首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity of Aspergillus oryzae S1 nuclease in solutions which destabilize DNA secondary structure was investigated. S1 nuclease is able to degrade single-stranded DNA in the presence of various concentrations of formaldehyde, formamide, and glyoxal. It is further shown that S1 nuclease can be used: (1) in the presence of formaldehyde to generate cleavage products from partially denatured duplex DNA; (2) to obtain thermal-melting profiles in the presence of formamide.  相似文献   

2.
The conformational equilibrium constant, Kconf, of staphylococcal nuclease, describing the equilibrium between the native conformation and non-native or disordered conformations, has been estimated using an immunologic method and an interpretive model. Using goat antisera prepared toward a conformationally disordered nuclease fragment (99–149), antibodies specific for the disordered form of the helix-rich sequence 99 to 126, anti-(99–126)R, were isolated by sequential immunoabsorption. Anti-(99–126)R forms soluble 7 S complexes with fragment (99–149), but this interaction may be inhibited by a large excess of nuclease. By using fragment (99–149) preferentially carbamylated at the α-amino terminus with KN14CO and rabbit anti-goat immunoglobulin to distinguish between antibody-bound and free fragment (99–149), an assay for the quantitation of the degree of inhibition of anti-(99–126)R. (99–149) complex formation by nuclease was developed.Using a formal analysis based on the hypothesis that nuclease is in a conformational equilibrium between a folded and unfolded form and that anti-(99–126)R binds effectively only to the unfolded form, the Kconf of nuclease was estimated to be 2900. In the presence of the ligands Ca(II), or Ca(II) and thymidine-3′,5′-diphosphate, Kconf values of 6500 and 30,000 to 50,000 were estimated, respectively. The Kconf of nuclease at 4 °C and 39 °C was 3900 and 400, respectively.  相似文献   

3.
A bioreactor with a column of flocculated cells of the moderate halophile Micrococcus varians subsp. halophilus which adsorbed the halophilic nuclease H was designed to be used in the production of 5′ nucleotides from RNA. A remarkable characteristic of the flocculated cells was that they preferentially adsorbed much exogenous nuclease, excluding adsorbed 5′ nucleotidase. Furthermore, desalting treatment of the flocculated cells in the presence of 2% MgSO4 · 7H2O gave rise to selective inactivation of 5′ nucleotidase without the loss of nuclease H activity, and 5′-guanylic acid was produced with the bioreactor.  相似文献   

4.
Human erythrocytes were treated with the diazonium salt of oligodeoxythymidylic acid 5′-p-aminophenylphosphate, a reagent that does not penetrate the plasma membrane. Ghosts were isolated, and the oligomers, covalently linked at their 5′ ends to the outer surface of the membrane, were extended by treatment with terminal deoxynucleotidyl transferase in the presence of deoxythymidine triphosphate. The membranes were dissolved in sodium dodecyl sulfate, and complexes containing cell surface components were isolated by hybridization to polyriboadenylic acid-agarose. The cell surface components were regenerated by treatment with nuclease P1 in the presence of Triton X100. Sodium dodecyl sulfate/polyacrylamide gels of the regenerated material showed bands III, PAS-1, PAS-2, and PAS-3, i.e. the major proteins known to be accessible at the outer surface of the human erythrocyte. The method should be useful for the isolation of surface components in other cell types.  相似文献   

5.
S1 nuclease hydrolysis and hydroxyapatite chromatography were used to study the effect of the alkylating antibiotic, streptozotocin, on the secondary structure of DNA. Native calf thymus DNA was alkylatedin vitro with increasing concentrations of streptozotocin and subjected to S 1 nuclease hydrolysis. An increasing degree of DNA degradation was seen, suggesting a destabilization of the secondary structure. Indirect evidence, deduced from alkaline hydrolysis, effect of NaCl on S1 nuclease hydrolysis, and hydroxyapatite chromatographic analysis of alkylated DNA, suggested a significant alkylation of DNA phosphates in addition to DNA bases. Nictotinamide has been reported to alter the cytotoxic and carcinogenic effects of streptozotocin. Our experiments indicate that in the presence of nicotinamide, streptozotocin causes the formation of a greater proportion of alkylated bases in relation to alkyl phosphotriesters. This may have significance in relation to the differential cytotoxicity of streptozotocin in the absence and presence of nicotinamide.  相似文献   

