首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Recycling of anaerobically-digested thin stillage within a corn-ethanol plant may result in the accumulation of nutrients of environmental concern in animal feed coproducts and inhibitory organic materials in the fermentation tank. Our focus is on anaerobic digestion of treated (centrifugation and lime addition) thin stillage. Suitability of digestate from anaerobic treatment for reuse as process water was also investigated. Experiments conducted at various inoculum-to-substrate ratios (ISRs) revealed that alkalinity is a critical parameter limiting digestibility of thin stillage. An ISR level of 2 appeared optimal based on high biogas production level (763 mL biogas/g volatile solids added) and organic matter removal (80.6% COD removal). The digester supernatant at this ISR level was found to contain both organic and inorganic constituents at levels that would cause no inhibition to ethanol fermentation. Anaerobic digestion of treated-thin stillage can be expected to improve the water and energy efficiencies of dry grind corn-ethanol plants.  相似文献   

2.
Besides lactic acid, many lactic acid bacteria also produce proteinaceous metabolites (bacteriocins) such as nisin. As catabolite repression and end-product inhibition limit production of both products, we have investigated the use of alternative methods of supplying substrate and neutralizing or extracting lactic acid to increase yields. Fed-batch fermentation trials using a stillage-based medium with pH control by NH4OH resulted in improved lactic acid (83.4 g/l, 3.18 g/l/h, 95% yield) and nisin (1,260 IU/ml, 84,000 IU/l/h, 14,900 IU/g) production. Removing particulate matter from the stillage-based medium increased nisin production (1,590 IU/ml, 33,700 IU/g), but decreased lactic acid production (58.5 g/l, 1.40 g/l/h, 96% yield). Removing lactic acid by ion exchange resins stimulated higher lactic acid concentrations (60 to 65 g/l) and productivities (2.0 to 2.6 g/l/h) in the filtered stillage medium at the expense of nisin production (1,500 IU/ml, 25,800 IU/g).  相似文献   

3.
The corn based dry grind process is the most widely used method in the US for fuel ethanol production. Fermentation of corn to ethanol produces whole stillage after ethanol is removed by distillation. It is centrifuged to separate thin stillage from wet grains. Thin stillage contains 5–10% solids. To concentrate solids of thin stillage, it requires evaporation of large amounts of water and maintenance of evaporators. Evaporator maintenance requires excess evaporator capacity at the facility, increasing capital expenses, requiring plant slowdowns or shut downs and results in revenue losses. Membrane filtration is one method that could lead to improved value of thin stillage and may offer an alternative to evaporation. Fractionation of thin stillage using ultrafiltration was conducted to evaluate membranes as an alternative to evaporators in the ethanol industry. Two regenerated cellulose membranes with molecular weight cut offs of 10 and 100 kDa were evaluated. Total solids (suspended and soluble) contents recovered through membrane separation process were similar to those from commercial evaporators. Permeate flux decline of thin stillage using a resistance in series model was determined. Each of the four components of total resistance was evaluated experimentally. Effects of operating variables such as transmembrane pressure and temperature on permeate flux rate and resistances were determined and optimum conditions for maximum flux rates were evaluated. Model equations were developed to evaluate the resistance components that are responsible for fouling and to predict total flux decline with respect to time. Modeling results were in agreement with experimental results (R 2 > 0.98).  相似文献   

4.
Both the current corn starch to ethanol industry and the emerging lignocellulosic biofuels industry view recycling of spent fermentation broth or stillage as a method to reduce fresh water use. The objective of this study was to understand the impact of recycling stillage on conversion of corn stover to ethanol. Sugars in a dilute‐acid pretreated corn stover hydrolysate were fermented to ethanol by the glucose–xylose fermenting bacteria Zymomonas mobilis 8b. Three serial fermentations were performed at two different initial sugar concentrations using either 10% or 25% of the stillage as makeup water for the next fermentation in the series. Serial fermentations were performed to achieve near steady state concentration of inhibitors and other compounds in the corn stover hydrolysate. Little impact on ethanol yields was seen at sugar concentrations equivalent to pretreated corn stover slurry at 15% (w/w) with 10% recycle of the stillage. However, ethanol yields became progressively poorer as the sugar concentration increased and fraction of the stillage recycled increased. At an equivalent corn stover slurry concentration of 20% with 25% recycled stillage the ethanol yield was only 5%. For this microorganism with dilute‐acid pretreated corn stover, recycling a large fraction of the stillage had a significant negative impact on fermentation performance. Although this finding is of concern for biochemical‐based lignocellulose conversion processes, other microorganism/pretreatment technology combinations will likely perform differently. Biotechnol. Bioeng. 2010;105: 992–996. © 2009 Wiley Periodicals, Inc.  相似文献   

