首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hand and foot remains from Moula‐Guercy cave (Ardèche, France) comprise 24 specimens of Eemian age (ca. 120 ka). The specimens include primarily complete elements, which are rare among the Moula‐Guercy postcrania. The hand remains have several characteristic Neanderthal traits including a laterally facing (parasagittally oriented) second metacarpal‐capitate articulation, a short styloid process, a wide proximal articular surface on the third metacarpal, and absolutely expanded apical tuberosities on the distal hand phalanges relative to modern humans. The foot remains include several incomplete elements along with an antimeric pair of naviculars, a medial cuneiform and cuboid, and a single complete element from each of the distal segments (one each: metatarsal, proximal foot phalanx, intermediate foot phalanx, distal foot phalanx). Consistent among the specimens are relatively wide diaphyses for length in the metatarsals and phalanges and large and prominent muscle attachments, both consistent with previously published Neanderthal morphology. The hand and foot collection from Moula‐Guercy is an important dataset for future studies of Neanderthal functional morphology, dexterity, and behavior as it represents a previously undersampled time period for European Neanderthals. Am J Phys Anthropol 152:516–529, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Excavations carried out during the 1990s at Moula‐Guercy cave Ardèche, France, yielded 108 hominid specimens dating to 100–120 Ka. In this paper, we describe and compare the 39 axial and appendicular specimens not including hand and foot bones. Among these remains are a large adult femur, several clavicles, a likely antimeric pair of radial heads, and a nearly complete superior pubic ramus. Analyses of this material indicate a clear affinity with Neanderthals by the presence of large and robust muscle attachments, thick long bone cortices, a long pubic ramus, and a superoinferiorly flattened clavicle shaft. The recovered remains reveal the presence of a mature male, a smaller mature individual, possibly a reproductive age female, an immature individual of age 10–12, and a second immature individual of age 4. Future analyses on the Moula‐Guercy remains will illuminate ties to other known Neanderthal populations and contribute to the ongoing debate over the relative rate of Neanderthal metric growth. Am J Phys Anthropol 152:530–542, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
The Anterior Dental Loading Hypothesis states that the unique Neanderthal facial and dental anatomy was an adaptive response to the regular application of heavy forces resulting from both the masticatory and cultural use of the anterior teeth. Heavy anterior tooth wear frequently observed in Neanderthal specimens is cited as a main source of evidence for heavy forces being applied to these teeth. From this, it might be predicted that the wear shown on the anterior teeth of Neanderthals would greatly exceed that of the posterior teeth and that this differential would be greater than in other hominins with different facial morphologies.In this paper, a new method of examining tooth wear patterns is used to test these predictions in a large assemblage of Late Pleistocene hominins and a group of recent hunter-gatherers from Igloolik, Canada. The results show that all Late Pleistocene hominins, including Neanderthals, had heavily worn anterior teeth relative to their posterior teeth but, contrary to expectations, this was more pronounced in the modern humans than in the Neanderthals. The Igloolik Inuit showed heavier anterior tooth wear relative to their posterior teeth than any Late Pleistocene hominins. There was, however, a characteristic Neanderthal pattern in which wear was more evenly spread between anterior teeth than in modern humans. Overall, the evidence presented here suggests that all Late Pleistocene hominins habitually applied heavy forces between their anterior teeth and that Neanderthals were not exceptional in this regard. These results therefore does not support the Anterior Dental Loading Hypothesis.  相似文献   

