首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An antimicrobial oxidative‐ and SDS‐stable fibrinolytic alkaline protease designated as KSK‐II was produced by Lactobacillus plantarum KSK‐II isolated from kishk, a traditional Egyptian food. Maximum enzyme productivity was obtained in medium containing 1% lactose and 0.5% soybean flour as carbon and nitrogen sources, respectively. Purification of enzyme increased its specific activity to 1,140‐fold with a recovery of 33% and molecular weight of 43.6 kDa. Enzyme activity was totally lost in the presence of ethylenediaminetetraacetic acid and was restored after addition of Fe2+ suggesting that KSK‐II is a metalloprotease and Fe2+ acts as cofactor. Enzyme hydrolyzed not only the natural proteins but also synthetic substrates, particularly Suc‐Ala‐Ala‐Pro‐Phe‐pNA. KSK‐II can hydrolyze the Lys‐X easier than Arg‐X; thus, it was considered as a subtilisin‐family protease. Its apparent Km, Vmax, and Kcat were 0.41 mM, 6.4 µmol mg?1 min?1, and 28.0 s?1, respectively. KSK‐II is industrially important from the perspectives of its maximal activity at 50°C (stable up to 70°C), ability to function at alkaline pH (10.0), stability at broad pH ranges (7.5–12.0) in addition to its stability toward SDS, H2O2, organic solvents, and detergents. We emphasize for the first time the potential of fibrinolytic activity for alkaline proteases used in detergents especially in blood destaining. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:316–324, 2015  相似文献   

2.
Zanthoxylum limoncello is a native plant from southern Mexico which is used as a timber source, condiment and as a traditional medicine. Herein, we report on the volatile content of the leaf essential oil and its biological activities. The annual essential oils (2015–2018) contained volatile organic compounds which exhibited a moderate growth inhibitory activity against H. pylori ATCC 53504 (MIC 121.4–139.7 μg mL?1), 26695 (MIC 85.5–94.9 μg mL?1) and J99 (MIC 94.7–110.4 μg mL?1). These hydrodistillates contained 2‐undecanone (31.6–36.8 %; MIC 185.3–199.2 μg mL?1) and 2‐undecenal (25.1–35.7 %; MIC 144.8–111.3 μg mL?1) as the most abundant compounds which were partially involved in the anti‐H. pylori activity. The human ornithine decarboxylase enzyme (ODC1), which shows increased activity in several cancer types, was non‐competitively inhibited (Vmax 2.7>0.8 Kcat s?1) by the essential oil of Z. limoncello as well as by 2‐undecanone and 2‐undecenal in accordance to in vitro kinetic studies. In silico calculations strongly suggest that the carbonyl group of these oxygenated hydrocarbons interacts with both Asn319 and Ala39 at the subunit A of ODC1. Considering that Ala39 is located close to Asn44, a crucial amino acid of the ODC's allosteric site, the non‐competitive inhibition of the enzyme by 2‐undecanone and 2‐undecenal is endorsed. Finally, the essential oil of Z. limoncello and its main volatiles showed a significant (p<0.01) and prolonged repellent effect against Aedes aegypti.  相似文献   

3.
Sensitivity to azoxystrobin and kresoxim‐methyl of 80 single‐spore isolates of Magnaporthe oryzae was determined. The EC50 values for azoxystrobin and kresoxim‐methyl in inhibiting mycelial growth of the 80 M. oryzae isolates were 0.006–0.056 and 0.024–0.287 µg mL?1, respectively. The EC50 values for azoxystrobin and kresoxim‐methyl in inhibiting conidial germination of the M. oryzae populations were 0.004–0.051 and 0.012–0.105 µg mL?1, respectively. There was significant difference in sensitivity to azoxystrobin or kresoxim‐methyl between the tested isolates representing differential sensitivity to carbendazim (MBC) and kitazin P (IBP); however, there was no correlation between this difference in sensitivity to azoxystrobin or kresoxim‐methyl and sensitivity to MBC or IBP, indicating that there was no cross‐resistance between azoxystrobin or kresoxim‐methyl and MBC or IBP. In the protective and curative experiments, kresoxim‐methyl exhibited higher protective and curative activity than azoxystrobin when applied at 150 and 250 µg mL?1 accordingly, while azoxystrobin exhibited stronger inhibitory activity against M. oryzae isolates than that of kresoxim‐methyl in the in vitro test. The results of field experiments also suggested that both azoxystrobin and kresoxim‐methyl at 187.5 g.a.i. ha?1 gave over 73% control efficacy in both sites, exhibiting excellent activity against rice blast. Taken together, azoxystrobin and kresoxim‐methyl could be a good substitute for MBC or IBP for controlling rice blast in China, but should be carefully used as they were both at‐risk.  相似文献   

