首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple, accurate, precise and validated spectrofluorimetric method is proposed for the determination of two cephalosporins, namely, cefadroxile (cefa) and cefuroxime sodium (cefu) in pharmaceutical formulations. The method is based on a reaction between cephalosporins with 1,2‐naphthoquinone‐4‐sulfonate in alkaline medium, to form fluorescent derivatives that are extracted with chloroform and subsequently measured at 610 and 605 nm after excitation at 470 and 460 nm for cefa and cefu respectively. The optimum experimental conditions have been studied. Beer's law is obeyed over the concentrations of 20–70 ng/mL and 15–40 ng/mL for cefa and cefu, respectively. The detection limits were 4.46 ng/mL and 3.02 ng/mL with a linear regression correlation coefficient of 0.9984 and 0.998, and recoveries ranging 97.50–109.96% and 95.73–98.89% for cefa and cefu, respectively. The effects of pH, temperature, reaction time, 1,2‐naphthoquinone‐4‐sulfonic concentration and extraction solvent on the determination of cefa and cefu, have been examined. The proposed method can be applied for the determination of cefa and cefu in pharmaceutical formulations in quality control laboratories. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
A new, sensitive and selective spectrofluorimetric method has been developed for the determination of duloxetine (DLX) in capsule and spiked human plasma. DLX, as a secondary amine compound, reacts with 7‐chloro‐4‐nitrobenzofurazon (NBD‐Cl), a highly sensitive fluorogenic and chromogenic reagent used in many investigations. The method is based on the reaction between the drug and NBD‐Cl in borate buffer at pH 8.5 to yield a highly fluorescent derivative that is measured at 523 nm after excitation at 478 nm. The fluorescence intensity was directly proportional to the concentration over the range 50–250 ng/mL. The reaction product was also measured spectrophotometrically. The relation between the absorbance at 478 nm and the concentration is rectilinear over the range 1.0–12.0 µg/mL. The methods were successfully applied for the determination of this drug in pharmaceutical dosage form. The spectrofluorimetric method was also successfully applied to the determination of duloxetine in spiked human plasma. The suggested procedures could be used for the determination of DLX in pure form, capsules and human plasma being sensitive, simple and selective. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
A sensitive and accurate spectrofluorimetric method has been developed for the determination of sulpiride in pharmaceutical preparations and human plasma. The developed method is based on the derivatization reaction of 2‐cyanoacetamide with sulpiride in 30% ammonical solution. The fluorescent derivatized reaction product exhibited maximum fluorescence intensity at 379 nm after excitation at 330 nm. The optimum conditions for derivatization reactions were studied and the fluorescence intensity versus concentration plot was found to be linear over the concentration range 0.2–20.0 µg/mL with a correlation coefficient of 0.9985. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.82 and 2.73 ng/mL, respectively. The proposed method was validated according to ICH guidelines. The effects of common excipients and co‐administered drugs were also studied. The accuracy of the method was checked using the standard addition method and percent recoveries were found to be in the range of 99.00–101.25% for pharmaceutical preparations and 97.00–97.80% for spiked human plasma. The method was successfully applied to commercial formulations and the results obtained for the proposed method were compared with a high‐performance liquid chromatography reference method and statistically evaluated using the Student's t‐test for accuracy and the variance ratio F‐test for precision. A reaction pathway was also proposed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
A sensitive spectrofluorimetric method was developed for the determination of tizanidine in human plasma, urine and pharmaceutical preparations. The method is based on reaction of tizanidine with 1‐dimethylaminonaphthalene‐5‐sulphonyl chloride (dansyl chloride) in an alkaline medium to form a highly fluorescent derivative that was measured at 511 nm after excitation at 383 nm. The different experimental parameters affecting the fluorescence intensity of tizanidine was carefully studied and optimized. The fluorescence–concentration plots were rectilinear over the ranges 50–500 and 20–300 ng/mL for plasma and urine, respectively, detection limits of 1.81 and 0.54 ng/mL and quantification limits of 5.43 and 1.62 ng/mL for plasma and urine, respectively. The method presents good performance in terms of linearity, detection and quantification limits, precision, accuracy and specificity. The proposed method was successfully applied for the determination of tizanidine in pharmaceutical preparations. The results obtained were compared with a reference method, using t‐ and F‐tests. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