6.
The most rapidly renaturing sequences in the main-band DNA of Mus musculus, isolated on hydroxyapatite, are found to consist of two discrete families: a presumed “foldback” DNA fraction and a fraction renaturing bimolecularly. The latter family, which we call “main-band hydroxyapatite-isolated rapidly renaturing DNA”, has a kinetic complexity about an order of magnitude greater than that of mouse satellite DNA. It shows about twice as much mismatching as renatured mouse satellite, as judged by its thermal denaturation curve. In situ hybridization localizes the sequences to all chromosomes in the mouse karyotype, and to at least several regions of each chromosome. The in situ result and solution hybridization studies eliminate the possibility that the main-band rapidly renaturing DNA is composed of mouse satellite sequences attached to sequences of higher buoyant density. Nuelease S1 digestion experiments disclose that even at low molecular weight there are unrenatured “tails” attached to the rapidly renaturing sequences. When the main-band DNA fragment size is increased the amount of rapidly renaturing sequences remains constant, but the amount of attached tails of unrenatured DNA increases as judged by S1 nuclease digestibility, hyperchromicity and buoyant density. It is concluded that at least 5% of the mouse genome is composed of segments of the rapidly renaturing sequences averaging about 1500 base pairs, alternating with segments of more complex DNA averaging about 2200 base pairs. This interspersion of sequences is compared to that found in several other organisms. The properties of the foldback DNA are similarly investigated as a function of DNA fragment size.  相似文献   

7.
Changes in the number of mutant copies of mitochondrial DNA (mtDNA) were studied in the brain and spleen tissues of mice after their X-irradiation at a dose of 5 Gy. For this purpose, heteroduplexes obtained via hybridization of the products of PCR amplification of mtDNA (ND3 gene and two D-loop regions) from irradiated and control mice were digested with the CelI nuclease capable of specific mismatch cleavage. Heteroduplexes obtained via hybridization of the products of PCR amplification of mtDNA from irrradiated and control mice were digested by the CelI nuclease to a greater degree than heteroduplexes of the PCR products of mtDNA of mice from the control group. This suggests the presence of mutations in mtDNA regions in irradiated mice. Digestion by the CelI nuclease of heteroduplexes obtained via hybridization of the PCR products of mtDNA (ND3 gene and D-loop regions) on day 8 after irradiation is essentially more efficient than digestion of heteroduplexes obtained via hybridization of the PCR products of mtDNA isolated from mouse tissues on days 14 and 28 of the postradiation period. These results indicate a reduction in the number of mtDNA copies with mutations in tissues of irradiated mice by day 28 of the postradiation period. The reduction in the level of mutant mtDNA copies by this term is especially significant in the spleen. The total number of mtDNA copies in the mouse brain and spleen tissues estimated by real-time PCR, relative to the nuclear β-actin gene, is also decreased by 30–50% as compared to the control on days 8 to 28 after irradiation. The results of the study suggest that mutant mtDNA copies are eliminated from tissues of irradiated animals in the postradiation period. This elimination can be regarded either as a result of selective degradation of mitochondria carrying mutant DNA copies or as a result of cell death being continued in tissues of irradiated animals.  相似文献   