4.
A new system for the determination of nucleic acid by rare earth metallic porphyrin of [tetra‐(3‐methoxy‐4‐hydroxyphenyl)]–Tb3+ [T(3‐MO‐4HP)–Tb3+] porphyrin as fluorescence spectral probe has been developed in this paper. Nucleic acid can enhance the fluorescence intensity of the T(3‐MO‐4HP)–Tb3+ porphyrin in the presence of bis(2‐ethylhexyl)sulfosuccinate sodium salt(AOT) micelle. In pH 8.00 Tris–HCl buffer solution, under optimum conditions, the enhanced fluorescence intensity is in proportion to the concentration of nucleic acids in the range of 0.05–3.00 µg mL?1 for calf thymus DNA (ct DNA) and 0.03–4.80 µg mL?1 for fish sperm DNA(fs DNA). Their detection limits are 0.03 and 0.01 µg mL?1, respectively. In addition, the binding interaction mechanism between T(3‐MO‐4HP)–Tb3+ porphyrin and ct DNA is also investigated by resonance scattering and fluorescence spectra. The maximum binding number is calculated by molar ratio method. The new system can be used for the determination of nucleic acid in pig liver, yielding satisfactory results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Clotrimazole (CTZ) and cyclodextrin (CD) inclusion complexes having improved apparent water solubility were obtained from phase solubility diagrams. β‐CD (1.5% w/w) and hydroxypropyl‐β‐CD (40% w/w) offered poor CTZ solubility enhancements (12 and 384 times, respectively). Unexpectedly, the apparent solubility of CTZ was 9980 times increased from 0.4 µg.mL?1 (1.42 μM) without CD to 4.89 mg.mL?1 (14.9 mM) using randomly‐methylated β‐CD (Me‐β‐CD) (40% w/w). This is the highest apparent CTZ solubility improvement ever reported in the literature using conventional CDs. Quantitative nuclear magnetic resonance (1H‐NMR) coupled with two‐dimensional nuclear Overhauser effect (NOESY) experiments and molecular docking calculations showed that the highest interactions with Me‐β‐CD were reported for CTZ two phenyl groups. A lower interaction was reported for chlorophenyl, while imidazole had the weakest interaction with Me‐β‐CD. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Galactooligosaccharides (GOS) are prebiotics produced from lactose through an enzymatic reaction. Employing an immobilized enzyme may result in cost reductions; however, the changes in its kinetics due to immobilization has not been studied. This study experimentally determined the optimal reaction conditions for the production of GOS from lactose by β‐galactosidase (EC 3.2.1.23) from Kluyveromyces lactis covalently immobilized to a polysiloxane‐polyvinyl alcohol (POS‐PVA) polymer activated with glutaraldehyde (GA), and to study the transgalactosylation kinetics. Yield immobilization was 99 ± 1.1% with 78.5 ± 2.4% enzyme activity recovery. An experimental design 24 with 1 center point and 2 replicates was used. Factors were lactose [L], enzyme concentration [E], pH and temperature (T). Response variables were glucose and galactose as monosaccharides [G1], residual lactose [Lac]r and GOS as disaccharides [G2] and trisaccharides [G3]. Best conditions were pH 7.1, 40 °C, 270 gL?1 initial lactose concentration and 6 U mL?1 enzyme concentration, obtaining 25.46 ± 0.01 gL?1 yield of trisaccharides. Although below the HPLC‐IR detection limit, tetrasaccharides were also identified after 115 min of reaction. The immobilization protocol was then optimized by diminishing total reactant volumes : support ratio, resulting in improved enzyme activity synthesizing 43.53 ± 0.02 gL?1 of trisaccharides and 13.79 ± 0.21 gL?1 of tetrasaccharides, and after four cycles remaining relative activity was 94%. A reaction mechanism was proposed through which a mathematical model was developed and rate constants were estimated, considering a pseudo steady‐state hypothesis for two concomitant reactions, and from this simplified analysis, the reaction yield could eventually be improved. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1568–1578, 2017  相似文献   

