首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The co-production of 3-hydroxypropionic acid (3HP) and 1,3-propanediol (PDO) from glycerol was studied using the resting cells of a recombinant Klebsiella pneumoniae J2B strain that overexpresses an aldehyde dehydrogenase (KGSADH). Active biomass was produced in a mineral salt medium containing yeast extract and glycerol under a range of aeration conditions, and shifted to potassium phosphate buffer containing glycerol for bioconversion. The microaerobic or anaerobic conditions were favorable for both the production of active biomass and subsequent bioconversion. At the flask level, the recombinant strain (2.0?g?CDW/L) grown under microaerobic conditions produced 43.2?mM 3HP and 59.0?mM PDO from glycerol (117?mM) in 30?min with a cumulative yield of 0.87?(mol/mol). The fed-batch bioconversion, which was performed in a 1.5-L bioreactor with 1.0?g?CDW/L at a constant pH?7.0 under anaerobic conditions, resulted in 125.6?mM 3HP and 209.5?mM PDO in 12?h with a cumulative overall productivity, yield, and maximum specific production rate of 27.9?mmol/L/h, 0.71 (mol/mol), and 128.5?mmol/g CDW/h, respectively. Lactate, succinate and 2,3-butanediol were the major by-products, whereas the production of acetate and ethanol was marginal. This is the first report of the simultaneous production of 3HP and PDO from glycerol using a resting cell system.  相似文献   

2.
Aims: The feasibility of the continuous production of a valuable bioplastic raw material, namely 1,3‐propanediol (1,3‐PDO) from biodiesel by‐product glycerol, using immobilized cells was investigated. In addition, the effect of hydraulic retention time (HRT) was also analysed. Methods and Results: Ceramic balls and ceramic rings were used for the immobilization of a locally isolated strain; Klebsiella pneumoniae (GenBank no. 27F HM063413 ). HRT of 1 h is the best one in terms of volumetric production rate (g 1,3‐PDO l?1 h?1). The results indicated that ceramic‐based cell immobilization achieved a 2‐fold higher production rate (10 g 1,3‐PDO l?1 h?1) in comparison with suspended cell system (4·9 g 1,3‐PDO l?1 h?1). Conclusions: Continuous cultures with immobilized cells revealed that 1,3‐PDO production was more effective and more stable than suspended culture systems. Furthermore, cell immobilization had also obvious benefits especially for resistance of the production for extreme conditions (high organic loading rates, cell washouts). The results were important for understanding the significance of continuous immobilization process among other well‐known 1,3‐PDO fermentation processes. Significance and Impact of the Study: This work is a promising process for further studies, as the immobilized micro‐organism was able to reach high volumetric production rates at short HRT, it has an important role in tolerating and converting glycerol during fermentation. Therefore, HRT is a very significant operational parameter (P value <0·05) directly affecting the bioreactor performance and production rate.  相似文献   

3.
Phosphoserine aminotransferase (SerC) from Escherichia coli (E. coli) MG1655 is engineered to catalyze the deamination of homoserine to 4‐hydroxy‐2‐ketobutyrate, a key reaction in producing 1,3‐propanediol (1,3‐PDO) from glucose in a novel glycerol‐independent metabolic pathway. To this end, a computation‐based rational approach is used to change the substrate specificity of SerC from l ‐phosphoserine to l ‐homoserine. In this approach, molecular dynamics simulations and virtual screening are combined to predict mutation sites. The enzyme activity of the best mutant, SerCR42W/R77W, is successfully improved by 4.2‐fold in comparison to the wild type when l ‐homoserine is used as the substrate, while its activity toward the natural substrate l ‐phosphoserine is completely deactivated. To validate the effects of the mutant on 1,3‐PDO production, the “homoserine to 1,3‐PDO” pathway is constructed in E. coli by coexpression of SerCR42W/R77W with pyruvate decarboxylase and alcohol dehydrogenase. The resulting mutant strain achieves the production of 3.03 g L?1 1,3‐PDO in fed‐batch fermentation, which is 13‐fold higher than the wild‐type strain and represents an important step forward to realize the promise of the glycerol‐independent synthetic pathway for 1,3‐PDO production from glucose.  相似文献   

