: Recent studies suggested macrophages were integrated in adipose tissues, interacting with adipocytes, thereby exacerbating inflammatory responses. Persistent low‐grade infection by gram‐negative bacteria appears to promote atherogenesis. We hypothesized a ligand for toll‐like receptor 4 (TLR4), bacterial lipopolysaccharide (LPS), would further exaggerate macrophage‐adipocyte interaction. Research Methods and Procedures: RAW264.7 macrophage cell line and differentiated 3T3‐L1 preadipocytes were co‐cultured using transwell system. As a control, each cell was cultured independently. After incubation of the cells with or without Escherichia coli LPS, tumor necrosis factor (TNF)‐α and interleukin (IL)‐6 production was evaluated. Results: Co‐culture of macrophages and adipocytes with low concentration of Escherichia coli LPS (1 ng/mL) markedly up‐regulated IL‐6 production (nearly 100‐fold higher than that of adipocyte culture alone, p < 0.01), whereas TNF‐α production was not significantly influenced. This increase was partially inhibited by anti‐TNF‐α neutralizing antibody. Recombinant TNF‐α and LPS synergistically up‐regulated IL‐6 production in adipocytes. However, this increase did not reach the level of production observed in co‐cultures stimulated with LPS. Discussion: A ligand for TLR‐4 stimulates macrophages to produce TNF‐α. TNF‐α, thus produced, cooperatively up‐regulates IL‐6 production with other soluble factors secreted either from adipocytes or macrophages in these cells. Markedly up‐regulated IL‐6 would greatly influence the pathophysiology of diabetes and its vascular complications.  相似文献   

12.
Ketogulonicigenium vulgare WSH‐001 is an industrial strain used for vitamin C production. Based on genome sequencing and pathway analysis of the bacterium, some of its potential pyrroloquinoline quinone (PQQ)‐dependent dehydrogenases were predicted, including KVU_pmdA_0245, KVU_2142, KVU_2159, KVU_1366, KVU_0203, KVU_0095, and KVU_pmdB_0115. BLAST and function domain searches showed that enzymes encoded by these genes may act as putative PQQ‐dependent L ‐sorbose dehydrogenases (SDH) or L ‐sorbosone dehydrogenases (SNDH). To validate whether these dehydrogenases are PQQ‐dependent or not, these seven putative dehyrogenases were overexpressed in Escherichia coli BL21 (DE3) and purified for characterization. Biochemical and kinetic characterization of the purified proteins have led to the identification of seven enzymes that possess the ability to oxidize L ‐sorbose or L ‐sorbosone to varying degrees. In addition, the dehydrogenation of sorbose in K. vulgare is validated to be PQQ dependent, identification of these PQQ‐dependent dehydrogenases expanded the PQQ‐dependent dehydrogenase family. Besides, the optimal combination of enzymes that could more efficiently catalyze the conversion of sorbose to gulonic acid was proposed. These are important in supporting the development of metabolic engineering strategies and engineering of efficient strains for one‐step production of vitamin C in the future. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1398–1404, 2013  相似文献   

13.
The influence of growth rate and medium composition on exopolymer production byRhizobium leguminosarum was studied. When grown in medium containing 10g/l mannitol and 1g/l glutamic acid,Rhizobium leguminosarum biovartrifolii TA-1 synthesized up to 2.0g/l of extracellular polysaccharide (EPS), and up to 1.6g/l of capsular polysaccharide (CPS). Under non-growing cell conditions in medium without glutamic acid, CPS synthesis by strain TA-1 could proceed to 2.1g/l, while EPS-production remained relatively low (0.8g/l). Maximal CPS-yield was 2.9g CPS/l medium in a medium containing 20g/l mannitol and 2g/l glutamic acid. TheEPS-deficient strain R. leguminosarum RBL5515,exo4::Tn5 was able to produce CPS to similar levels as strain TA-1, but CPS-recovery was easier because of the low viscosity of the medium and growth of the cells in pellets. With strain TA-1 in nitrogen-limited continuous cultures with a constant biomass of 500mg cell protein/l, EPS was the most abundant polysaccharide present at every dilution rate D (between 0.12 and 0.02 h–1). The production rates were 50–100mg/g protein/h for EPS and 15–20mg/g protein/h for CPS. Only low amounts of cyclic -(1,2)-glucans were excreted (10–30 mg/l) over the entire range of growth rates.Abbreviations bv biovar - CPS capsular polysaccharide - EPS extracellular polysaccharide - HMr high molecular mass - LMr low molecular mass - YEMCR Yeast Extract-Mannitol-Congo Red agar  相似文献   