A simple, highly sensitive and validated spectrofluorimetric method was applied in the determination of clonazepam (CLZ). The method is based on reduction of the nitro group of clonazepam with zinc/CaCl2, and the product is then reacted with 2‐cyanoacetamide (2‐CNA) in the presence of ammonia (25%) yielding a highly fluorescent product. The produced fluorophore exhibits strong fluorescence intensity at ?em = 383 nm after excitation at ?ex = 333 nm. The method was rectilinear over a concentration range of 0.1–0.5 ng/mL with a limit of detection (LOD) of 0.0057 ng/mL and a limit of quantification (LOQ) of 0.017 ng/mL. The method was fully validated and successfully applied to the determination of CLZ in its tablets with a mean percentage recovery of 100.10 ± 0.75%. Method validation according to ICH Guidelines was evaluated. Statistical analysis of the results obtained using the proposed method was successfully compared with those obtained using a reference method, and there was no significance difference between the two methods in terms of accuracy and precision. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
A simple and sensitive spectrofluorimetric method has been developed and validated for the determination of oseltamivir phosphate (OST) in pharmaceutical preparations. The method is based on the reaction between oseltamivir phosphate and o‐phthalaldehyde in presence of 2‐mercapto‐ethanol in borate buffer, pH 10.8, to give a highly fluorescent product measured at 450 nm after excitation at 336 nm. The different experimental parameters affecting the development and stability of the reaction product were studied and optimized. The fluorescence intensity–concentration plot is rectilinear over the range 0.05–1.0 µg/mL, with a lower detection limit of 5 ng/mL and limit of quantitation of 16 ng/mL. The developed method was successfully applied to the analysis of the drug in its commercial capsules and suspension, mean recoveries of OST were 99.97 ± 1.67% and 100.17 ± 1.18%, respectively (n = 3). Statistical comparison of the results obtained by the proposed and comparison method revealed no significant difference in the performance of the two methods regarding accuracy and precision. The proposed method was further extended to in vitro determination of the studied drug in spiked human plasma as a preliminary investigation; the mean recovery (n = 3) was 98.68 ± 5.8%. A reaction pathway was postulated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
We describe the development and validation of a new, simple, sensitive and cost‐effective method for the determination of ceftriaxone in commercial formulations and spiked human plasma. The method proposes the conversion of ceftriaxone into a fluorescent product by reacting with ortho‐phthalaldehyde (OPA) in the presence of sulfite at room temperature. The reaction medium is buffered to pH 10 using borate buffer. The derivatized reaction product is highly fluorescent and exhibits maximum fluorescence intensity at λem = 386 nm after excitation at λex = 324 nm. The experimental parameters affecting progress of the derivatization reaction were carefully studied and optimized. Under optimum experimental conditions, the method has an excellent correlation coefficient of 0.9984 with a broad linear range of 0.4?20 µg/mL. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 1.30 × 10?3 and 3.90 × 10?3 µg/mL, respectively. The interference effects of common excipients on the quantification of drug were investigated and no interference effect was observed. The proposed method has been successfully applied to the determination of ceftriaxone in pharmaceutical formulations and spiked human plasma samples. The method has been validated statistically through percent recovery studies using standard addition and by comparison with a reference HPLC method. The developed method exhibits excellent inter‐ and intraday precision. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A reverse‐phase high‐performance liquid chromatographic (RP‐HPLC) method was developed and validated for the simultaneous estimation of levodopa and carbidopa in bulk and pharmaceutical formulations. Chromatographic separation was achieved by using a C18 reverse‐phase column and a mixture of an aqueous phase (10 mM potassium dihydrogen phosphate buffer, pH 4.0) and methanol (90:10 v/v) as the mobile phase. Quantitative analysis of levodopa and carbidopa was performed using a fluorescence detector at an excitation wavelength of 280 nm and an emission wavelength of 310 nm. The method was linear between 5 and 500 ng/mL for both levodopa and carbidopa. The detection limits for levodopa and carbidopa were 0.30 and 0.60 ng/mL, respectively, whereas the quantitation limit was 0.80 ng/mL for levodopa and 1.2 ng/mL for carbidopa. The method demonstrated good and consistent recoveries (99.63–100.80% for levodopa and 98.97–100.94% for carbidopa) with low interday and intraday relative standard deviation. The validated method was successfully applied to quantify levodopa and carbidopa simultaneously in a pharmaceutical formulation. The method was found to be precise, sensitive and accurate for the simultaneous determination levodopa and carbidopa in bulk and pharmaceutical formulations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
