首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
In weak acid medium, aluminum(III) can react with chlorophosphonazo III [CPA(III), H8L] to form a 1:1 coordination anion [Al(OH)(H4L)]2‐. At the same time, proteins such as bovine serum albumin (BSA), lysozyme (Lyso) and human serum albumin (HSA) existed as large cations with positive charges, which further combined with [Al(OH)(H4L)]2‐ to form a 1:4 chelate. This resulted in significant enhancement of resonance Rayleigh scattering (RRS), second‐order scattering (SOS) and frequency doubling scattering (FDS). In this study, we investigated the interaction between [Al(OH)(H4L)]2‐ and proteins, optimization of the reaction conditions and the spectral characteristics of RRS, SOS and FDS. The maximum RRS wavelengths of different protein systems were located at 357–370 nm. The maximum SOS and FDS wavelengths were located at 546 and 389 nm, respectively. The scattering intensities (ΔI) of the three methods were proportional to the concentration of the proteins, within certain ranges, and the detection limits of the most sensitive RRS method were 2.6–9.3 ng/mL. Moreover, the chelate reaction mechanism or the reasons for the enhancement of RRS were discussed through absorption spectra, fluorescence spectra and circular dichroism (CD) spectra. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
In an HCl medium (pH 1.5), ligustrazine (2,3,5,6‐tetramethylpyrazine, TMP) reacted with 12‐tungstophosphoric acid (TP) to form a 3 : 1 ion‐association complex. As a result, the intensities of resonance Rayleigh scattering (RRS), second‐order scattering (SOS) and frequency doubling scattering (FDS) were greatly enhanced and new scattering spectra appeared. The maximum RRS, SOS and FDS wavelengths of the ion‐association complexes were located at 379, 738 and 395 nm, respectively. The scattering intensity increments (ΔIRRS, ΔISOS and ΔIFDS) were directly proportional to the concentration of ligustrazine within certain ranges. The detection limits (3σ) of RRS, SOS and FDS were 1.6, 3.2 and 2.8 ng/mL. Optimal conditions for the RRS method and factors influencing the method were discussed, and the structure of the ion‐association complex and the reaction mechanism were investigated. Transmission electron microscopy (TEM) was used to characterize the structures of the ion‐association complex. Based on the ion‐association reaction and its spectral response, a rapid, simple and sensitive RRS method for the determination of TMP was developed. It was applied to the determination of TMP in tablet and urine samples with satisfactory results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
In an acid medium solution, proteins such as bovine serum albumin, human serum albumin, ovalbumin, hemoglobin, lysozyme, γ‐globulin, α‐chymotrypsin and papain could react with [PdI4]2? by virtue of electrostatic attraction and hydrophobic force to form ion‐association complexes. As a result, the resonance Rayleigh scattering (RRS) and resonance nonlinear scattering such as second‐order scattering (SOS) and frequency doubling scattering (FDS) intensities were enhanced greatly and new scattering spectra appeared. The maximum scattering peaks of RRS, SOS and FDS were at 367, 720 and 370 nm, respectively. The enhanced RRS, SOS and FDS intensities were directly proportional to the concentrations of proteins. The detection limits for the different proteins were 2.4–11.8 ng/mL for RRS method, 9.5–47.9 ng/mL for SOS method and 4.6–18.5 ng/mL for FDS method. In this work, the influences of the interaction of [PdI4]2? with proteins on spectral characteristics of RRS, SOS and FDS were investigated and the optimum conditions were tested. Meanwhile, the effects of coexisting substances were tested and the results showed that the method exhibited a good selectivity. Based on the above research, a highly sensitive, simple and rapid method for the determination of trace amounts of proteins by resonance light scattering technique has been developed. It can be applied to the determination of proteins in tablet, human serum and urine samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Doxepin hydrochloride (DOX) is a tricyclic antidepressant drug. Three sensitive spectrofluorimetric methods, namely resonance Rayleigh scattering (RRS), frequency doubling scattering (FDS) and second-order scattering (SOS), were developed and validated for their estimation of doxepin in spiked human plasma and formulation using liquid–liquid extraction method through the formation of an ion pair complex with eosin Y at a pH of 4.5. Various factors affecting fluorescence intensity were optimized, and the reaction kinetics was determined using the Arrhenius equation method. Different scattering methods such as RRS, FDS and SOS were developed at maximum scattering wavelengths λex/λem = 567/567 nm for RRS, 720/360 nm for SOS and 260/520 nm for FDS, respectively. The methods exhibited high sensitivities, and the detection limits for DOX were found to be 0.82, 1.20 and 1.03 ng/ml for RRS, FDS and SOS methods, respectively. The FDS method exhibited the highest sensitivity. The methods were validated using the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use guidelines and applied to determine DOX in capsule and spiked human plasma samples.  相似文献   

5.