14.
Abstract The silkworm, Bombyx mori, is an economically important insect with a 5 000‐year history of domestication. During evolution, the silkworm has developed highly effective defenses against invasion and parasitization by microorganisms. In this study, two microorganisms Escherichia coli and Bacillus bombyseptieus were orally infected to silkworm larvae. After infection with E. coli and B. bombyseptieus for 24 h, we investigated the polypeptide changes in the hemolymph, midgut and integument using two‐dimensional gel electrophoresis and matrix‐assisted laser desorption ionization time of flight mass spectrometry. Forty‐seven differentially expressed proteins were identified in these tissues. They belonged to a variety of functional classes, including immune proteins, metabolic proteins and structural proteins. Compared with controls, E. coli‐infected silkworms showed 21 up‐regulated proteins, 25 down‐regulated proteins and lost one protein. After infection with B. bombyseptieus, silkworms showed 15 up‐regulated proteins, 27 down‐regulated proteins, lost three proteins and retained two proteins unchanged. We speculate that all these proteins may play a role in the silkworm immune response, although it is unclear why and how the two kinds of bacteria can so markedly alter expression of these proteins. These results offer valuable insights for measuring the proteomic responses of the silkworm innate immune mechanism.  相似文献   

15.
16.
Significant achievements in polyketide gene expression have made Escherichia coli one of the most promising hosts for the heterologous production of pharmacologically important polyketides. However, attempts to produce glycosylated polyketides, by the expression of heterologous sugar pathways, have been hampered until now by the low levels of glycosylated compounds produced by the recombinant hosts. By carrying out metabolic engineering of three endogenous pathways that lead to the synthesis of TDP sugars in E. coli, we have greatly improved the intracellular levels of the common deoxysugar intermediate TDP‐4‐keto‐6‐deoxyglucose resulting in increased production of the heterologous sugars TDP‐L‐mycarose and TDP‐d ‐desosamine, both components of medically important polyketides. Bioconversion experiments carried out by feeding 6‐deoxyerythronolide B (6‐dEB) or 3‐α‐mycarosylerythronolide B (MEB) demonstrated that the genetically modified E. coli B strain was able to produce 60‐ and 25‐fold more erythromycin D (EryD) than the original strain K207‐3, respectively. Moreover, the additional knockout of the multidrug efflux pump AcrAB further improved the ability of the engineered strain to produce these glycosylated compounds. These results open the possibility of using E. coli as a generic host for the industrial scale production of glycosylated polyketides, and to combine the polyketide and deoxysugar combinatorial approaches with suitable glycosyltransferases to yield massive libraries of novel compounds with variations in both the aglycone and the tailoring sugars.  相似文献   

