首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fluorescence quenching of tryptophan residues in egg-white riboflavin-binding protein by two typical quenchers (charged iodide and uncharged acrylamide) reveals acid-induced changes of protein conformation. At neutralpH, acrylamide flow in macromolecule, (i.e., the quenching effect) is decisive; tryptophan residue accessibility for iodide is small. At lowpH, some tryptophan residues are exposed to the protein surface and become more accessible to iodide. In contrast, acrylamide is less able to permeate this conformational state of RBP. Fluorescence of tryptophan residues in riboflavin-RBP complex and chemically N-bromosucinimide-modified RBP was quenched by iodide and acrylamide.  相似文献   

2.
A novel approach on fluorescence quenching of tyrosine and l ‐tryptophan is presented for spectrofluorimetric determination of aniracetam in drug substances and products. The quenching mechanism was investigated using Stern–Volmer plots and ultraviolet spectra figures of quencher–fluorophore mixtures. Binding constant and stoichiometry were calculated using double‐log plots. The spectrofluorimetric method was optimized for the experimental conditions affecting fluorescence quenching including fluorophore concentration, diluent, and reaction time. Moreover, the pH‐rate profile of aniracetam was studied using simple kinetics and found to be stable within the pH range 5–8. Fluorescence quenching of tyrosine and l ‐tryptophan were observed on addition of aniracetam in aqueous medium at pH 5.5–6.5. Aniracetam quenched the fluorescence of tyrosine and l ‐tryptophan in the concentration range 1–20 μg/ml and 0.3–20 μg/ml, respectively, with binomial relationships between quenching values (ΔF) and aniracetam concentration. Limits of detection were found to be 0.10 μg/ml for tyrosine–aniracetam and 0.14 μg/ml for l ‐tryptophan–aniracetam. Method validation was performed as per ICH guidelines and demonstrated that the developed spectrofluorimetric method was accurate, precise, specific, and suitable for analysis of aniracetam in routine quality control laboratories. All experimental materials and solvents used are eco‐friendly, indicating that the cited spectrofluorimetric procedure is an excellent green method.  相似文献   

3.
The analysis of nitrated polycyclic aromatic hydrocarbons (NPAHs) is of great importance because of the mutagenicity and possible carcinogenic activity of these compounds, which are distributed widely in the environment. Nitro‐substituents in aromatic compounds are known to quench fluorescence and NPAHs have no intrinsic fluorescence, but they can be determined using their quenching effects on other fluorophores. The quenching effects of several important NPAHs on 1,2,3,4‐ tetrahydro‐1‐naphthol,5,6,7,8‐tetrahydro‐1‐naphthol,4‐(2‐hydroxy‐4‐sulfo‐1‐naphthylazo)‐2‐naphthalene carboxylic acid and 7‐amino‐4‐methyl coumarin have been studied. The singlet emission of these fluorophores is efficiently quenched by all the NPAHs, the quenching following the Stern–Volmer relationship. Quenching constants and the limits of detection and linear ranges of the quenchers have been determined in each case: the limits of detection are ca 1 µm . Copyright © 2010 John Wiley & Son, Ltd.  相似文献   