In pH 5.0–5.4 HAc–NaAc buffer solution, lincomycin (Linco) reacted with Pd(II) to form 1:1 cationic chelate, which could further react with erythrosine (Ery) to form 1:1 ion‐association complexes (Pd–Linco)Ery. As a result, not only were the absorption and fluorescence spectra changed, but also the resonance Rayleigh scattering (RRS) intensity was greatly enhanced. These phenomena offered useful means for the determination of Linco by spectrophotometry, fluorescence and RRS methods. The linear range and detection limit of Linco were 0.20–3.00 µg/mL and 0.057 µg/mL, 0.20–4.80 µg/mL and 0.061 µg/mL, 0.05–2.70 µg/mL and 0.015 µg/mL for the spectrophotometric, fluorescence quenching and RRS methods, respectively. Among these, the RRS method obtained the highest sensitivity. Therefore, the optimum reaction conditions and the influences of coexisting substances were investigated using the RRS method. A simple, sensitive and rapid method has been developed for the determination of Linco in either the pharmaceutical form or human body fluids, and the reasons for RRS enhancement are discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
In pH 4.99‐6.06 Britton‐Robinson (BR) buffer medium, 6‐benzylaminopurine (6‐BA) reacted with Na2WO4 to form 1:1 anionic chelate (6‐BA·WO4)2‐, which further reacted with rhodamine 6G to form ternary ion complexes at room temperature. This resulted in a significant enhancement of resonance Rayleigh scattering (RRS) with a maximum RRS wavelength of 316 nm. Meanwhile, the fluorescence of the solution was quenched and excitation (λex) and emission (λem) wavelengths of the fluorescence were 290 and 559 nm, respectively. Intensities of RRS enhancing (ΔIRRS) and fluorescence quenching (ΔIF) were directly proportional to concentrations of 6‐BA. As a result, RRS and fluorescence quenching for determination of trace amounts of 6‐BA were developed. Under optimal conditions, linear ranges and detection limits of the two methods were 0.05‐15.00 µg/mL and 8.2 ng/mL (RRS), 0.50‐15.00 µg/mL and 17.0 ng/mL, respectively. It was found that the RRS method was superior to fluorescence quenching. The influence of these methods were investigated and results showed that RRS had good selectivity. RRS was applied to determine 6‐BA in vegetable samples with satisfactory results. Furthermore, the reaction mechanisms of the ternary ion‐association system are discussed. In addition, the polarization experiment revealed that the resonance light scattering (RLS) peak of Na2WO4‐6‐BA‐R6G consisted mainly of depolarized resonance fluorescence and resonance scattering. It was speculated that light emission fluorescence energy (EL) transformed into resonance light scattering energy (ERLS), which was a key reason for enhancement of RRS. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
A highly sensitive method for the detection of 6‐mercaptopurine (MP) by resonance Rayleigh light scattering (RLS) method was developed. Gold nanoparticles (AuNPs) were synthesized by a modified seed method and characterized using transmission electron microscopy (TEM). AuNPs were bound to MP via covalent bonding to form the MP–AuNPs complex, which increased the RLS intensity of MP at 347 nm (increased by 65.7%). Under optimum conditions, the magnitude of the enhanced RLS intensity for MP–AuNPs was proportional to MP concentration in the range 0.0681–1.702 μg mL?1. The linear regression equation was represented as follows: ΔI RLS = 9.31 + 82.42c (r  = 0.9948). The limit of detection (LOD, 3σ) was 3.32 ng mL?1. The system was applied successfully to detect MP in pharmaceuticals. MP recoveries were 99.9–101.7% with a relative standard deviation (RSD) (n  = 5) of 0.59–0.77% for three synthetic samples, and 97.5–110.0% with an RSD of 0.98–2.10% (n =  5) for tablet samples.  相似文献   

8.