7.
Chitinase from the thermophilic mould Myceliopthora thermophila BJA (MtChit) is an acid tolerant, thermostable and organic solvent stable biocatalyst which does not require any metal ions for its activity. To produce high enzyme titres, reduce fermentation time and overcome the need for induction, this enzyme has been heterologously expressed under GAP promoter in the GRAS yeast, Pichia pastoris. The production medium supplemented with the permeabilizing agent Tween‐20 supported two‐fold higher rMtChit production (5.5 × 103 U L?1). The consensus sequences S(132)xG(133)G(134) and D(168)xxD(171)xD(173)xE(175) in the enzyme have been found to represent the substrate binding and catalytic sites, respectively. The rMtChit, purified to homogeneity by a two‐step purification strategy, is a monomeric glycoprotein of ~48 kDa, which is optimally active at 55°C and pH 5.0. The enzyme is thermostable with t1/2 values of 113 and 48 min at 65 and 75°C, respectively. Kinetic parameters Km, Vmax, kcat, and kcat/Km of the enzyme are 4.655 mg mL?1, 34.246 nmol mg?1 s?1, 3.425 × 106 min?1, and 1.36 × 10?6 mg mL?1 min?1, respectively. rMtChit is an unique exochitinase, since its action on chitin liberates N‐acetylglucosamine NAG. The enzyme inhibits the growth of phytopathogenic fungi like Fusarium oxysporum and Curvularia lunata, therefore, this finds application as biofungicide at high temperatures during summer in tropics. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:70–80, 2017  相似文献   

8.
In order to investigate virulence enhancement of entomopathogenic fungi, a Beauveria bassiana-sourced Pr1 protease (CDEP-1) was expressed by a methylotrophic yeast Pichia pastoris and then used as an additive to three gradient sprays of B. bassiana strain (Bb0062) onto apterous green peach aphid Myzus persicae adults in six bioassays. The resultant data fit well to a time–concentration–mortality model. Generally, the LC50 estimates of the fungal pathogen against the aphid species decreased with increasing CDEP-1 concentrations from 0 to 100 µg mL?1. The LC50s on days 5–7 after spray were reduced by 1.5–2.5-fold at the concentrations of 20–100 µg mL?1. However, sprays of 20–100 µg CDEP-1 mL?1 aqueous solution alone had no significant effect on aphid mortality compared to water spray only. Neither did inclusion of inactivated CDEP-1 at a concentration of 50 µg mL?1 affect significantly the fungal virulence to aphids. Our results confirm for the first time that the cuticle-degrading protease CDEP-1 enhanced fungal virulence due to acceleration of conidial germination and cuticle penetration. This suggests a new approach to utilising the protease in microbial control.  相似文献   

9.
In this paper, a simple and highly sensitive spectrofluorimetric method was developed and validated for the determination of entacapone (ETC). The proposed method is based on forming a highly fluorescent product through the reduction of ETC with Zn/HCl. The produced fluorophore exhibits strong fluorescence at λem 345 nm after excitation at λex 240 nm. The use of fluorescence enhancers such as Tween‐80 and carboxy methyl cellulose (CMC) greatly enhanced the fluorescence of the produced fluorophore by 150% and 200%, respectively. Calibration curves showed good linear regression (r2 > 0.9998) within test ranges of 0.05–2.0 and 0.02–1.80 μg mL?1 with lower detection limits of 1.27 × 10?2 and 4.8 × 10?3 μg mL?1 and lower quantification limits of 4.21 × 10?2 and 1.61 × 10?2 μg mL?1 upon using Tween‐80 and or CMC, respectively. The method was successfully applied to the analysis of ETC in its pharmaceutical formulations (either alone or in presence of other co‐formulated drugs). The results were in good agreement with those obtained using the official method. The methods were further extended to determine the drug in human plasma samples, and to study the pharmacokinetics of ETC. The paper is the first report on the spectrofluorimetric determination of entacapone.  相似文献   