A simple, rapid and highly sensitive spectrofluorimetric method was developed for determination of a novel type of dopamine receptor antagonist LE300 in mouse plasma. The method is based on measuring the native fluorescence of LE‐300 in methanol at 343 nm after excitation at 280 nm. The fluorescence concentration plot was rectilinear over the range of 3.5–100 ng/mL with a lower detection limit of 1.0 ng/mL and quantification limit of 3.5 ng/mL. The method was statistically validated for linearity, accuracy, precision and selectivity according to the International Conference on Harmonization guidelines. The accuracy and precision results was expressed as % recovery and relative standard deviation (RSD). The accuracy for LE‐300 was in the range 95.5–103.6% and RSD values were in the range of 0.21–1.55% of the theoretical value. The method was successfully applied to the analysis of LE‐300 in mice plasma. The results were compared statistically with those obtained by the reported method and were found to be in good agreement, which could be applied in a pharmacokinetic study. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A sensitive and simple spectrofluorimetric method has been developed and validated for the determination of the anti‐epileptic drug carbamazepine (CBZ) in its dosage forms. The method was based on a nucleophilic substitution reaction of CBZ with 4‐chloro‐7‐nitrobenzo‐2‐ oxa‐1,3‐diazole (NBD‐Cl) in borate buffer (pH 9) to form a highly fluorescent derivative that was measured at 530 nm after excitation at 460 nm. Factors affecting the formation of the reaction product were studied and optimized, and the reaction mechanism was postulated. The fluorescence–concentration plot is rectilinear over the range of 0.6–8 µg/mL with limit of detection of 0.06 µg/mL and limit of quantitation of 0.19 µg/mL. The method was applied to the analysis of commercial tablets and the results were in good agreement with those obtained using the reference method. Validation of the analytical procedures was evaluated according to ICH guidelines. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A sensitive, simple and rapid spectrofluorimetric method was developed for the determination of nomifensine in human plasma and urine. The present method was based on the derivatization by fluorescamine in phosphate buffer at pH 4.0 to produce a highly fluorescent product which was measured at 488 nm (excitation at 339 nm). The method was validated according to the ICH guidelines with respect to linearity, limit of detection, limit of quantification, accuracy, precision, recovery and robustness. The assay was linear over the concentration ranges 100–2,000 and 50–2,000 ng/mL for plasma and urine, respectively. The limits of detection were calculated to be 13.9 and 7.5 ng/mL for plasma and urine, respectively. The method was successfully applied to the analysis of the drug in human plasma and urine. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A simple, sensitive and rapid spectrofluorimetric method was developed for the determination of esomeprazole (EMZ) and pantoprazole (PRZ) in their pharmaceutical formulations and human plasma. The proposed method is based on the fluorescence spectral behavior of EMZ in methanol in the presence of 0.1 m NaOH containing 0.5% methyl cellulose (MC) at 306/345 nm. The fluorescence intensity of EMZ was enhanced about 1.3‐fold and good linearity in the range 0.4–4.0 µg/mL with a lower detection limit of 0.04 µg/mL and lower quantification limit of 0.14 µg/mL. For PRZ, its methanolic solution exhibited marked native fluorescence at 290/325 nm after enhancement (about 2.1‐ or 1.4‐fold) using either 0.025% sodium dodecyl sulfate (SDS) or 0.05% MC in the presence of 0.2 m borate buffer of pH 9.5. The fluorescence–concentration plots of PRZ were rectilinear over the ranges 0.2–2.0 and 0.3–3.0 µg/mL with lower detection limits of 0.02 and 0.03 µg/mL and lower quantification limits of 0.07 and 0.09 µg/mL using sodium dodecyl sulfate and MC, respectively. The method was successfully applied to the analysis of EMZ and PRZ in their commercial dosage forms and the results were in good agreement with those obtained with the comparison method. Furthermore, in a preliminary investigation, the proposed method was extended to the in vitro determination of the two drugs in spiked human plasma and the results were satisfactory. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