In this work, a highly sensitive, citrate anion‐capped gold nanoparticles (AuNPs)‐based assay for the determination of propranolol in real samples with resonance Rayleigh scattering (RRS) and colorimetry was developed. When AuNPs were prepared by the sodium citrate reduction method, citrate anions self‐assembled on the surface of AuNPs to form supramolecular complex anions. In BR 4.6 buffer solution, propranolol was positively charged and could bind with AuNPs to form larger aggregates through electrostatic force and hydrophobic effects. This results in remarkable enhancement of the RRS intensity and a color change in the AuNPs solution from red to blue via purple. Thus, a highly sensitive RRS and colorimetric assay the for detection of propranolol was developed with a linear range of 0.2–5.2 and 8–112 ng/ml, respectively. In addition, no difference was seen when comparing R‐propranolol with S‐propranolol, therefore, this method could not be used in the recognition of chiral propranolol. However, upon addition of other β‐adrenergic blockers, no phenomenon like that seen with propranolol was observed, meaning that this method can be used for determining the presence of propranolol in a mixture β‐adrenergic blockers. Finally, the optimum conditions, factors influencing the reaction, its mechanism and the reasons for enhancement of the RRS were discussed.  相似文献   

9.
In this paper, a sensitive resonance light scattering (RLS) method for the determination of protein is reported. In the Tris–HCl (pH 7.50) buffer, protein enhanced the RLS intensity of the Y3+–2‐thenoyltrifluoroacetone (TTA)–sodium dodecyl sulphate (SLS) system. The enhanced RLS intensities were in proportion to the concentrations of proteins in the range 8.0 × 10?9–1.0 × 10?5 g/mL for BSA, 1.0 × 10–8–1.0 × 10?5 g/mL for HSA and 1.0 × 10–8–1.0 × 10?6 g/mL for EA, and their detection limits were 5.0, 5.4 and 6.7 ng/mL, respectively. Actual samples were satisfactorily determined. The interaction mechanism was also studied. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Herein, a highly selective high‐performance liquid chromatography (HPLC) coupled with resonance Rayleigh scattering (RRS) method was developed to detect gatifloxacin (GFLX) and sparfloxacin (SPLX). GFLX and SPLX were first separated by HPLC, then, in pH 4.4 Britton–Robinson (BR) buffer medium, protonic quaternary ammonia cation of GFLX and SPLX reacted with erythrosine (ERY) to form 1:1 ion‐association complexes, which resulted in a significant enhancement of RRS signal. The experimental conditions of HPLC and post‐column RRS have been investigated, including detection wavelength, flow rate, pH, reacting tube length and reaction temperature. Reaction mechanism were studied in detail by calculating the distribution fraction. The maximum RRS signals for GFLX and SPLX were recorded at λex = λem = 330 nm. The detection limits were 3.8 ng ml?1 for GFLX and 17.5 ng ml?1 for SPLX at a signal‐to‐noise ratio of 3. The developed method was successfully applied to the determination of GFLX and SPLX in water samples. Recoveries from spiked water samples were 97.56–98.85%.  相似文献   

11.
12.