10.
A thermoalkaline protease with a molecular weight of 22 kDa was purified from the Bacillus cereus SIU1 strain using a combination of Q-Sepharose and Sephadex G-75 chromatography. The kinetic analyses revealed the Km, Vmax and kcat to be 1.09 mg ml?1, 0.909 mg ml?1 min?1 and 3.11 s?1, respectively, towards a casein substrate. The protease was most active and stable at pH 9.0 and between a temperature range of 45–55 °C. It was fully stable at 0.0–2.0% and moderately stable at 2.5–10.0% (w/v) sodium chloride. Phenyl methyl sulfonyl fluoride, ethylene diamine tetra acetic acid and ascorbic acid were inhibitory with regard to enzyme activity, whereas cysteine, β-mercaptoethanol, calcium, magnesium, manganese and copper at concentration of 1.0 mM increased enzyme activity. Sodium dodecyl sulfate, Triton X-100, Tween 80, hydrogen peroxide and sodium perborate significantly enhanced protease activity at 0.1 and 1.0% concentrations. In the presence of 0.1 and 1.0% (w/v) detergents, the protease was fairly stable and retained 50–76% activity. Therefore, it may have a possible application in laundry formulations. An initial analysis of the circular dichroism (CD) spectrum in the ultraviolet range revealed that the protease is predominantly a β-pleated structure and a detailed structural composition showed ~50% β-sheets. The CD-based conformational evaluation of the protease after incubation with modulators, metal ions, detergents and at different pH values, revealed that the change in the β-content directly corresponded to the altered enzyme activity. The protease combined with detergent was able to destain blood stained cloth within 30 min.  相似文献   

11.
Cross‐linked enzyme aggregates (CLEAs) were prepared from several precipitant agents using glutaraldehyde as a cross‐linking agent with and without BSA, finally choosing a 40% saturation of ammonium sulfate and 25 mM of glutaraldehyde. The CLEAs obtained under optimum conditions were biochemically characterized. The immobilized enzyme showed higher thermal activity and a broader range of pH and organic solvent tolerance than the free enzyme. Arylesterase from Gluconobacter oxydans showed activity toward cephalosporin C and 7‐aminocephalosporanic acid. The CLEAs had a Kcat/KM of 0.9 M?1/S?1 for 7‐ACA (7‐aminocephalosporanic acid) and 0.1 M?1/S?1 for CPC (cephalosporin c), whereas free enzyme did not show a typical Michaelis–Menten kinetics. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:36–42, 2016  相似文献   

12.
The usefulness of cell‐enclosing microcapsules in biomedical and biopharmaceutical fields is widely recognized. In this study, we developed a method enabling the preparation of microcapsules with a liquid core in one step using two enzymatic reactions, both of which consume H2O2 competitively. The microcapsule membrane prepared in this study is composed of the hydrogel obtained from an alginate derivative possessing phenolic hydroxyl moieties (Alg‐Ph). The cell‐enclosing microcapsules with a hollow core were obtained by extruding an aqueous solution of Alg‐Ph containing horseradish peroxidase (HRP), catalase, and cells into a co‐flowing stream of liquid paraffin containing H2O2. Formation of the microcapsule membrane progressed from the surface of the droplets through HRP‐catalyzed cross‐linking of Ph moieties by consuming H2O2 supplied from the ambient liquid paraffin. A hollow core structure was induced by catalase‐catalyzed decomposition of H2O2 resulting in the center region being at an insufficient level of H2O2. The viability of HeLa cells was 93.1% immediately after encapsulation in the microcapsules with about 250 µm diameter obtained from an aqueous solution of 2.5% (w/v) Alg‐Ph, 100 units mL?1 HRP, 9.1 × 104 units mL?1 catalase. The enclosed cells grew much faster than those in the microparticles with a solid core. In addition, the thickness of microcapsule membrane could be controlled by changing the concentrations of HRP and catalase in the range of 13–48 µm. The proposed method could be versatile for preparing the microcapsules from the other polymer derivatives of carboxymetylcellulose and gelatin. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1528–1534, 2013  相似文献   