4.
A novel Lactobacillus panis PM1 isolate was found to be capable of converting glycerol to 1,3-propanediol (1,3-PDO), an increasingly valuable commodity chemical. In this study the effects of various process parameters, including glucose and glycerol concentrations, inoculum size, temperature, aeration, pH, and carbon source were examined to determine the optimal conditions for the production of 1,3-PDO using a culture method simulating late log to early stationary phases. Inoculum size did not influence the production of 1,3-PDO, and temperature variance showed similar 1,3-PDO production between 25 and 37 °C under the examined conditions. Glycerol concentration and pH played a primary role in the final concentration of 1,3-PDO. The highest production occurred at 150–250 mM glycerol when 50 mM glucose was available. Alkaline initial conditions (pH 9–10) stimulated the production of 1,3-PDO which concurrently occurred with increased acetic acid production. Under these conditions, 213.6 mM of 1,3-PDO were produced from 300 mM glycerol (conversion efficiency was 71 %). These observations indicated that the production of 1,3-PDO was associated with the shift of the metabolic end-product ethanol to acetic acid, and that this shift resulted in an excess concentration of NADH available for the processing of glycerol to 1,3-PDO.  相似文献   

5.
Growth of biodiesel industries resulted in increased coproduction of crude glycerol which is therefore becoming a waste product instead of a valuable ‘coproduct’. Glycerol can be used for the production of valuable chemicals, e.g. biofuels, to reduce glycerol waste disposal. In this study, a novel bacterial strain is described which converts glycerol mainly to ethanol and hydrogen with very little amounts of acetate, formate and 1,2‐propanediol as coproducts. The bacterium offers certain advantages over previously studied glycerol‐fermenting microorganisms. Anaerobium acetethylicum during growth with glycerol produces very little side products and grows in the presence of maximum glycerol concentrations up to 1500 mM and in the complete absence of complex organic supplements such as yeast extract or tryptone. The highest observed growth rate of 0.116 h?1 is similar to that of other glycerol degraders, and the maximum concentration of ethanol that can be tolerated was found to be about 60 mM (2.8 g l?1) and further growth was likely inhibited due to ethanol toxicity. Proteome analysis as well as enzyme assays performed in cell‐free extracts demonstrated that glycerol is degraded via glyceraldehyde‐3‐phosphate, which is further metabolized through the lower part of glycolysis leading to formation of mainly ethanol and hydrogen. In conclusion, fermentation of glycerol to ethanol and hydrogen by this bacterium represents a remarkable option to add value to the biodiesel industries by utilization of surplus glycerol.  相似文献   

6.
In the Klebsiella pneumoniae reduction pathway for 1,3-propanediol (1,3-PD) synthesis, glycerol is first dehydrated to 3-hydroxypropionaldehyde (3-HPA) and then reduced to 1,3-PD with NADH consumption. Rapid conversion of 3-HPA to 1,3-PD is one of the ways to improve the yield of 1,3-PD from glycerol and to avoid 3-HPA accumulation, which depends on enzyme activity of the reaction and the amount of reducing equivalents available from the oxidative pathway of glycerol. In the present study, the yqhD gene, encoding 3-propanediol oxidoreductase isoenzyme from Escherichia coli and the dhaT gene, encoding 3-propanediol oxidoreductase from K. pneumoniae were expressed individually and co-expressed in K. pneumoniae using the double tac promoter expression plasmid pEtac-dhaT-tac-yqhD. The three resultant recombinant strains (K. pneumoniae/pEtac-yqhD, K. pneumoniae/pEtac-dhaT, and K. pneumoniae/pEtac-dhaT-tac-yqhD) were used for fermentation studies. Experimental results showed that the peak values for 3-HPA production in broth of the three recombinant strains were less than 25% of that of the parent strain. Expression of dhaT reduced formation of by-products (ethanol and lactic acid) and increased molar yield of 1,3-PD slightly, while expression of yqhD did not enhance molar yield of 1,3-PD, but increased ethanol concentration in broth as NADPH participation in transforming 3-HPA to 1,3-PD allowed more cellular NADH to be used to produce ethanol. Co-expression of both genes therefore decreased by-products and increased the molar yield of 1,3-PD by 11.8%, by catalyzing 3-HPA conversion to 1,3-propanediol using two cofactors (NADH and NADPH). These results have important implications for further studies involving use of YqhD and DhaT for bioconversion of glycerol into 1,3-PD.  相似文献   