Alzheimer's disease (AD) is the most common form of dementia and is characterized by the presence of senile plaques and neurofibrillary tangles, along with synaptic loss. The underlying mechanisms of AD are not clarified yet, but oxidative stress and mitochondrial dysfunction are important factors. Overactivation of poly(adenosine diphosphate ribose) polymerase‐1 (PARP‐1) enzyme has been known to cause neuroinflammation and cell death in neurodegenerative processes. The aim of the present study was to investigate the protective effects of the PARP‐1 inhibitors, 3‐aminobenzamide (3‐AB) and nicotinamide (NA), against amyloid β peptide (1–42) (Aβ(1–42))‐induced oxidative damage and mitochondrial reduction capacity on isolated synaptosomes. Rats were injected intraperitoneally with 3‐AB (30–100 mg kg?1), NA (100–500 mg kg?1) or with saline for 7 days. Synaptosomes were incubated with 10–30 μM Aβ(1–42) or saline for 6 h at 37 °C. Ex vivo Aβ(1–42) treatment significantly induced oxidative stress and mitochondrial dysfunction in synaptosomes of the saline group, while synaptosomes of 3‐AB and NA groups showed significant decreases in lipid peroxidation, reactive oxygen species production and protein oxidation. Moreover, both NA and 3‐AB were able to improve the mitochondrial reduction capacity against Aβ(1–42). These data suggest that NA and 3‐AB may have protective effects in neurodegenerative processes because of the reduced levels of oxidative stress and the improvement of mitochondrial function. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
14.
The O‐acyl isopeptide method was developed for the efficient preparation of difficult sequence‐containing peptide. Furthermore, development of the O‐acyl isodipeptide unit for Fmoc chemistry simplified its synthetic procedure by solid‐phase peptide synthesis. Here, we report a novel isodipeptide unit for Boc chemistry, and the unit was successfully applied to the synthesis of amyloid β peptide. Combination of Boc chemistry and the isodipeptide unit would be an effective method for the synthesis of many difficult peptides. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
A simple, rapid chemiluminescence (CL) method was described for the determination of piroxicam, a commonly used analgesic agent drug. A strong CL signal was detected when cerium(IV) sulphate was injected into tris‐(4,7‐diphenyl‐1,10‐phenanthrolinedisulphonic acid) ruthenium(II) (RuBPS)–piroxicam solution. The CL signal was proportional to the concentration of piroxicam in the range 2.8 × 10–8–1.2 × 10–5 mol/L. The detection limit was 2 × 10–8 mol/L and the relative standard deviation (RSD) was 3.7% (c = 7.0 × 10–7 mol/L piroxicam; n = 11). The proposed method was applied to the determination of piroxicam in pharmaceutical preparations in capsules, spiked serum and urine samples with satisfactory results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Protein phosphorylation is a key mechanism by which normal and cancer cells regulate their main transduction pathways. Protein kinases and phosphatases are precisely orchestrated to achieve the (de)phosphorylation of candidate proteins. Indeed, cellular health is dependent on the fine‐tune of phosphorylation systems, which when deregulated lead to cancer. Transforming growth factor beta (TGF‐β) pathway involvement in the genesis of prostate cancer has long been established. Many of its members were shown to be hypo‐ or hyperphosphorylated during the process of malignancy. A major phosphatase that is responsible for the vast majority of the serine/threonine dephosphorylation is the phosphoprotein phosphatase 1 (PPP1). PPP1 has been associated with the dephosphorylation of several proteins involved in the TGF‐β cascade. This review will discuss the role of PPP1 in the regulation of several TGF‐β signalling members and how the subversion of this pathway is related to prostate cancer development. Furthermore, current challenges on the protein phosphatases field as new targets to cancer therapy will be addressed.  相似文献   

17.
This paper reports a flow‐injection chemiluminescence method for the determination of ofloxacin (OFLX) using the Ru(bpy)2(CIP)2+–Ce(IV) system. Under the optimum conditions, the relative CL intensity was proportional to the concentration of OFLX in the range 3.0 × 10–8–1.0 × 10–5 mol/L and the detection limit was 4.2 × 10–9 mol/L. The proposed method has been successfully applied to the determination of ofloxacin in pharmaceuticals and human urine. The chemiluminescence mechanism of the system is also discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号