4.
In the 1930s subadult hominin remains and Mousterian artifacts were discovered in the Teshik‐Tash cave in South Uzbekistan. Since then, the majority of the scientific community has interpreted Teshik‐Tash as a Neanderthal. However, some have considered aspects of the morphology of the Teshik‐Tash skull to be more similar to fossil modern humans such as those represented at Skhūl and Qafzeh, or to subadult Upper Paleolithic modern humans. Here we present a 3D geometric morphometric analysis of the Teshik‐Tash frontal bone in the context of developmental shape changes in recent modern humans, Neanderthals, and early modern humans. We assess the phenetic affinities of Teshik‐Tash to other subadult fossils, and use developmental simulations to predict possible adult shapes. We find that the morphology of the frontal bone places the Teshik‐Tash child close to other Neanderthal children and that the simulated adult shapes are closest to Neanderthal adults. Taken together with genetic data showing that Teshik‐Tash carried mtDNA of the Neanderthal type, as well as its occipital bun, and its shovel‐shaped upper incisors, these independent lines of evidence firmly place Teshik‐Tash among Neanderthals. Am J Phys Anthropol, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
The Middle Palaeolithic site of Payre in southeastern France yields abundant archaeological material associated with fossil hominid remains. With its long sequence of Middle Pleistocene deposits, Payre is a key site to study the Middle Palaeolithic chronology of this region. This study is the first to investigate carbon and oxygen isotope contents of Neanderthal tooth enamel bioapatite, together with a wide range of herbivorous and carnivorous species. The aim is to contribute to the understanding of hunting behaviour, resource partitioning, diet and habitat use of animals and Neanderthals through a palaeoecological reconstruction.  相似文献   

6.
7.
Four teeth were recovered from the Petralona cave site in Greece. These specimens were considered to be hominid remains and have become part of the dental data base for the Pleistocene hominids of Europe. SEM analysis of the anamel structure of these remains reveals an enamel prism pattern which is not hominid. A walled hexagonal prism was obtained which is representative of the carnivores.Subsequent analysis of a fragment of enamel from the Petralona hominid cranium revealed a keyhole enamel prism, typical of modern man, while analysis of a number of cave bear teeth revealed an identical walled hexagonal prism, as was found in the four isolated teeth.The conclusion is that the four isolated teeth are those of the Pleistocene cave bear which frequently populated the cave.  相似文献   

8.
Several authors have already observed the dyschronic growth between Neanderthals and modern Humans permanent teeth but they never quantified it. Dental maturation is the best and mostly used way to evaluate precisely the decease age of Neanderthals. We thus present here an extensive study realised with deciduous and immature permanent Neanderthals teeth, which lead us to propose a new mode! Of dental maturation allowing to estimate their age without using the classical modern populations dental growth tables. We propose two methods, one using two mathematical formulas, the other one using a new table, which permits to directly obtain the age of a Neanderthal from his deciduous and permanent teeth degree of maturation data.  相似文献   

9.
Non-occlusal, buccal tooth microwear variability has been studied in 68 fossil humans from Europe and the Near East. The microwear patterns observed suggest that a major shift in human dietary habits and food processing techniques might have taken place in the transition from the Middle to the Late Pleistocene populations. Differences in microwear density, average length, and orientation of striations indicate that Middle Pleistocene humans had more abrasive dietary habits than Late Pleistocene populations. Both dietary and cultural factors might be responsible for the differences observed. In addition, the Middle Paleolithic Neanderthal specimens studied show a highly heterogeneous pattern of microwear when compared to the other samples considered, which is inconsistent with a hypothesis of all Neanderthals having a strictly carnivorous diet. The high density of striations observed in the buccal surfaces of several Neanderthal teeth might be indicative of the inclusion of plant foods in their diet. The buccal microwear variability observed in the Neanderthals is compatible with an overall exploitation of both plant and meat foods on the basis of food availability. A preliminary analysis of the relationship between buccal microwear density and climatic conditions prevailing in Europe during the Late Pleistocene has been attempted. Cold climatic conditions, as indicated by oxygen isotope stage data, seem to be responsible for higher densities of microwear features, whereas warmer periods could correspond to a reduced pattern of scratch density. Such a relationship would be indicative of less abrasive dietary habits, perhaps more meat dependent, during warmer periods.  相似文献   