7.
Glycerokinase from Cellulomonas sp. was used to develop biosensor based on flow calorimetry for quantitative analysis of glycerol during bioconversion process. An automatic flow injection analysis device with the glycerol biosensor was built and tested during growth on glycerol of 1,3-propanediol-producing bacteria. The biosensor exhibited an extreme storage and operational stability enabling us to use it for more than 2 years without significant loss of sensitivity. No interference with 1,3-propanediol and fermentation medium was observed. The linear range of glycerol concentration up to 70 mM was extended by developed automatic dilution technique with the aim of automatic online monitoring of microbial process. The analytical system was able to monitor the bioconversion process in a fully automatic way during the whole run with sampling frequency of one sample per 10 min.  相似文献   

8.
Several carbon sources were investigated for the production of 1,3-propanediol (PDO) and 2,3-butanediol (BDO) simultaneously, using an isolated indigenous Klebsiella sp. Ana-WS5. The results indicate that glycerol is a suitable carbon source for both BDO and PDO production. Further investigation suggests that adjustment of the pH could alter the metabolic pathway, which affects the ratio of PDO and BDO obtained. The batch with pH controlled at 7.0 had the highest total diol (PDO + BDO) productivity of 0.86 g/L h and the highest PDO/BDO of 7.67, as compared to a batch with pH controlled at 6.0. However, the batch without pH control could achieve a maximum total diol concentration of 48.1 ± 1.6 g/L and the highest yield of 86 % (total diols produced/glycerol consumed). The effects of pH control on the distribution of PDO and BDO concluded in this study could be further applied to the process design for enhancing PDO or BDO production.  相似文献   

9.
Due to its availability, low‐price, and high degree of reduction, glycerol has become an attractive carbon source for the production of fuels and reduced chemicals. Using the platform we have established from the identification of key pathways mediating fermentative metabolism of glycerol, this work reports the engineering of Escherichia coli for the conversion of glycerol into 1,2‐propanediol (1,2‐PDO). A functional 1,2‐PDO pathway was engineered through a combination of overexpression of genes involved in its synthesis from the key intermediate dihydroxyacetone phosphate (DHAP) and the manipulation of the fermentative glycerol utilization pathway. The former included the overexpression of methylglyoxal synthase (mgsA), glycerol dehydrogenase (gldA), and aldehyde oxidoreductase (yqhD). Manipulation of the glycerol utilization pathway through the replacement of the native E. coli PEP‐dependent dihydroxyacetone kinase (DHAK) with an ATP‐dependent DHAK from C. freundii increased the availability of DHAP allowing for higher 1,2‐PDO production. Analysis of the major fermentative pathways indentified ethanol as a required co‐product while increases in 1,2‐PDO titer and yield were achieved through the disruption of the pathways for acetate and lactate production. Combination of these key metabolic manipulations resulted in an engineered E. coli strain capable of producing 5.6 g/L 1,2‐PDO, at a yield of 21.3% (w/w). This strain also performed well when crude glycerol, a by‐product of biodiesel production, was used as the substrate. The titer and yield achieved in this study were favorable to those obtained with the use of E. coli for the production of 1,2‐PDO from common sugars. Biotechnol. Bioeng. 2011; 108:867–879. © 2010 Wiley Periodicals, Inc.  相似文献   