5.
6.
A large and increasing volume of wastewater is produced globally by the winery and distillery industries. These wastewaters are generally acidic, high in chemical oxygen demand (COD) and color, and may contain phenolic compounds that can inhibit biological treatment systems. Treatment of distillery and phenolic compound–rich wastewaters by physicochemical, aerobic biological systems and hybrid treatment methods are discussed, as well as products derived from fungal treatment. White-rot fungi have been shown to exhibit unique biodegradation capabilities, primarily due to their production of extracellular and broad substrate range enzymes that are capable of mineralizing lignin, a recalcitrant biopolymer. One of these enzymes, laccase, catalyses the oxidation of various organic compounds with the subsequent reduction of molecular oxygen to water. Laccase synthesis, induction, and inhibition are discussed with the utilization of waste residues for laccase production and the enzyme's potential industrial applications. Distillery wastewaters offer a unique, presterilized, potential growth substrate for the production of lignolytic enzymes such as laccase. Compounds may be utilized for enzyme and biomass production resulting in remediation by the growing fungus.  相似文献   

7.
Over the last 40 years, the fermentation industry has provided facility planners, plant operators and environmental engineers with a wide range of residuals management challenges and resource/energy recovery opportunities. In response, the industry has helped pioneer the use of a number of innovative resource and energy recovery technologies. Production of animal feed supplements, composts, fertilizers, soil amendments, commercial baking additives and microbial protein materials have all been detailed in the literature. In many such cases, recovery of by-products significantly reduces the need for treatment and disposal facilities. Stable, reliable anaerobic biological treatment processes have also been developed to recovery significant amounts of energy in the form of methane gas. Alternatively, dewatered or condensed organic fermentation industry residuals have been used as fuels for incineration-based energy recovery systems. The sale or use of recovered by-products and/or energy can be used to offset required processing costs and provide a technically and environmentally viable alternative to traditional treatment and disposal strategies. This review examines resource recovery options currently used or proposed for fermentation industry residuals and the conditions necessary for their successful application.  相似文献   

8.
木薯原料生产燃料乙醇   总被引:7,自引:0,他引:7  
以下介绍了我国木薯原料生产燃料乙醇的最新进展,并对我国的木薯资源分布作了分析,特别强调了木薯资源占全国总产量的65%以上的广西壮族自治区在我国发展木薯原料燃料乙醇过程中所起的重要作用,在此基础上对我国发展木薯原料燃料乙醇所遇到的困难和挑战进行了分析,并根据国内外的科技进展对如何克服这些困难提出了几个可能的解决方案。  相似文献   

9.
A study was conducted to characterize the different carbohydrate and protein fractions of wheat- and barley-based thin stillage samples. In vitro crude protein degradability of wheat- and barley-based thin stillage was estimated relative to soyabean (SBM) and canola (CM) meal using a protease enzyme assay. Results of the carbohydrate analysis showed that wheat thin stillage had similar neutral (NDF, average 328.5 g kg−1) and lower (P < 0.05) acid detergent fibre (ADF) than barley-based thin stillage. Relative to barley-based thin stillage, wheat thin stillage had higher (P < 0.05) crude protein (CP) and soluble CP content. However, the amount of CP associated with NDF and ADF was higher (P < 0.05) in barley-based thin stillage than in wheat thin stillage. Fractionation of true protein showed that most of the CP (average 707 g kg−1 of CP) was present in the slowly degradable true protein fraction and was similar in both byproducts. Glutamic acid was the main amino acid in thin stillage and was higher (P < 0.05) in wheat than in barley-based thin stillage. However, barley-based thin stillage had higher (P < 0.05) levels of lysine, methionine, arginine, threonine, leucine and isoleucine than wheat thin stillage. Results of the in vitro trial indicated that effective degradability of CP (g kg−1 of CP) followed the order (P < 0.05): SBM (665.0) > wheat thin stillage (614.0) > CM (531.0) > barley-based thin stillage (493.0). It was concluded that barley-based thin stillage had different chemical characteristics than wheat thin stillage. The reduced CP degradability of barley-based thin stillage relative to wheat thin stillage was attributed to a lower CP and a higher acid detergent in soluble CP level.  相似文献   