10.
Traditional morphometric approaches for taxonomic assignment of Neanderthal and modern human dental remains are mainly characterized by caliper measurements of tooth crowns. Several studies have recently described differences in dental tissue proportions and enamel thickness between Neanderthal and modern human teeth. At least for the lower second deciduous molar (dm2), a three-dimensional lateral relative enamel thickness index has been proposed for separating the two taxa. This index has the advantage over other measurements of being applicable to worn teeth because it ignores the occlusal aspect of the crown. Nevertheless, a comparative evaluation of traditional crown dimensions and lateral dental tissue proportion measurements for taxonomic assignment of Neanderthal and modern human dm2s has not yet been performed.In this study, we compare various parameters gathered from the lateral aspects of the crown. These parameters include crown diameters, height of the lateral wall of the crown (lateral crown height = LCH), lateral enamel thickness, and dentine volume of the lateral wall, including the volume of the coronal pulp chamber (lateral dentine plus pulp volume = LDPV), in a 3D digital sample of Neanderthal and modern human dm2s to evaluate their utility in separating the two taxa.The LDPV and the LCH allow us to discriminate between Neanderthals and modern humans with 88.5% and 92.3% accuracy, respectively. Though our results confirm that Neanderthal dm2s have lower relative enamel thickness (RET) index compared with modern humans (p = 0.005), only 70% of the specimens were correctly classified on the basis of the RET index. We also emphasize that results of the lateral enamel thickness method depend on the magnitude of the interproximal wear. Accordingly, we suggest using the LCH or the LDPV to discriminate between Neanderthal and modern human dm2s. These parameters are more independent of interproximal wear and loss of lateral enamel.  相似文献   

11.
Nearly two decades since the first retrieval of Neanderthal DNA, recent advances in next-generation sequencing technologies have allowed the generation of high-coverage genomes from two archaic hominins, a Neanderthal and a Denisovan, as well as a complete mitochondrial genome from remains which probably represent early members of the Neanderthal lineage. This genomic information, coupled with diversity exome data from several Neanderthal specimens is shedding new light on evolutionary processes such as the genetic basis of Neanderthal and modern human-specific adaptations—including morphological and behavioural traits—as well as the extent and nature of the admixture events between them. An emerging picture is that Neanderthals had a long-term small population size, lived in small and isolated groups and probably practised inbreeding at times. Deleterious genetic effects associated with these demographic factors could have played a role in their extinction. The analysis of DNA from further remains making use of new large-scale hybridization-capture-based methods as well as of new approaches to discriminate contaminant DNA sequences will provide genetic information in spatial and temporal scales that could help clarify the Neanderthal''s—and our very own—evolutionary history.  相似文献   

12.
The Neanderthal taxonomic position is a matter of wide disagreement among paleoanthropologists. Some workers consider this fossil human group to represent a different species, Homo neanderthalensis, while others see it as a subspecies of Homo sapiens. This study developed two models of morphological variation to be applied to a comparison between Neanderthals and modern humans: modern human populations provided a measure of intra-specific variation, while the species and subspecies of Pan provided measures of both intra- and inter-specific morphological differences. Although such an approach has been advocated strongly, it has not been systematically undertaken until recently. The techniques of geometric morphometrics were used to collect data in the form of three-dimensional coordinates of craniofacial landmarks. The data were processed using generalized procrustes analysis, and analyzed by an array of multivariate statistical methods, including principal components analysis, canonical variates analysis and Mahalanobis D(2). The morphological distances between Neanderthals and modern humans, and between Neanderthals and Late Paleolithic/early anatomically modern specimens, are consistently greater than the distances among recent human populations, and greater than the distances between the two chimpanzee species. Furthermore, no strong morphological similarities were found between Neanderthals and Late Paleolithic Europeans. This study does not find evidence for Neanderthal contribution to the evolution of modern Europeans. Results are consistent with the recognition of Neanderthals as a distinct species.  相似文献   