8.
The tetrapeptide sequence Ala-Asp-Gly-Lys occurs as a type I′ β-bend at residues 94–97 in staphylococcal nuclease. We have synthesized theN-acetyl,N′-methylamide derivative of this tetrapeptide and studied its conformation in solution, using nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopy. In the synthesis, special attention was paid to the possibility of cyclic aspartimide formation giving rise to mixtures of α- and β-Asp-Gly products. The presence of such a mixture was excluded by infrared, NMR, and other analytical procedures applied to the products and to models for α- and β-linked aspartyl residues. The CD spectra of the protected tetrapeptide in water, methanol, and trifluoroethanol show no evidence of preferred chain conformations. In dimethylsulfoxide-d 6 , however, the NMR spectra are consistent with the presence of a population of conformers in which the Lys and C-terminal NHCH3 amide protons are shielded from solvent. Taken together with the observed3JNH-C α H coupling constants for all residues, this permitted the construction and energetic evaluation of possible conformations in solution. Only one such conformation was fully compatible with the NMR data; this is a type II β-bend in which the Lys and C-terminal NHCH3 amide protons are close to the Ala C=O group and may form bifurcated hydrogen bonds with it. This conformation can be converted into the conformation existing in staphylococcal nuclease by rotating the plane of the Ala-Asp peptide group by about 120° around a line connecting the Ala and Asp Cα atoms and by making small shifts in dihedral angles elsewhere in the peptide.  相似文献   

9.
The presence of conserved and variable regions in the 16S ribosomal RNA (rRNA) allows construction of oligonucleotide probes complementary to defined regions of this molecule. In this paper we apply such probes to identify members of Enterobacteriaceae, specifically closely related species of Proteus. Genus- and species-specific detection of Proteus sp. was done by dot-blotting, subspecies identification by Southern hybridization. Synthetic oligodeoxynucleotides, 24 to 29 bases in length, detected less than 103 bacteria in DNA/RNA dot-blots. Due to the favorable reaction kinetics, hybridization and washing times could be reduced to 15–20 min and 2–3 min, respectively. Sample preparation was critical, especially in the case of sputum specimens which were solubilized prior to RNA extraction. To prevent degradation of rRNA by the endogenous nuclease activity, the material was applied immediately to the filters. Otherwise, up to 1000-fold reduction in the hybridization signal was observed.  相似文献   

10.
When superhelical DNA (RFI)2 of phages φX174 or G4 takes up a homologous single-stranded fragment, RF DNA and fragment are linked by as many as 300 base-pairs, and a corresponding length of one strand of the RFI is displaced, forming a displacement loop (D-loop). The length of the base-paired region was estimated from the fraction of the associated 32P-labeled fragment that was resistant to digestion by exonuclease VII, as well as by electron microscopy. Dissociation of the fragment by heating was characterized by a sharp melting curve. The displaced strand of the RF DNA was digested by two endonucleases that act on single-stranded DNA, the S1 nuclease of Aspergillus oryzae and the recBC DNAase of Escherichia coli. Acting on complexes, both enzymes converted the form I [3H]DNA into form II DNA, and left some of the associated 32P-labeled fragment undigested. The remaining 32P-labeled fragment could no longer be displaced by branch migration, as expected if the displaced strand of the RF DNA were digested. The action of S1 nuclease also produced the amount of acid-soluble 3H expected from digestion of the D-loop. Treatment of such digested complexes with polynucleotide ligase covalently linked about 35% of the remaining 32P-labeled fragment to 3H-labeled strands, which proves that S1 nuclease digested the D-loop.  相似文献   

11.
  • 1.1. Mammalian major apurinic/apyrimidinic (AP) endonuclease, APEX nuclease (Mr 35.4 kDa) was purified from HeLa cells. A hybrid protein (Mr 36.4 kDa), which was expressed in BW2001 strain cells of E. coli, comprising human APEX nuclease headed by 10 additional amino acids was also purified.
  • 2.2. The purified preparations were frequently associated with 31-, 33- and 35-kDa peptides having AP endonuclease activity.
  • 3.3. The 33- and 35-kDa peptides were suggested to be formed from the hybrid protein or APEX nuclease during their purification processes by proteolytic cleavage with subtilisin-like protease. The 31-kDa peptide was thought to be produced by chemical cleavage of the aspartyl-prolyl bond of APEX nuclease.
  • 4.4. The results support the notion that some of AP endonuclease heterogeneity based on the molecular weight difference are caused by proteolytic (and chemical) cleavage of a species of AP endonucleases during the extraction and purification.
  相似文献   