10.
Anaerobic digestion of whole stillage from a dry-grind corn-based ethanol plant was evaluated by batch and continuous-flow digesters under thermophilic and mesophilic conditions. At whole corn stillage concentrations of 6348 to 50,786 mg total chemical oxygen demand (TCOD)/L, at standard temperature (0 °C) and pressure (1 atm), preliminary biochemical methane potential assays produced 88 ± 8 L (49 ± 5 L CH4) and 96 ± 19 L (65 ± 14 L CH4) biogas per L stillage from mesophilic and thermophilic digesters, respectively. Continuous-flow studies for the full-strength stillage (TCOD = 254 g/L) at organic loadings of 4.25, 6.30 and 9.05 g TCOD/L days indicated unstable performance for the thermophilic digester. Among the sludge retention times (SRTs) of 60, 45 and 30 days tested, the mesophilic digestion was successful only at 60 days-SRT which does not represent a practical operation time for a large scale bioethanol plant. Future laboratory studies will focus on different reactor configurations to reduce the SRT needed in the digesters.  相似文献   

11.
Two corn preparation methods, rollermill flaking and hammermill grinding, were compared for efficient processing of corn into ethanol by granular starch hydrolysis and simultaneous fermentation by yeast Saccharomyces cerevisiae. Corn was either ground in a hammermill with different size screens or crushed in a smooth-surfaced rollermill at different roller gap settings. The partitioning of beer solids and size distribution of solids in the thin stillage were compared. The mean particle diameter d50 for preparations varied with set-ups and ranged between 210 and 340 μm for ground corn, and 1180-1267 μm for flaked corn. The ethanol concentrations in beer were similar (18-19% v/v) for ground and flaked preparations, however, ethanol productivity increased with reduced particle size. Roller versus hammermilling of corn reduced solids in thin stillage by 28%, and doubled the volume percent of fines (d50 ∼ 7 μm)in thin stillage and decreased coarse (d50 ∼ 122 μm) by half compared to hammermilling.  相似文献   

12.
Liao Z  Huang Z  Hu H  Zhang Y  Tan Y 《Bioresource technology》2011,102(17):7953-7958
This study has focused on the pretreatment of cassava stillage residue (CSR) by mechanical activation (MA) using a self-designed stirring ball mill. The changes in surface morphology, functional groups and crystalline structure of pretreated CSR were examined by using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) under reasonable conditions. The results showed that MA could significantly damage the crystal structure of CSR, resulting in the variation of surface morphology, the increase of amorphous region ratio and hydrogen bond energy, and the decrease in crystallinity and crystalline size. But no new functional groups generated during milling, and the crystal type of cellulose in CSR still belonged to cellulose I after MA.  相似文献   

13.
丙酸是以玉米为原料自絮凝酵母乙醇连续发酵系统废糟液全循环过程中积累的主要抑制物。基于丙酸对酵母细胞抑制机理,开发了3种废糟液全循环条件下乙醇连续发酵工艺策略。首先根据高温导致丙酸生成的现象,去除了物料灭菌环节,使发酵液丙酸浓度显著降低,生物量和乙醇浓度分别提高了59.3%和7.4%。其次,以丙酸浓度达到半数抑制浓度(IC50)40 mmol/L为目标,通过拟合丙酸积累数据预测废糟液全循环的最长运行时间,发酵装置运行应控制在此时间范围内。再次,较低的环境pH值提高了丙酸毒性,而实验证明发酵液pH为5.5时,丙酸对细胞生长的抑制影响最小,因此控制发酵过程中的pH有利于弱化丙酸毒性。  相似文献   

14.
The microbial degradation of thin stillage for environment-friendly treatment has been studied extensively in recent years, and useful compounds in the treated-thin stillage are expected to be utilized in the subsequent fermentation. In this study, an Aspergillus oryzae H18, suitable for growing in thin stillage, was isolated from soil and served to degrade the organic matter in thin stillage, with the increase in pH (from 3·75 to 4·8) and decrease in chemical oxygen demand (COD, 81·3% removal rate). The effect of thin stillage as backset water after degradation of the strain H18 on alcohol production in syrup liquid was investigated. Compared with zero addition of thin stillage, the alcohol yield in mixed syrup liquid increased by 8·6% when the concentration of treated-thin stillage was 20%. After the addition of nutrients at proper concentration (0·5% urea, 1% molasses, 0·25% NaCl, 0·2% NaH2PO4, 0·3% MgSO4 and 0·25% CaCl2) in thin stillage, the alcohol yield in yeast fermentation was increased by 32·7% when mixed syrup liquid (with 40% thin stillage treated by H18) was employed, in comparison to control group without thin stillage addition. Meanwhile, the fermentation time was shortened, and alcohol production rate was enhanced.  相似文献   

15.
The objective of this work was study the effect of three pretreatments (alkalinization, thermical treatment, and sonication) on Tequila’s stillages hydrolysis process in acidogenesis stage, through the following response variables: soluble chemical oxygen demand (CODs), total sugar and volatile fatty acids profile and the hydrogen production at the time. The stillages were subject to these pretreatments (according to a 23 factorial design); afterward they were transferred to a batch reactor at 35 °C and inoculated with an anaerobic digestor sludge. Multiple response optimization (MRO) analysis was done to find the global optimum for the response variables described above. This optimum is able to maximize simultaneously all these variables. It was found adequate to be useful hydrolyzing the organic matter present in Tequila’s stillages. Mathematical models were fitted to observe the estimated effects of pretreatments on each response variable, then the MRO was applied.  相似文献   