13.
The adjuvant activity of chicken interleukin‐12 (chIL‐12) protein has been described as similar to that of mammalian IL‐12. Recombinant chIL‐12 can be produced using several methods, but chIL‐12 production in eukaryotic cells is lower than that in prokaryotic cells. Stimulating compounds, such as dimethyl sulfoxide (DMSO), can be added to animal cell cultures to overcome this drawback. In this study, we constructed a cell line, DF1/chIL‐12 which stably expressed a fusion protein, chIL‐12 and enhanced green fluorescent protein (eGFP) connected by a (G4S)3 linker sequence. Fusion protein production was increased when cells were cultured in the presence of DMSO. When 1 × 106 DF1/chIL‐12 cells were inoculated in a T‐175 flask containing 30 mL of media, incubated for 15 h, and further cultivated in the presence of 4% DMSO for 48 h, the production of total fusion protein was mostly enhanced compared with the production of total fusion protein by using cell lysates induced with DMSO at other concentrations. The concentrations of the unpurified and purified total fusion proteins in cell lysates were 2,781 ± 2.72 ng mL?1 and 2,207 ± 3.28 ng mL?1, respectively. The recovery rate was 79%. The fusion protein stimulated chicken splenocytes to produce IFN‐γ, which was measured using an enzyme‐linked immunosorbent assay, in the culture supernatant, indicating that treating DF1/chIL‐12 cells with DMSO or producing chIL‐12 in a fusion protein form does not have adverse effects on the bioactivity of chIL‐12. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:641–649, 2015  相似文献   

14.
A sensitive electrochemiluminescence (ECL) detection of etimicin at Tris(2,2′‐bipyridyl)ruthenium(II) [Ru(bpy)32+]–Nafion modified carbon paste electrodes was developed. The immobilized Ru(bpy)32+ shows good electrochemical and photochemical activities. Electrochemical and electrochemiluminescence characterizations of the modified carbon electrodes were made by means of cyclic voltammetry and electrochemical impendence spectroscopy. The modified electrode showed an electrocatalytic response to the oxidation of etimicin, producing a sensitized ECL signal. The ECL sensor showed a linear response to etimicin in the range of 8.0–160.0 ng mL?1 with a detection limit of 6.7 ng mL?1. This method for etimicin determination possessed good sensitivity and reproducibility with a coefficient of variation of 5.1% (n = 7) at 100 ng mL?1. The ECL sensor showed good selectivity and long‐term stability. Its surface could be renewed quickly and reproducibly by a simple polish step. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Mimicry of structural motifs is a common feature in proteins. The 10‐membered hydrogen‐bonded ring involving the main‐chain C?O in a β‐turn can be formed using a side‐chain carbonyl group leading to Asx‐turn. We show that the N? H component of hydrogen bond can be replaced by a Cγ‐H group in the side chain, culminating in a nonconventional C? H···O interaction. Because of its shape this β‐turn mimic is designated as ω‐turn, which is found to occur ~three times per 100 residues. Three residues (i to i + 2) constitute the turn with the C? H···O interaction occurring between the terminal residues, constraining the torsion angles ?i + 1, ψi + 1, ?i + 2 and χ1(i + 2) (using the interacting Cγ atom). Based on these angles there are two types of ω‐turns, each of which can be further divided into two groups. Cβ‐branched side‐chains, and Met and Gln have high propensities to occur at i + 2; for the last two residues the carbonyl oxygen may participate in an additional interaction involving the S and amino group, respectively. With Cys occupying the i + 1 position, such turns are found in the metal‐binding sites. N‐linked glycosylation occurs at the consensus pattern Asn‐Xaa‐Ser/Thr; with Thr at i + 2, the sequence can adopt the secondary structure of a ω‐turn, which may be the recognition site for protein modification. Location between two β‐strands is the most common occurrence in protein tertiary structure, and being generally exposed ω‐turn may constitute the antigenic determinant site. It is a stable scaffold and may be used in protein engineering and peptide design. Proteins 2015; 83:203–214. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
The synthetic peptide octarphin (TPLVTLFK) corresponding to the sequence 12–19 of β‐endorphin, a selective agonist of nonopioid β‐endorphin receptor, was labeled with tritium to a specific activity of 29 Ci/mmol. [3H]Octarphin was found to bind to high‐affinity naloxone‐insensitive binding sites on membranes isolated from rat adrenal cortex (Kd = 35.7 ± 2.3 nM, Bmax = 41.0 ± 3.6 pmol/mg protein). The binding specificity study revealed that these binding sites were insensitive not only to naloxone but to α‐endorphin, γ‐endorphin, [Met5]enkephalin, and [Leu5]enkephalin as well. At the same time, the [3H]octarphin‐specific binding with adrenal cortex membranes was inhibited by unlabeled β‐endorphin (Ki = 32.9 ± 3.8 nM). Octarphin at concentrations of 10?9–10?6 M was found to inhibit the adenylate cyclase activity in adrenocortical membranes, whereas intranasal injection of octarphin at doses of 5 and 20 µg/rat was found to reduce the secretion of corticosterone from the adrenals to the bloodstream. Thus, octarphin decreases the adrenal cortex functional activity through the high affinity binding to nonopioid receptor of β‐endorphin. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
Thermostable β‐galactosidase from Bacillus coagulans RCS3 was purified by successive column chromatography using DEAE‐cellulose and Sephadex G‐50. Immobilization of the purified enzyme was studied with DEAE‐cellulose and calcium alginate. The efficiency of β‐galactosidase retention was 87 % with DEAE‐cellulose (17 mg protein/mL of matrix) and 80 % with calcium alginate (2.2 mg protein/g bead). Comparative studies of immobilization displayed a shift in the optimum temperature from 65 °C to 70 °C provoked by DEAE‐cellulose, although no effect was observed with calcium alginate. The heat inactivation curve revealed an improvement in the stability (t1/2 of 14.5 h for the immobilized enzyme as compared to 2 h for the free enzyme at 65 °C) in a calcium alginate system. This immobilized enzyme has a wide pH stability range (6.5–11). β‐Galactosidase immobilized by DEAE‐cellulose and calcium alginate allowed a 57 and 70 % lactose hydrolysis, respectively, to be achieved within 48 h after repeated use for twenty times.  相似文献   