13.
Developmental and structural affinities between modern human and Neanderthal dental remains continue to be a subject of debate as well as their utility for informing assessments of life history and taxonomy. Excavation of the Middle Paleolithic cave site Lakonis in southern Greece has yielded a lower third molar (LKH 1). Here, we detail the crown development and enamel thickness of the distal cusps of the LKH 1 specimen, which has been classified as a Neanderthal based on the presence of an anterior fovea and mid-trigonid crest. Crown formation was determined using standard histological techniques, and enamel thickness was measured from a virtual plane of section. Developmental differences include thinner cuspal enamel and a lower periodicity than modern humans. Crown formation in the LKH 1 hypoconid is estimated to be 2.6-2.7 years, which is shorter than modern human times. The LKH 1 hypoconid also shows a more rapid overall crown extension rate than modern humans. Relative enamel thickness was approximately half that of a modern human sample mean; enamel on the distal cusps of modern human third molars is extremely thick in absolute and relative terms. These findings are consistent with recent studies that demonstrate differences in crown development, tissue proportions, and enamel thickness between Neanderthals and modern humans. Although overlap in some developmental variables may be found, the results of this and other studies suggest that Neanderthal molars formed in shorter periods of time than modern humans, due in part to thinner enamel and faster crown extension rates.  相似文献   

14.
High quality Altai Neanderthal and Denisovan genomes are revealing which regions of archaic hominin DNA have persisted in the modern human genome. A number of these regions are associated with response to infection and immunity, with a suggestion that derived Neanderthal alleles found in modern Europeans and East Asians may be associated with autoimmunity. As such Neanderthal genomes are an independent line of evidence of which infectious diseases Neanderthals were genetically adapted to. Sympathetically, human genome adaptive introgression is an independent line of evidence of which infectious diseases were important for AMH coming in to Eurasia and interacting with Neanderthals. The Neanderthals and Denisovans present interesting cases of hominin hunter‐gatherers adapted to a Eurasian rather than African infectious disease package. Independent sources of DNA‐based evidence allow a re‐evaluation of the first epidemiologic transition and how infectious disease affected Pleistocene hominins. By combining skeletal, archaeological and genetic evidence from modern humans and extinct Eurasian hominins, we question whether the first epidemiologic transition in Eurasia featured a new package of infectious diseases or a change in the impact of existing pathogens. Coupled with pathogen genomics, this approach supports the view that many infectious diseases are pre‐Neolithic, and the list continues to expand. The transfer of pathogens between hominin populations, including the expansion of pathogens from Africa, may also have played a role in the extinction of the Neanderthals and offers an important mechanism to understand hominin–hominin interactions well back beyond the current limits for aDNA extraction from fossils alone. Am J Phys Anthropol 160:379–388, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
Southern blot hybridizations of genomic DNA were introduced as a relatively simple fossil-DNA-based approach to classify remains of Neanderthals. When hybridized with genomic DNA of either human or Neanderthal origin, DNA extracted from two Neanderthal finds-the Os parietale, from Warendorf-Neuwarendorf, Germany, and a clavicula, from Krapina, Croatia-was shown to yield hybridization signals that differ by at least a factor of two compared to the signals obtained with the use of fossil DNA of an early Homo sapiens from the Vogelherd cave (Stetten I), Germany. When labeled chimpanzee DNA was used as a probe, Neanderthal and human DNA, however, revealed hybridization signals of similar intensity. Thus, the genome of Neanderthals is expected to differ significantly from the genome of anatomically modern man, because of the contrasting composition of repetitive DNA. These data support the hypothesis that Neanderthals were not ancestors of anatomically modern man.  相似文献   