4.
Spectrophotometric investigations of highly fluorescent metal chelating molecules are of relevance due to their potential application in novel, selective fluorescence‐based sensors. Benzene and naphthalene chromophores are highly fluorescent while hydroxamic acids are widely used as ligands for complexation of transition metals. In order to develop fluorescence probes, several phenyl derivatives of N‐phenylbenzohydroxamic acid and an aminodihydroxamic acid linked with a naphthalene chromophore were synthesized and their selective ionophoric properties towards iron(III) and manganese(II) ions were investigated using fluorescence and absorption spectroscopy. Both methods confirm the formation of 1:1 and 1:2 complexes for iron(III) and a 1:1 complex for manganese(II). The complex that is formed depends on the concentration of the ligand and pH of the medium. The amino dihydroxamic acid exhibits a prominent selectivity towards iron(III) with a two‐step 1:1 and 1:2 quenching mechanism at pH 3 and towards manganese(II) with a 1:1 quenching mechanism at a probe concentration of 1 × 10?5 mol dm?3 at pH 9.5 The logarithm of overall formation constants of 1:1 and 1:2 complexes of iron(III) were estimated as 3.30 and 9.05, respectively. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
A sensitive and selective fluorimetric sensor for the assay of ascorbic acid (AA) using silver nanoparticles as emission reagent was investigated. In this study, silver nanoparticles were prepared based on aqueous–gaseous phase reaction of silver nitrate solution and ammonia gas. The nanoparticles were water‐soluble, stable and had a narrow emission band. They were used as a fluorescence probe for the assay of ascorbic acid on its quenching effect on the emission of silver nanoparticles. The principal reason for quenching is likely to be a complexation between ascorbic acid and silver nanoparticles. The quenching mechanism was established by Stern–Volmer law. Under the optimum conditions, the quenched fluorescence intensity was linear with the concentration of ascorbic acid in the range of 4.1 × 10?6 to 1.0 ×10?4 m (= 0.9985) with a detection limit of 1.0 × 10?7 m . The RSD for repeatability of the sensor for the assay of ascorbic acid concentration of 3.0 × 10?5 and 4.0 × 10?6 m was found to be 1.5 and 1.3%, respectively. The proposed method was applied to the determination of ascorbic acid in vegetables and vitamin C tablets. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Novel palladium(II) complexes ( 7a–7e ) of substituted quinoline derivatives were synthesized. The complexes were characterized using various techniques such as thermogravimetric analysis (TGA), elemental analysis, conductance measurement, mass, absorption, infra‐red (IR), 1H NMR, 13C NMR and energy‐dispersive X‐ray spectroscopy (EDX). Complexes for herring sperm DNA (HS DNA) binding were explored and absorption titration and the binding constant (Kb) as well as Gibb's free energy were evaluated. Complex 7d exhibited the highest binding constant, therefore the thermodynamic parameters of 7d at different temperatures were evaluated. To support the results of the absorption titration, fluorescence titration, viscosity measurement and molecular docking studies were performed. The fluorescence quenching data as evaluated from Stern–Volmer equation were used to calculate KSV, Kf and the number of binding sites. The results of all these studies were in good agreement with the absorption study. DNA electrophoretic mobility was performed to explore the possible application of metal complexes as artificial metallonucleases. The antibacterial activity of the complexes was accessed against different pathogenic bacteria and cytotoxicity was measured using brine shrimp and S. pombe.  相似文献   

7.
Water‐soluble glutathione (GSH)‐capped core/shell CdTe/CdS quantum dots (QDs) were synthesized. In pH 5.4 sodium phosphate buffer medium, the interaction between GSH‐CdTe/CdS QDs and sanguinarine (SA) was investigated by spectroscopic methods, including fluorescence spectroscopy and ultraviolet‐visible absorption spectroscopy. Addition of SA to GSH‐CdTe/CdS QDs results in fluorescence quenching of GSH‐CdTe/CdS QDs. Quenching intensity was in proportion to the concentration of SA in a certain range. Investigation of the quenching mechanism, proved that the fluorescence quenching of GSH‐CdTe/CdS QDs by SA is a result of electron transfer. Based on the quenching of the fluorescence of GSH‐CdTe/CdS QDs by SA, a novel, simple, rapid and specific method for SA determination was proposed. The detection limit for SA was 3.4 ng/mL and the quantitative determination range was 0.2–40.0 µg/mL with a correlation coefficient of 0.9988. The method has been applied to the determination of SA in synthetic samples and fresh urine samples of healthy human with satisfactory results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A study on fluorescence quenching was carried out for the coumarin derivative 2‐acetyl‐3H‐benzo[f]chromen‐3‐one (2AHBC) with aniline at room temperature. Efficient fluorescence quenching was observed and Stern–Volmer (S–V) plots showed upward curves from linearity in all solvents of different polarities. For the solute 2AHBC, ground state complex formation does not hold in our study. The kinetic distance (r) value was found to be greater than the encounter distance (R) and indicated that the quenching reaction was held within the sphere of action. Diffusion‐limited reactions were found to be more prominent in high polarity solvents, namely dimethyl sulfoxide (DMSO), DMF, ACN, methanol, ethanol, propanol and DCM. The relationships between quenching constant (KSV) and dielectric constants (ε) of the different solvents were studied.  相似文献   