18.
The aim of this study was to develop a method for online spectrofluorimetric quality control of naphazoline (NPZ) in pharmaceuticals and raw drugs. A combination of a flow‐injection analysis (FIA) system with micellar‐enhanced fluorescence detection is presented as a powerful alternative for the rapid and sensitive analysis of naphazoline. Since NPZ shows low native fluorescence, the use of an anionic surfactant, such as sodium dodecyl sulphate (SDS), provides a considerable enhancement of fluorescence intensity and the nature of the technique allows a possible and easy adaptation to a FIA system. Using λexc = 280 nm and λem = 326 nm, a good linear relationship (LOL) was obtained in the range 0.003–10 µg mL?1 with a detection limit (LOD) of 3 × 10?4 µg mL?1 (s/n = 3). Parameters related to the nature of the analytical signal and to the FIA manifold were optimized. Satisfactory recoveries were obtained in the analysis of commercial pharmaceutical formulations. The proposed method is simple, accurate and allows for high‐speed sampling and considerably shorter analysis times. In addition, it requires inexpensive equipment and reagents and has easy operational conditions and no side effects, thus avoiding environmental pollution through toxic waste. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
An extracellular thermostable alkaline serine protease enzyme from Aeribacillus pallidus C10 (GenBank No: KC333049), was purified 4.85 and 17. 32-fold with a yield of 26.9 and 19.56%, respectively, through DE52 anion exchange and Probond affinity chromatography. The molecular mass of the enzyme was determined through sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), with approximately 38.35?kDa. The enzyme exhibited optimum activity at pH 9 and at temperature 60?°C. It was determined that the enzyme had remained stable at the range of pH 7.0–10.0, and that it had preserved more than 80% of its activity at a broad temperature range (20–80?°C). The enzyme activity was found to retain more than 70% and 55% in the presence of organic solvents and commercial detergents, respectively. In addition, it was observed that the enzyme activity had increased in the presence of 5% SDS. KM and Vmax values were calculated as 0.197?mg/mL and 7.29?μmol.mL?1.min?1, respectively.  相似文献   

20.
In this study, nisin production of Lactococcus lactis N8 was optimized by independent variables of glucose, hemin and oxygen concentrations in fed‐batch fermentation in which respiration of cells was stimulated with hemin. Response surface model was able to explain the changes of the nisin production of L. lactis N8 in fed‐batch fermentation system with high fidelity (R2 98%) and insignificant lack of fit. Accordingly, the equation developed indicated the optimum parameters for glucose, hemin, and dissolved oxygen were 8 g L?1 h?1, 3 μg mL?1 and 40%, respectively. While 1711 IU mL?1 nisin was produced by L. lactis N8 in control fed‐batch fermentation, 5410 IU mL?1 nisin production was achieved within the relevant optimum parameters where the respiration of cell was stimulated with hemin. Accordingly, nisin production was enhanced 3.1 fold in fed‐batch fermentation using hemin. In conclusion the nisin production of L. lactis N8 was enhanced extensively as a result of increasing the biomass by stimulating the cell respiration with adding the hemin in the fed‐batch fermentation. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:678–685, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号