16.
Summary By succesive recycling of the thin stillage in mashing and fermenting fresh corn, the glycerol content in each fermentation increased by about 0.4% and accumulated to a high of 2.1% in the beer of the fifth recycle. Glycerol concentration declined after the fifth recycle. The original fermentation contained 0.8% glycerol.Presented in part at the Society for Industrial Microbiology Annual Meeting, August 7–12, 1988, Chicago, IL.The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned.  相似文献   

17.
The objective of the study was to assess the effect of temperature on the extent of aerobic batch biodegradation of potato stillage with a mixed culture of bacteria of the genus Bacillus. The experiments were performed in a 5-l stirred-tank reactor at 20, 30, 35, 40, 45, 50, 55, 60, 63 and 65 degrees C with the pH of 7. Only at 65 degrees C, no reduction in chemical oxygen demand (COD) was found to occur. Over the temperature range of 20-63 degrees C, the removal efficiency was very high (with an extent of COD reduction following solids separation that varied between 77.57% and 89.14% after 125 h). The process ran at the fastest rate when the temperature ranged from 30 to 45 degrees C; after 43 h at the latest, COD removal amounted to 90% of the final removal efficiency value obtained for the process. At 20, 55, 60 and 63 degrees C, a 90% removal was attained after 80 h. Two criteria were proposed for the identification of the point in time when the process is to terminate. One of these consists in maximising the product of the extent of COD reduction and the extent of N-NH4 content reduction. The other criterion is a simplified one and involves the search for the minimal value of N-NH4 concentration.  相似文献   

18.
丙酸累积是影响厌氧消化系统稳定性的主要因素,为了考察酒糟厌氧消化过程中间代谢产物的累积情况,以总固体含量(TS)(质量分数) 5%和7%的白酒糟为发酵原料进行了批次试验。结果表明,乙酸(最高浓度33~129 mmol/L)、丙酸(39~61 mmol/L)、丁酸(5~44 mmol/L)和15种氨基酸(0.01~0.3 mmol/L)为主要中间代谢产物。为了探究其中关键的丙酸降解菌群,以酒糟原始沼液JO为植种源,10 mmol/L丙酸和0.1 mmol/L混合氨基酸为复合碳源进行富集培养,获得中温厌氧丙酸-氨基酸培养系JO-AP。高通量测序分析表明,互营丙酸降解菌与厚壁菌门(Firmicutes)的丙酸厌氧降解菌(Pelotomaculum schinkii)近缘,16S rRNA基因相似性100%,占细菌总丰度的16.7%。对比酒糟原始沼液JO、丙酸培养系JO-P及丙酸-氨基酸培养系JO-AP中的主要功能菌群,发现采用单一碳源和复合碳源获得的优势互营丙酸降解菌不同;传统培养与分子生物学技术相结合可以更全面地掌握系统中的微生物群落组成。  相似文献   

19.
Summary Concentration of N, P, K, Ca, Mg and S in summer groundnut crop was higher than in kharif while Zn, Fe, Mn and Cu contents were higher in summer crop. Kernel's N, P and Zn; Leaflet's Ca and Mn; Stem's K and Fe; Root's S and Cu and Petiole's Mg contents were highest. Shell's N, P, K, Mg, S, Zn and Cu; Kernel's Ca, Fe and Mn contents were the least. N, P, K, S, Zn and Cu concentrations decreased linearly as the crop grew. Ca, Mg, Fe and Mn concentrations did not display any distinct pattern. Ca concentration was positively correlated with pod yield in both the seasons.  相似文献   

20.
The goal of this article was to establish reference ranges of the concentration of trace elements in human serum and to compare these results with those reported by other authors. We describe the sample preparation and measurement conditions that allow the rapid, precise, and accurate determination of Al, As, B, Be, Cd, Co, Cu, Fe, Li, Mn, Mo, Ni, Rb, Se, Sr, and Zn in human serum samples (n=110) by inductively coupled plasma-mass spectrometry (ICP-MS). Accuracy and precision were determined by analyzing three reconstituted reference serum samples by comparison with other methods and by the standard addition procedure. The advantages of the ICP-MS method include short time of analysis of the elements mentioned, low detection limit, high precision, and high accuracy. Disadventages include a high risk of contamination due to the presence of some of the elements of interest in the environment, the relatively delicate sample handling, and the high cost of the equipment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号