A new simple, accurate and sensitive sequential injection analysis chemiluminescence (CL) detection method for the determination of cefditoren pivoxil (CTP) has been developed. The developed method was based on the enhancement effect of silver nanoparticles on the CL signal arising from a luminol–potassium ferricyanide reaction in the presence of CTP. The optimum conditions relevant to the effect of luminol, potassium ferricyanide and silver nanoparticle concentrations were investigated. The proposed method showed linear relationships between relative CL intensity and the investigated drug concentration at the range 0.001–5000 ng/mL, (r = 0.9998, n = 12) with a detection limit of 0.5 pg/mL and quantification limit of 0.001 ng/mL. The relative standard deviation was 1.6%. The proposed method was employed for the determination of CTP in bulk drug, in its pharmaceutical dosage forms and biological fluids such as human serum and urine. The interference of some common additive compounds such as glucose, lactose, starch, talc and magnesium stearate was investigated. In addition, the interference of some related cephalosporins was tested. No interference was recorded. The obtained sequential injection analysis‐CL results were statistically compared with those from a reported method and did not show any significant differences. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
A simple, sensitive and rapid flow injection analysis (FIA) method with resonance light scattering (RLS) was described for the determination of propafenone (PPF). The method was based on the ion‐association reaction of 12‐tungstophosphoric acid (TP) with propafenone. In pH 1.0 acidic medium, TP reacted with PPF to form an ion‐associate complex, which resulted in a significant enhancement of RLS intensity. The maximum scattering peak was located at 340 nm, the RLS intensity was proportional to the concentration of PPF in the range 0.003–9.0 µg/mL, and the detection limit (3σ) of 1.0 ng/mL was obtained at a sampling rate of 60 samples/h. The feasible reaction conditions and FIA parameters for the system were optimized. The method proposed in this paper shows satisfactory reproducibility with a relative standard deviation (RSD) of 2.1% for 10 successive determinations of 2.0 µg/mL PPF. The present method had been successfully applied to the determination of PPF in serum samples and pharmaceutical samples. The results obtained were in agreement with the method used in the Chinese Pharmacopoeia. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
A novel, quick, simple and highly sensitive spectrofluorimetric method was developed and validated for the determination of sitagliptin (SG) in its pharmaceutical formulations. The proposed method is based on investigation of the fluorescence spectral behavior of sitagliptin in an SDS micellar system. In an aqueous solution of phosphate buffer pH 4.0, the fluorescence intensity of SG in the presence of SDS was greatly enhanced, by 200%, i.e. twofold enhancement. The fluorescence intensity of SG was measured at 300 nm after excitation at 270 nm. The method showed good linearity in the range 0.03–10.0 µg/mL with a good correlation coefficient (r = 0.9998). The limits of detection and quantitation values were 5.31 and 16.1 ng/mL, respectively. The proposed method was successfully applied to the analysis of SG in its single and co‐formulated commercial tablets; the results were in good agreement with those obtained using a reference method. Application of the proposed method was extended to stability studies of SG after exposure to different forced degradation conditions according to the ICH guidelines, such as acidic, alkaline, thermal, photo‐ and oxidative stress. The chemical structure of certain potential degradation products (DPs) were investigated using LC‐MS. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Two simple, selective and accurate methods were developed and validated for the determination of brimonidine tartrate (BT) in pure state and pharmaceutical formulations. Both methods are based on the coupling of the drug with 4‐chloro‐7‐nitro‐2,1,3‐benzoxadiazole in borate buffer (pH 8.5) at 70 °C and measurement of the reaction product spectrophotometrically at 407 nm (method I) or spectrofluorimetrically at 528 nm upon excitation at 460 nm (method II). The calibration graphs were rectilinear over the concentration ranges of 1.0–16.0 and 0.1–4.0 µg/mL with lower detection limits of 0.21 and 0.03, and lower quantification limits of 0.65 and 0.09 µg/mL for methods I and II, respectively. Both methods were successfully applied to the analysis of commercial ophthalmic solution with mean recovery of 99.50 ± 1.00 and 100.13 ± 0.71%, respectively. Statistical analysis of the results obtained by the proposed methods revealed good agreement with those obtained using a comparison method. The proposed spectrofluorimetric method was extended to a stability study of BT under different ICH‐outlined conditions such as alkaline, acidic, oxidative and photolytic degradation. Furthermore, the kinetics of oxidative degradation of the drug was investigated and the apparent first‐order reaction rate constants, half‐life times and Arrhenius equation were estimated. The proposed methods are practical and valuable for routine applications in quality control laboratories for the analysis of BT. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A simple, rapid and sensitive chemiluminescent (CL) method for the assay of venlafaxine (VEN) in pharmaceutical formulations and serum samples by a two‐chip device is proposed. The method is based on the reaction of this drug with a tris(2,2′‐bipyridyl) ruthenium(II)–peroxydisulphate CL system. The optimum chemical conditions for CL emission were investigated. The calibration graph was linear for the concentration range 0.02–8.0 µg/mL. The detection and quantification limits were found to be 0.006 and 0.018 µg/mL, respectively, while the relative standard deviation (RSD) was <2.0%. The present CL procedure was applied to the determination of VEN in pharmaceutical formulations and serum samples; the recovery levels were in the range 96.5–101.2%. The results suggest that the method is unaffected by the presence of common formulation excipients found in these samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
A new, specific and sensitive reversed‐phase high‐performance liquid chromatography method was developed for the simultaneous determination of metolazone (MET) and losartan potassium (LOS). Good chromatographic separation was achieved within 6.0 min on a 150 × 4.6 mm i.d., 5 µm Waters, Ireland and ProDIGY 5 ODS 3 100 A column. A mobile phase containing a mixture of methanol and 0.02 M phosphate buffer (65:35, v/v) at pH 3.0 was used. The analysis was performed at a flow rate of 1 mL/min with fluorescence detection at 410 nm after excitation at 230 nm. Aspirin (ASP) was used as an internal standard. The proposed method was rectilinear over 2.0–40.0 (MET) and 40.0–800.0 ng/mL (LOS), with limits of detection of 0.22 and 4.52 ng/mL and limits of quantification of 0.68 and 13.70 ng/mL for MET and LOS, respectively. The method was successfully applied for the simultaneous analysis of the studied drugs in their laboratory‐prepared mixtures, single tablets and co‐formulated tablets. Moreover, the method was applied to an in vitro drug release (dissolution) test. The method was further extended to the determination of LOS in spiked human plasma. Statistical evaluation and comparison of data obtained using the proposed and comparison methods revealed no significant difference between the two methods in addition to good accuracy and precision for the proposed method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
A simple and rapid flow‐injection chemiluminescence method has been developed for the determination of dithiocarbamate fungicide thiram based on the chemiluminescence reaction of thiram with ceric sulfate and quinine in aqueous sulfuric acid. The present method allowed the determination of thiram in the concentration range of 7.5–2500 ng/mL and the detection limit (signal‐to‐noise ratio = 3) was 7.5 ng/mL with sample throughput of 120/h. The relative standard deviation was 2.5% for 10 replicate analyses of 500 ng/mL thiram. The effects of foreign species including various anions and cations present in water at environmentally relevant concentrations and some pesticides were also investigated. The proposed method was applied to determine thiram in spiked natural waters using octadecyl bonded phase silica (C18) cartridges for solid‐phase extraction. The recoveries were in the range 99 ± 1 to 104 ± 1%. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
A highly sensitive, simple and rapid spectrofluorimetric method was developed for the determination of amisulpride (AMS) and bumidazone (BUM) in tablet form. The proposed method is based on measuring the native fluorescence of the studied drugs in methanol at 360 and 344 nm after excitation at 276 and 232 nm for AMS and BUM, respectively. The fluorescence–concentration plots were rectilinear over the ranges of 5.0–60.0 ng/mL for AMS and 0.5–5.0 µg/mL for BUM. The lower detection limits were 0.70 ng/mL and 0.06 µg/mL, and the lower quantification limits were 2.0 ng/mL and 0.18 µg/mL for AMS and BUM, respectively. The method was successfully applied for the analysis of AMS and BUM in commercial tablets. Statistical evaluation and comparison of the data obtained using the proposed and comparison methods revealed good accuracy and precision for the proposed method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号