9.
A water‐soluble, high‐output fluorescent sensor, based on a lumazine ligand with a thiophene substituent for Cd2+, Hg2+ and Ag+ metal ions, is reported. The sensor displays fluorescence enhancement upon Cd2+ binding (log  β = 2.79 ± 0.08) and fluorescence quenching by chelating with Ag+ and Hg2+ (log β = 4.31 ± 0.15 and 5.42 ± 0.1, respectively). The mechanism of quenching is static and occurs by formation of a ground‐state non‐fluorescent complex followed by rapid intersystem crossing. The value of the Stern–Volmer quenching rate constant (kq) by Ag+ ions is close to 6.71 × 1012 mol/L/s at 298 K. The thermodynamic parameters (ΔG, ΔH and ΔS) were also evaluated and indicated that the complexation process is spontaneous, exothermic and entropically favourable. The quantitative linear relationship between the softness values of Klopman (σK) or Ahrland (σA) and the experimental binding constants (β) being in the order of Hg2+ > Ag+ > Cd2+ suggests that soft–soft interactions are the key for the observed sensitivity and selectivity in the presence of other metal ions, such as: Pb2+, Ni2+, Mn2+, Cu2+, Co2+, Zn2+ and Mg2+ ions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Photo physical properties of fluorescent organic compounds give an immense improved knowledge on characteristics of excited state that is beneficial to devise innovate molecules and understand their performance in particular applications. Coumarin derivatives have been extensively investigated in this regard. This article narrates steady state fluorescence quenching measurements of a coumarin derivative namely 3‐hydroxy‐3‐[2‐oxo‐2‐(3‐oxo‐3H‐benzo[f]chromen‐2‐yl)‐ethyl]‐1,3‐dihydro‐indol‐2‐one (3HBCD) in a binary mixture of acetonitrile and 1,4‐dioxane. Aniline is used as quencher. Fluorescence intensity is large in acetonitrile and decreases as the percentage of 1,4‐dioxane in the solvent mixture increases. With modest quencher concentration a deviation towards the x axis is noticed in the Stern–Volmer (S–V) plots. This downward curvature is interpreted as due to the presence of 3HBCD in different conformers in the lowest energy level. Ground state intramolecular hydrogen bonding formation is observed due to the conformational changes in the solute. Figured estimations of various quenching parameters recommend that, while dynamic quenching prompts linearity in S–V plot at lower quencher concentration, increasing quenching efficiency with increasing medium viscosity suggests that reaction is not entirely controlled by material diffusion. Stern–Volmer constant increases with decreasing medium dielectric constant.  相似文献   

11.
In neutral medium, rifamycin antibiotics such as rifapentin (RFPT), rifampicin (RFP), rifandin (RFD) and rifamycin SV (RFSV) can bind with human serum albumin (HSA) and bovine serum albumin (BSA) to form complexes, resulting in the quenching of the intrinsic fluorescence (lambda(ex)/lambda(em) = 285/355 nm) of the BSA and HSA. The quenching intensity (DeltaF) is directly proportional to the concentration of the rifamycin antibiotics. Therefore, a new analytical method was established to determine trace rifamycin antibiotics. The method had fairly high sensitivity and the detecting limits (3sigma) for RFPT, RFP, RFD and RFSV were 0.85, 0.98, 1.83, 1.89 ng/mL, respectively, for the HSA system and 0.76, 0.89, 1.55, 1.77 ng/mL, respectively, for the BSA system. All relative standard deviations (RSDs) were <3.8%. In this work, the characteristics of the fluorescence spectra were studied and the optimum reaction conditions and influencing factors were investigated. The influence of coexisting substances was tested and the results showed that the method had good selectivity and could be applied to determine trace rifamycin antibiotics in medicine capsules and urine samples. Taking the RFSV-serum albumin system as an example, the reaction mechanisms, such as binding constants, binding sites, binding distance and the type of fluorescence quenching, were investigated.  相似文献   