12.
U1 snRNP2 isolated from HeLa cells and purified by centrifugation in cesium chloride contains a set of proteins that may be resolved into four/five polypeptides by gel electrophoresis. When this particle was submitted to extensive digestion with micrococcal nuclease, RNA fragments of about 25 nucleotides in length were obtained. Sequence analyses showed that these highly protected fragments were derived from the same region of the U1 molecule, spanning positions 119 to 143. At low concentrations of nuclease, a longer fragment, from nucleotide 119 to the 3′ OH end, was also detected. U1 core-resistant snRNP, isolated by high performance liquid chromatography, still contains all the protein components of the intact particle.When a less drastically purified U1 snRNP containing, beside the four/five polypeptides remaining after centrifugation in cesium chloride, a set of at least three polypeptides of larger size, was digested with the nuclease, no other protected RNA fragment was detected.When a mixture of U1, U2, U4, U5 and U6 snRNPs, which contains the same four/five polypeptides as U1 snRNP, was treated with micrococcal nuclease, protected fragments of snRNAs U2, U4 and U5 were found in addition to those derived from U1. No fragment derived from U6 was found.In all cases, the region of snRNA shielded from nuclease attack corresponds to a distinctive feature of the molecule. It is a single-stranded region, comprising the sequence A(U)nG with n ≥ 3, bordered by two double-stranded stems. One of these stems includes the 3′ terminus of the RNA, except in the case of U2, where there are two stems instead of one on the 3′ side of the single-stranded stretch. Although a comparable structural domain exists also in U6 snRNA, it does not contain the sequence A(U)nG which correlates well with the fact that no U6 snRNA fragment seems to resist micrococcal nuclease digestion.  相似文献   

13.
14.
The incorporation of tritiated thymidine in Amoeba proteus was reinvestigated in order to see if it could be associated with microscopically detectable structures. Staining experiments with basic dyes, including the fluorochrome acridine orange, revealed the presence of large numbers of 0.3 to 0.5 µ particles in the cytoplasm of all cells studied. The effect of nuclease digestion on the dye affinity of the particles suggests that they contain DNA as well as RNA. Centrifugation of living cells at 10,000 g leads to the sedimentation of the particles in the centrifugal third of the ameba near the nucleus. Analysis of centrifuged cells which had been incubated with H3-thymidine showed a very high degree of correlation between the location of the nucleic acid-containing granules and that of acid-insoluble, deoxyribonuclease-sensitive labeled molecules and leads to the conclusion that cytoplasmic DNA synthesis in Amoeba proteus occurs in association with these particles.  相似文献   

15.
In response to the first Dutch elm disease (DED) pandemic, Siberian elm, Ulmus pumila, was planted to replace the native elm, U. minor, in Italy. The potential for hybridization between these two species is high and repeated hybridization could result in the genetic swamping of the native species and facilitate the evolution of invasiveness in the introduced species. We used genetic markers to examine the extent of hybridization between these two species and to determine the pattern of introgression. We quantified and compared the level of genetic diversity between the hybrids and the two parental species. Hybrids between U. pumila and U. minor were common. The pattern of introgression was not as strongly biased towards U. pumila as was previously observed for hybrids between U. rubra and U. pumila in the United States. The levels of heterozygosity were similar between U. minor and the hybrids and both groups had higher levels of heterozygosity relative to U. pumila. The programs Structure and NewHybrids indicated the presence of first- (F1) and second- generation (F2) hybrids and of backcrosses in the hybrid population. The presence of healthy DED resistant U. minor individuals combined with the self-compatibility of U. minor could help explain the presence of F2 individuals in Italy. The presence of F2 individuals, where most of the variability present in the hybrids will be released, could facilitate rapid evolution and the potential evolution of invasiveness of U. pumila in Italy.  相似文献   