10.
An efficient downstream process without prior desalination was developed for recovering 1,3‐propanediol (1,3‐PDO) with high purity and yield from broth of a highly productive fed‐batch fermentation of raw glycerol by Clostridium pasteurianum. After removal of biomass and proteins by ultrafiltration, and concentration by water evaporation, 1,3‐PDO was directly recovered from the broth by vacuum distillation with continuous addition and regeneration of glycerol as a supporting agent. Inorganic salts in the fermentation broth were crystallized but well suspended by a continuous flow of glycerol during the distillation process, which prevented salt precipitation and decline of heat transfer. On the other hand, ammonium salt of organic acids were liberated as ammonia gas and free organic acids under vacuum heating. The latter ones formed four types of 1,3‐PDO esters of acetic acid and butyric acid, which resulted in yield losses and low purity of 1,3‐PDO (< 80%). In order to improve the efficiency of final 1,3‐PDO rectification, we examined alkaline hydrolysis to eliminate the ester impurities. By the use of 20% (w/w) water and 2% (w/w) sodium hydroxide, > 99% reduction of 1,3‐PDO esters was achieved. This step conveniently provided free 1,3‐PDO and the sodium salt of organic acids from the corresponding esters, which increased the 1,3‐PDO yield by 7% and prevented a renewed formation of esters. After a single stage distillation from the hydrolyzed broth and a followed active carbon treatment, 1,3‐PDO with a purity of 99.63% and an overall recovery yield of 76% was obtained. No wastewater with high‐salt content was produced during the whole downstream process. The results demonstrated that the monitoring and complete elimination of 1,3‐PDO esters are crucial for the efficient separation of highly pure 1,3‐PDO with acceptable yield from fermentation broth of raw glycerol.  相似文献   

11.
Lin R  Liu H  Hao J  Cheng K  Liu D 《Biotechnology letters》2005,27(22):1755-1759
Addition of 5 mm fumarate to cultures of Klebsiella pneumoniae enhanced the rate of glycerol consumption and the production of 1,3-propanediol (PDO). Compared to the control, the activity of glycerol dehydrogenase increased by 35, 33 and 46%, the activity of glycerol dehydratase increased by 160, 210 and 115%, and the activity of 1,3-propanediol oxidoreductase increased by 25, 39 and 85% when, respectively, 5, 15 and 25 mm fumarate were provided. At the same time, the ratio of NAD+ to NADH decreased by 20, 23 and 29%. Using a 5 l bioreactor with 5 mM fumarate addition, the specific rate of glycerol consumption and the productivity of PDO was 30 mmol/l h and 17 mmol/l h, respectively, both increased by 35% over the control. Revisions requested 15 July 2005; Revisions received 30 August 2005  相似文献   

12.
3-Hydroxypropionaldehyde (3-HPA), an important intermediary metabolite of 1,3-propanediol (PDO) production, would be toxic to the cell growth and led to the abnormal cessation of the fermentation process. In this study, the dhaD gene encoding glycerol dehydrogenase (GDH) and dhaT gene encoding 1,3-propanediol oxidoreductase (PDOR) were overexpressed in Klebsiella pneumoniae ACCC 10082 to decrease the 3-HPA accumulation and increase the coenzyme NADH supply. By the construction of pTD plasmid, GDH and PDOR were both overexpressed and their enzyme activities were increased by 2.6- and 3.2-fold, respectively. The enzyme activity ratio of PDOR/GDHt (glycerol dehydratase) also was increased. On the other hand, NADH production was enhanced and the ratio of NADH/NAD+ exceeded 1 after the inducement of IPTG for the constructed strain. The two factors enhanced the transformation of 3-HPA to PDO. In the batch and fed-batch fermentation by the constructed strain, the peak of 3-HPA accumulation reduced by 52.2% and 33.3%, respectively, compared with the control. The PDO concentration and yield reached 59.2 g/L and 0.48 mol/mol, respectively. Furthermore, the fed-batch fermentation process appeared easier to be regulated. This work is considered helpful for the further understanding on the PDO metabolic mechanism of K. pneumoniae and also useful for the PDO fermentation in a large-scale bioreactor.  相似文献   