16.
17.
潘雷 《人类学学报》2019,38(3):398-406
在基于计算机断层扫描技术(CT)和虚拟图像处理技术的灵长类牙齿测量学研究中,经常需要分离三维虚拟模型的齿冠和齿根,再进行后续测量工作,如计算机辅助的生物力学分析、釉质厚度测量等。而分离齿冠和齿根这一步骤,目前有多种方法,如,1)根据齿颈线切分齿冠,或2)人工建立基底平面切分齿冠。为了评估这两种不同的处理方式对后续的牙齿测量学上的影响,本文使用三维方法测量了82例化石和现代人类下颌后部牙齿的釉质厚度,包括南方古猿、早期人属、尼安德特人和现代人。使用配对t检验对比发现,两种方法得到的釉质厚度数值上没有显著差别,但随后进行的种间比较发现,使用基底平面切分齿冠的方法比较费时,更依赖于测量者的人工操作,并且可能弱化了物种间前臼齿绝对釉质厚度的差异,造成系统误差。其原因是对于前臼齿和前部牙齿等齿颈线形状不规则的标本,基底平面难以建立或误差较大。在未来对釉质厚度的种间差异的研究中,特别对齿颈线形状不规则的标本(如人类前部牙齿及猩猩、黑猩猩的牙齿等),本文推荐使用齿颈线分离齿冠和齿根,测量和计算齿颈线之上的釉质厚度。釉质厚度有一定的分类学、功能形态学和系统发育学意义。本文积累了一批可供未来对比研究的原始数据,并且发现尼安德特人前臼齿的相对釉质厚度显著小于现代人,这与前人利用臼齿、犬齿所做的对比研究结果相同,支持了尼安德特人拥有较薄的相对釉质厚度这一观点。  相似文献   

18.
Ten years after the first draft versions of the human genome were announced, technical progress in both DNA sequencing and ancient DNA analyses has allowed a research team around Ed Green and Svante P??bo to complete this task from infinitely more difficult hominid samples: a few pieces of bone originating from our closest, albeit extinct, relatives, the Neanderthals. Pulling the Neanderthal sequences out of a sea of contaminating environmental DNA impregnating the bones and at the same time avoiding the problems of contamination with modern human DNA is in itself a remarkable accomplishment. However, the crucial question in the long run is, what can we learn from such genomic data about hominid evolution?  相似文献   

19.
The classification and phylogenetic relationships of the middle Pleistocene human fossil record remains one of the most intractable problems in paleoanthropology. Several authors have noted broad resemblances between European and African fossils from this period, suggesting a single taxon ancestral to both modern humans and Neanderthals. Others point out ‘incipient’ Neanderthal features in the morphology of the European sample and have argued for their inclusion in the Neanderthal lineage exclusively, following a model of accretionary evolution of Neanderthals. We approach these questions using geometric morphometric methods which allow the intuitive visualization and quantification of features previously described qualitatively. We apply these techniques to evaluate proposed cranio-facial ‘incipient’ facial, vault, and basicranial traits in a middle-late Pleistocene European hominin sample when compared to a sample of the same time depth from Africa. Some of the features examined followed the predictions of the accretion model and relate the middle Pleistocene European material to the later Neanderthals. However, although our analysis showed a clear separation between Neanderthals and early/recent modern humans and morphological proximity between European specimens from OIS 7 to 3, it also shows that the European hominins from the first half of the middle Pleistocene still shared most of their cranio-facial architecture with their African contemporaries.  相似文献   

20.
Dental tissues provide important insights into aspects of hominid palaeobiology that are otherwise difficult to obtain from studies of the bony skeleton. Tooth enamel is formed by ameloblasts, which demonstrate daily secretory rhythms developing tissue-specific structures known as cross striations, and longer period markings called striae of Retzius. These enamel features were studied in the molars of two well known South African hominid species, Australopithecus africanus and Paranthropus robustus. Using newly developed portable confocal microscopy, we have obtained cross striation periodicities (number of cross striations between adjacent striae) for the largest sample of hominid teeth reported to date. These data indicate a mean periodicity of seven days in these small-bodied hominids. Important differences were observed in the inferred mechanisms of enamel development between these taxa. Ameloblasts maintain high rates of differentiation throughout cervical enamel development in P. robustus but not in A. africanus. In our sample, there were fewer lateral striae of Retzius in P. robustus than in A. africanus. In a molar of P. robustus, lateral enamel formed in a much shorter time than cuspal enamel, and the opposite was observed in two molars of A. africanus. In spite of the greater occlusal area and enamel thickness of the molars of both fossil species compared with modern humans, the total crown formation time of these three fossil molars was shorter than the corresponding tooth type in modern humans. Our results provide support for previous conclusions that molar crown formation time was short in Plio-Pleistocene hominids, and strongly suggest the presence of different mechanisms of amelogenesis, and thus tooth development, in these taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号