17.
A less frequently employed Escherichia coli strain W, yet possessing useful metabolic characteristics such as less acetic acid production and high L ‐valine tolerance, was metabolically engineered for the production of L ‐valine. The ilvA gene was deleted to make more pyruvate, a key precursor for L ‐valine, available for enhanced L ‐valine biosynthesis. The lacI gene was deleted to allow constitutive expression of genes under the tac or trc promoter. The ilvBNmut genes encoding feedback‐resistant acetohydroxy acid synthase (AHAS) I and the L ‐valine biosynthetic ilvCED genes encoding acetohydroxy acid isomeroreductase, dihydroxy acid dehydratase, and branched chain amino acid aminotransferase, respectively, were amplified by plasmid‐based overexpression. The global regulator Lrp and L ‐valine exporter YgaZH were also amplified by plasmid‐based overexpression. The engineered E. coli W (ΔlacI ΔilvA) strain overexpressing the ilvBNmut, ilvCED, ygaZH, and lrp genes was able to produce an impressively high concentration of 60.7 g/L L ‐valine by fed‐batch culture in 29.5 h, resulting in a high volumetric productivity of 2.06 g/L/h. The most notable finding is that there was no other byproduct produced during L ‐valine production. The results obtained in this study suggest that E. coli W can be a good alternative to Corynebacterium glutamicum and E. coli K‐12, which have so far been the most efficient L ‐valine producer. Furthermore, it is expected that various bioproducts including other amino acids might be more efficiently produced by this revisited platform strain of E. coli. Bioeng. 2011; 108:1140–1147. © 2010 Wiley Periodicals, Inc.  相似文献   

18.
3‐amino‐benzoic acid (3AB) is an important building block molecule for production of a wide range of important compounds such as natural products with various biological activities. In the present study, we established a microbial biosynthetic system for de novo 3AB production from the simple substrate glucose. First, the active 3AB biosynthetic pathway was reconstituted in the bacterium Escherichia coli, which resulted in the production of 1.5 mg/L 3AB. In an effort to improve the production, an E. coliE. coli co‐culture system was engineered to modularize the biosynthetic pathway between an upstream strain and an downstream strain. Specifically, the upstream biosynthetic module was contained in a fixed E. coli strain, whereas a series of E. coli strains were engineered to accommodate the downstream biosynthetic module and screened for optimal production performance. The best co‐culture system was found to improve 3AB production by 15 fold, compared to the mono‐culture approach. Further engineering of the co‐culture system resulted in biosynthesis of 48 mg/L 3AB. Our results demonstrate co‐culture engineering can be a powerful new approach in the broad field of metabolic engineering.  相似文献   

19.
Thomas U. Schwartz 《Proteins》2013,81(11):1857-1861
His‐tag affinity purification is one of the most commonly used methods to purify recombinant proteins expressed in E. coli. One drawback of using the His‐tag is the co‐purification of contaminating histidine‐rich E. coli proteins. We engineered a new E. coli expression strain, LOBSTR (lo w b ackground str ain), which eliminates the most abundant contaminants. LOBSTR is derived from the E. coli BL21(DE3) strain and carries genomically modified copies of arnA and slyD, whose protein products exhibit reduced affinities to Ni and Co resins, resulting in a much higher purity of the target protein. The use of LOBSTR enables the pursuit of challenging low‐expressing protein targets by reducing background contamination with no additional purification steps, materials, or costs, and thus pushes the limits of standard His‐tag purifications. Proteins 2013; 81:1857–1861. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Transposons are developing molecular tools commonly used for several applications: one of these is the delivery of genes into microorganisms. These mobile genetic elements are characterised by two repeated insertion sequences that flank a sequence encoding one or more orfs for a specific transposase that moves these sequences to other DNA sites. In the present paper, the IS2 transposon of Escherichia coli K4 was modified in vitro by replacing the sequence coding for the transposase with that of the kfoC gene that codes for chondroitin polymerase. KfoC is responsible for the polymerisation of the bacterial capsular polysaccharide whose structure is analogous to that of chondroitin sulphate, a glycosaminoglycan with established and emerging biomedical applications. The recombinant construct was stably integrated into the genome of E. coli K4 by exploiting the transposase from endogenous copies of IS2 in the E. coli chromosome. A significant improvement of the polysaccharide production was observed, resulting in 80 % higher titres in 2.5-L fed-batch cultivations and up to 3.5 g/L in 22-L fed-batch cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号