13.
To synthesize ethyl‐oleate ester, a complex Ca‐alginate gel co‐entrapped system was prepared. The gel beads contained two kinds of biocatalysts (living yeast cells and a lipase enzyme) and various amounts of glucose (100–400 g/L). These alginate beads dispersed directly in pure oleic acid. To follow the bioconversion of the cell growth, the glucose uptake of yeast cells, the concentration of ethanol inside the gel beads and the ethyl‐oleate concentration in oleic acid phase was monitored. The glucose was quantitatively taken up by yeast cells during 24–72 h, depending on the concentration of glucose. After this 24–72‐hour period, the glucose uptake was stopped. In accordance with changes in glucose concentration, the concentration of ethanol and ethyl‐oleate increased rapidly during the first day of fermentation and thereafter slowed down. It is supposed that the inhibitory effect of produced ethanol would be resolved by co‐immobilization of lipase in the same gel particles. Using lipase, one is able to transform ethanol to ethyl‐oleate, which is soluble in oleic acid. According to the data obtained a minimum of 4 U/mL lipase is required to increase ethyl‐oleate production significantly. Summing up it can be concluded that by means of this system a maximum yield of ethanol and ethyl‐oleate was achieved when gel beads containing 100 g/L glucose and 4 U/mL lipase enzyme were used.  相似文献   

14.
甘油歧化为1,3-丙二醇的代谢及关键酶研究进展   总被引:3,自引:0,他引:3  
微生物发酵生产1,3-丙二醇因对环境友好而成为研究热点。通过对发酵菌种、代谢途径、调节子和关键酶的分析,阐述了微生物转化甘油为1,3-丙二醇的分子机理。尤其对还原途径的限速酶-甘油脱水酶的分子结构及再激活因子进行了详细分析,为菌种的遗传改造提供了理论依据。  相似文献   

15.
微生物发酵生产1,3-丙二醇因对环境友好而成为研究热点。通过对发酵菌种、代谢途径、调节子和关键酶的分析,阐述了微生物转化甘油为1,3-丙二醇的分子机理。尤其对还原途径的限速酶-甘油脱水酶的分子结构及再激活因子进行了详细分析,为菌种的遗传改造提供了理论依据。  相似文献   

16.
Lactobacillus panis PM1 has the ability to produce 1,3-propanediol (1,3-PDO) from thin stillage (TS), which is the major waste material after bioethanol production, and is therefore of significance. However, the fact that L. panis PM1 cannot use glycerol as a sole carbon source presents a considerable problem in terms of utilization of this strain in a wide range of industrial applications. Accordingly, L. panis PM1 was genetically engineered to directly utilize TS as a fermentable substrate for the production of valuable platform chemicals without the need for exogenous nutrient supplementation (e.g., sugars and nitrogen sources). An artificial glycerol-oxidative pathway, comprised of glycerol facilitator, glycerol kinase, glycerol 3-phosphate dehydrogenase, triosephosphate isomerase, and NADPH-dependent aldehyde reductase genes of Escherichia coli, was introduced into L. panis PM1 in order to directly utilize glycerol for the production of energy for growth and value-added chemicals. A pH 6.5 culture converted glycerol to mainly lactic acid (85.43 mM), whereas a significant amount of 1,3-propanediol (59.96 mM) was formed at pH 7.5. Regardless of the pH, ethanol (82.16 to 83.22 mM) was produced from TS fermentations, confirming that the artificial pathway metabolized glycerol for energy production and converted it into lactic acid or 1,3-PDO and ethanol in a pH-dependent manner. This study demonstrates the cost-effective conversion of TS to value-added chemicals by the engineered PM1 strain cultured under industrial conditions. Thus, application of this strain or these research findings can contribute to reduced costs of bioethanol production.  相似文献   

17.
Trigonopsis variabilis D ‐amino acid oxidase (TvDAAO) is an enzyme used in the industrial bioconversion of cephalosporin C (CPC) into 7‐aminocephalosporanic acid, a crucial biosynthetic nucleus for a wide spectrum of semi‐synthetic cephem antibiotics. Using homology modeling and site‐directed mutagenesis, we have previously shown that the TvDAAO variant F54Y possesses improved catalytic activity and thermostability. To further explore its industrial application, the conditions for immobilization of the enzyme were examined in the present investigation. The results showed that entrapment in a calcium alginate (Ca‐alginate) matrix using 2% alginate, 500 mM CaCl2, and 15 min stabilization appeared to be optimal for the immobilization of F54Y. The entrapped enzyme allowed complete CPC conversion. The entrapped enzyme also showed good operational stability and retained at least 90% of its original activity after 20 reaction cycles. To conclude, the entrapment of F54Y in Ca‐alginate appeared to be a simple and efficient biocatalysis system with potential application in the antibiotics industry.  相似文献   