16.
17.
Staphylococcal nuclease was conjugated to bacteriophage T4 using glutaraldehyde as a cross-linking agent. The conjugated phage is inactivated by antinuclease antibodies and this inactivation is specifically inhibited by nuclease in concentrations as low as 10?9m. Two fragments of the enzyme, namely P2 (residues 6–48) and P3 (residues 49–149) inhibit to a much lower extent the inactivation of the conjugated bacteriophage by the antibodies, than the native enzyme, but when mixed together (forming the noncovalent complex, nuclease-T), the inhibition curve obtained is similar to that obtained by native nuclease. This sensitive system was applied for testing different synthetic sequence fragments and for studying the complementarity of synthetic sequences in the P2 region with native P3.  相似文献   

18.

Background and Aims

When species cohesion is maintained despite ongoing natural hybridization, many questions are raised about the evolutionary processes operating in the species complex. This study examined the extensive natural hybridization between the Australian native shrubs Lomatia myricoides and L. silaifolia (Proteaceae). These species exhibit striking differences in morphology and ecological preferences, exceeding those found in most studies of hybridization to date.

Methods

Nuclear microsatellite markers (nSSRs), genotyping methods and morphometric analyses were used to uncover patterns of hybridization and the role of gene flow in morphological differentiation between sympatric species.

Key Results

The complexity of hybridization patterns differed markedly between sites, however, signals of introgression were present at all sites. One site provided evidence of a large hybrid swarm and the likely presence of multiple hybrid generations and backcrosses, another site a handful of early generational hybrids and a third site only traces of admixture from a past hybridization event. The presence of cryptic hybrids and a pattern of morphological bimodality amongst hybrids often disguised the extent of underlying genetic admixture.

Conclusions

Distinct parental habitats and phenotypes are expected to form barriers that contribute to the rapid reversion of hybrid populations to their parental character state, due to limited opportunities for hybrid/intermediate advantage. Furthermore, strong genomic filters may facilitate continued gene flow between species without the danger of assimilation. Stochastic fire events facilitate temporal phenological isolation between species and may partly explain the bi-directional and site-specific patterns of hybridization observed. Furthermore, the findings suggest that F1 hybrids are rare, and backcrosses may occur rapidly following these initial hybridization events.  相似文献   

19.
I n vitro experiments to study interaction of the mutagenic flavonoid quercetin with DNA are described. Calf thymus DNA treated with quercetin for various time periods was subjected to S1 nuclease hydrolysis. Thermal melting profles of treated DNA were also determined using St nuclease. The rate of DNA hydrolyzed after 1 hr of pre-treatment with quercetin was found to be only about 50% of that in its absence. However, after 10 and 24hrs of treatment with the drug, the rate of S1 nuclease hydrolysis was observed to be greater than that of native DNA. Thermal melting profiles of DNA, treated with quercetin for 10 and 24 hrs, indicated a slight decrease in melting temperatures. Gel filtration of native DNA, which had been digested with S1 nuclease after preincubation with quercetin for 24 hrs, indicated the production of various sized degraded molecules. The results suggest that the initial interaction of quercetin with DNA may have a stabilizing effect on its secondary structure, but prolonged treatment leads to an extensive disruption of the double helix.  相似文献   

20.
Natural and artificial nucleases have extensive applications in biotechnology and biomedicine. The exploration of protein with potential DNA cleavage activity also inspires the design of artificial nuclease and helps to understand the physiological process of DNA damage. In this study, we engineered four human cytochrome c (Cyt c) mutants (N52S, N52A, I81N, and I81D Cyt c), which showed enhanced DNA cleavage activity and degradation in comparison with WT Cyt c, especially under acidic conditions. The mechanism assays revealed that the superoxide (O2??) plays an important role in the nuclease reaction. The kinetic assays showed that the peroxidase activity of the I81D Cyt c mutant enhanced up to 9-fold at pH 5. This study suggests that the mutations of Ile81 and Asn52 in Ω-loop C/D are critical for the nuclease activity of Cyt c, which may have physiological significance in DNA damage and potential applications in biomedicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号