12.
In Britton‐Robinson (BR) buffer medium (pH 3.3), carbazochrome sodium sulfonate (CSS) can react with some aromatic amino acids such as tryptophan (Trp), tyrosine (Tyr) and phenylalanine (Phe) to form a 1:1 complex by electrostatic attraction, aromatic stacking interaction and Van der Waals' force, resulting in fluorescence quenching of these amino acids. Maximum quenching wavelengths were located at 352 nm (CSS‐Trp system), 303 nm (CSS‐Tyr system) and 284 nm (CSS‐Phe system), respectively. The fluorescence quenching value (ΔF) was proportional to the concentration of CSS in a certain range. The fluorescence quenching method for the determination of CSS showed high sensitivity, with detection limits of 31.3 ng/mL (CSS‐Trp system), 44.6 ng/mL (CSS‐Tyr system) and 315.0 ng/mL (CSS‐Phe system), respectively. The optimum conditions of the reaction conditions and the effect of coexisting substances were investigated and results showed that the method had good selectivity. The method was successfully applied for the rapid determination of CSS in blood and urine samples. Based on the bimolecular quenching constant Kq, the effect of temperature and Stern‐Volmer plots, this study showed that quenching of fluorescence of amino acids by CSS was a static quenching process. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
A simple and selective spectrofluorimetric method for the detection of chlortetracycline (CTC) was studied. In pH 7.4 buffer medium l ‐tryptophan (l ‐Trp), applied as the fluorescence probe, interacted with CTC resulting in fluorescence quenching of the probe. CTC was detected with maximum excitation and emission wavelengths at λex/λem = 275/350 nm. Notably, quenching of fluorescence intensities was positively proportional to the CTC concentration over the range of 0.65–30 μmol L?1 and the limit of detection was 0.2 μmol L?1. Effect of temperature shown in Stern?Volmer plots, absorption spectra and fluorescence lifetime determination, indicated that fluorescence quenching of l ‐Trp by CTC was mainly by static quenching. The proposed study used practical samples analysis satisfactorily.  相似文献   

14.
The distribution of indole and tryptophan derivatives between sodium dodecyl sulfate (SDS) micellar and aqueous phases was analyzed using conventional methods of ultraviolet (UV) absorption spectroscopy and measurement of fluorescence quenching by succinimide. On the assumption of a simple pseudo-phase equilibrium between both phases the distribution coefficient was easily obtained by the measurement of the ratioR pv of the absorbance intensity in the peak to that in the valley of the UV spectra or the fluorescence quenching constant Ksv. The possibilities and limitations of utilizing the ratio of the collisional quenching constant estimating from theK sv value in the micellar phase to that in the aqueous phase for a measure of the polarity of the microenvironment around the tryptophan derivatives in the SDS micelle is discussed in comparison with theR pv values for the UV spectra. The indole ring in the derivatives in the SDS micelle is localized near or on the micelle-water interface with its imino group directed toward the aqueous phase. Thus it can serve as a feasible model for interpreting the distribution coefficients andR pv values obtained for the various indole and tryptophan derivatives.Abbreviations UV ultraviolet - SDS sodium dodecyl sulfate - ATEE N-acetyl-l-tryptophan ethyl ester - ATA N-acetyl-l-tryptophan-amide - CMC critical micelle concentration  相似文献   

15.
The three types of structure of the pyrenebutyric acid of fiber optic chemical film sensor were stud-ied by fluorescence multiple quenching. They are, for different test samples and purposes, respectively general, three-way and combined. A tri-cup method was designed to demonstrate the multiple quenching of response mechanism, and a relationship formula of mathematical approach was established. The response mechanism was shown to include the dynamic quenching , inner-filter effects and/or resonance energy transfer. To show the response characterization in a series of organic and inorganic quenchers, a new concept of apparent quenching coefficient Kq was advanced. This kind of sensor has been used in continuous and in situ monitoring of the dissolution rate of drug tablets, on line and in situ monitoring of some organic therapeutic drugs in biological fluid and Cr( VI ) in industrial waste water. The measured data were examined and compared with HPLC or HPTLCS. Test results show that the sensors and appa  相似文献   