18.
Currently, a variety of feedstock is utilized by metabolically engineered bacteria for the production of bioenergy and biochemicals. Recent studies have shown that glycerol can be used as an alternative feedstock for glucose, considering its higher availability, lower price, and high degree of reduction. Hence, this review focuses on recent developments in the bioconversion of glycerol to bioenergy (ethanol and hydrogen) and biochemicals (1,3-propanediol, 1,2-propanediol, 3-hydroxypropionic acid, succinic acid, lactic acid, polyhydroxyalkanoates and Lphenyl alanine) using metabolically engineered Escherichia coli.  相似文献   

19.
克雷伯氏肺炎杆菌HR526快速合成1,3-丙二醇发酵特性研究   总被引:2,自引:0,他引:2  
研究了实验室筛选的一株高产1,3-丙二醇(PDO)菌株克雷伯氏肺炎杆菌HR526(Klebsiella pneumoniae HR526), 在5 L B. Braun发酵罐进行甘油补料流加发酵30 h, PDO达到91.47 g/L, 胞外代谢通量分析显示, PDO在对数中期通量达到最大, 而乳酸在稳定期通量达到最大。结合酶学检测分析了PDO合成关键酶PDO氧化还原酶(PDOR)、甘油脱水酶(GDHt)和甘油脱氢酶(GDH)酶活的变化, PDO氧化还原酶活性在对数中期达到最高, 甘油脱水酶/甘油脱氢酶在对数期远大于稳定期、衰退期, 与代谢通量变化一致甘油脱水酶/甘油脱氢酶活性比例不均衡是3-HPA对数期积累的原因, PDO合成主要集中在对数期, 是生长偶联的代谢产物。  相似文献   

20.
3‐Hydroxypropionic acid (3‐HP) is an important platform chemical that can be used to synthesize a range of chemical compounds. A previous study demonstrated that recombinant Escherichia coli stains can produce 3‐HP from glycerol in the presence of vitamin B12 (coenzyme B12), when overexpressed with a coenzyme B12‐dependent glycerol dehydratase (DhaB) and an aldehyde dehydrogenase. The present study examined the production of 3‐HP in recombinant Klebsiella pneumoniae strains, which naturally synthesizes vitamin B12 and does not require supplementation of the expensive vitamin. The NAD+‐dependent gamma‐glutamyl‐gamma‐aminobutyraldehyde dehydrogenase (PuuC) of K. pneumoniae alone or with its DhaB was overexpressed homologously, and two major oxidoreductases, DhaT and YqhD, were disrupted. Without vitamin B12 addition, the recombinant K. pneumoniae ΔdhaTΔyqhD overexpressing PuuC could produce ~3.8 g/L 3‐HP in 12 h of flask culture. However, this was possible only under the appropriate aeration conditions; 1,3‐propanediol (1,3‐PDO) (instead of 3‐HP) was mainly produced when aeration was insufficient, whereas a very small amount of both 3‐HP and 1,3‐PDO were produced when aeration was too high. The production of a small amount of 3‐HP under improper aeration conditions was attributed to either slow NAD+ regeneration (under low aeration) or reduced vitamin B12 synthesis (under high aeration). In a glycerol fed‐batch bioreactor experiment under a constant DO of 5%, the strain, K. pneumoniae ΔdhaTΔyqhD, overexpressing both PuuC and DhaB could produce >28 g/L 3‐HP in 48 h with a yield of >40% on glycerol. Only small amount of 3‐HP was produced when cultivation was carried out at a constant aeration of 1 vvm or constant 10% DO. These results show that K. pneumoniae is potentially useful for the production of 3‐HP in an economical culture medium that does not require vitamin B12. The results also suggest that the aeration conditions should be optimized carefully for the efficient production of 3‐HP while using this strain. Biotechnol. Bioeng. 2013; 110: 511–524. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号