16.
Fluorescence studies on the interaction of pepsin with its substrates   总被引:2,自引:0,他引:2  
  相似文献   

17.
Riboflavin (RF) plays an important role in various metabolic redox reactions in the form of flavin adenine dinucleotide and flavin mononucleotide. Human serum albumin (HSA) is an important protein involved in the transportation of drugs, hormones, fatty acid and other molecules which determine the biodistribution and physiological fate of these molecules. In this study, we have investigated the interaction of riboflavin RF with HSA under simulative physiological conditions using various biophysical, calorimetric and molecular docking techniques. Results demonstrate the formation of riboflavin–HSA complex with binding constant in the order of 104 M?1. Fluorescence spectroscopy confirms intermediate strength having a static mode of quenching with stoichiometry of 1:1. Experimental results suggest that the binding site of riboflavin mainly resides in sub-domain IIA of HSA and that ligand interaction increases the α-helical content of HSA. These parameters were further verified by isothermal titration calorimetry ITC which confirms the thermodynamic parameters obtained by fluorescence spectroscopy. Molecular docking was employed to suggest a binding model. Based on thermodynamic, spectroscopic and computational observations it can be concluded that HSA-riboflavin complex is mainly stabilized by various non-covalent forces with binding energy of ?7.2 kcal mol?1.  相似文献   

18.
In this paper, we studied the quenching mechanism of intrinsic fluorescence of type I collagen by a new type photosensitizer and fluorescence quencher, hypocrellin B (HB). It was indicated that type I collagen can emit Tyr-intrinsic fluorescence with the excitation wavelength of Tyr (λex = 269 nm). Its fluorescence decay conform to the triexponential rule of the fluorescence lifetime. The intrinsic fluorescence of type I collagen can be effectively quenched by HB through a process of charge and energy transference, which is involved in the collisional quenching, the dipolar inducement, and the formation of exciplex between HB and excited fluorophores of collagen. The fluorescence quenching would be weakened by higher ionic environments. The fluorescence emission and its quenching rate of abnormal silicotic collagen show falling trends, implying its much weakened potential of charge and energy transference, and its lessen bioelectric activities. In conclusion, the bioelectric properties of collagen depends on the perfect order of its molecular structure and orderly intramolecular and intermolecular interactions, which is important in its performing normal physiological functions. It is also demonstrated that the fluorescence quenching technique, using HB as a quencher, is truly an effectively method for biomolecular studies. © 1997 John Wiley & Sons, Inc. Biopoly 42: 219–226, 1997  相似文献   

19.
Under simulated physiological conditions, the reaction mechanism between cefixime and bovine serum albumin at different temperatures (293, 303 and 310 K) was investigated using a fluorescence quenching method and synchronous fluorescence method, respectively. The results indicated that the fluorescence intensity and synchronous fluorescence intensity of bovine serum albumin decreased regularly on the addition of cefixime. In addition, the quenching mechanism, binding constants, number of binding sites, type of interaction force and energy‐transfer parameters of cefixime with bovine serum albumin obtained from two methods using the same equation were consistent. The results indicated that the synchronous fluorescence spectrometry could be used to study the binding mechanism between drug and protein, and was a useful supplement to the conventional method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Changes in the fluorescence spectrum of tryptophans Trp 134 and Trp 212 in bovine serum albumin (BSA) and of Trp 214 of human serum albumin in the presence of the chaotropic agent guanidine hydrochloride (Gnd) were studied. A detailed analysis of the fluorescence spectrum of native BSA yielded the fluorescence spectrum for each tryptophan of BSA. Modifications in the binding of Mag-indo-1 to BSA, which results in a specific quenching of the fluorescence spectrum of Trp 134 associated with an energy transfer from Trp 134 to the protein-bound Mag-indo-1, were also investigated. Changes occurring when the Gnd concentration is decreased stepwise cover a larger concentration scale of Gnd than the reverse protocol, allowing one to suggest that the resulting conformational changes in the subdomain IA of BSA involve at least three different steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号