首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
The human sacrum is sexually dimorphic, with males being larger than females in most dimensions. Previous studies, though, suggest that females may have a longer costal process of the first sacral vertebra (S1) than males. However, these studies neither quantified nor tested statistically the costal process of S1. This study compares S1 with the five lumbar vertebrae (L1 to L5) for a number of metric dimensions, including costal process length. Four issues are addressed, the: 1) hypothesis that females have a longer costal process of S1 than males; 2)hypothesis that homologous structures (i.e., costal processes of L1 to S1) differ in their direction of sexual dimorphism; 3) importance of the costal process of S1 to the obstetrical capacity of the pelvis; and 4) evolution of sexual dimorphism in costal process length of S1. One hundred ninety-seven individuals, including males and females of American blacks and whites, from the Hamann-Todd and Terry Collections were studied. Results show that males are significantly larger than females for most vertebral measurements, except that females have a significantly longer costal process of S1 than males. Costal process length of S1 is positively correlated with the transverse diameter and circumference of the pelvic inlet. The magnitude of sexual dimorphism in costal process length of S1 ranks this measure among the most highly dimorphic of the pelvis. Compared with the humans in this study, australopithecines have a relatively long costal process of S1, but their broad sacrum was not associated with obstetrical imperatives.  相似文献   

2.
3.
4.
5.
There are numerous studies concerning sexual dimorphism in body proportions, but only a few have investigated growth in the relative length of particular segments of the upper and lower limbs during adolescence. The aim of the study is an assessment of sex differences of longitudinal growth in the relative length of the forearm and knee height among adolescents. Sample involved 121 boys and 111 girls, participants of the Wroclaw Growth Study, examined annually between 8 and 18 years of age. Sexual dimorphism in six ratios: forearm length and knee height relatively to: trunk, height, and limb length were analyzed using a two‐way analysis of variance with repeated measurements. The sex and age relative to an estimate of maturity timing (3 years before, and after age class at peak height velocity [PHV]) were independent variables. All of the ratios showed significant sex differences in interaction with age relative to age at PHV. The relative length of the forearm, in boys, did not change significantly with the years relative to age at PHV, whereas in girls, was the lowest in the two first age classes and afterward significantly increased just 1 year before and during the adolescent growth spurt, remaining unchanged in further age classes. For relative knee height no clear pattern for sex differences was noticed. It is proposed that relatively longer forearms, particularly in relation to the trunk in girls, could have evolved as an adaptation to more efficient infant carrying and protection during breastfeeding.  相似文献   

6.
In this paper, we examine allometric and sexual-selection explanations for interspecific differences in the amount of sexual dimorphism among 60 primate species. Based on evidence provided by statistical analyses, we reject Leutenegger and Cheverud’s [(1982). Int. J. Primatol.3:387-402] claim that body size alone is the major factor in the evolution of sexual dimorphism. The alternative proposed here is that sexual selection due to differences in the reproductive potential of males and females is the primary cause of sexual dimorphism. In addition, we propose that the overall size of a species determines whether the dimorphism will be expressed as size dimorphism,rather than in some other form.  相似文献   

7.
8.
9.
Differences in body size between conspecific sexes may incur differences in the relative size and/or shape of load-bearing joints, potentially confounding our understanding of variation in the fossil record. More specifically, larger males may experience relatively greater limb joint stress levels than females, unless an increase in weight-related forces is compensated for by positive allometry of articular surface areas. This study examines variation in limb joint size dimorphism (JSD) among extant catarrhines to: 1) determine whether taxa exhibit JSD beyond that expected to simply maintain geometric similarity between sexes, and 2) test whether taxa differ in JSD (relative to body size dimorphism) with respect to differences in limb use and/or phylogeny. "Joint size" was quantified for the distal humerus and distal femur of 25 taxa. Analysis of variance was used to test for differences between sexes (in joint size ratios) and among taxa (in patterns of dimorphism). Multiple regression was used to examine differences in JSD among taxa after accounting for variation in body size dimorphism (BSD) and body size. Although degrees of humeral and femoral JSD tend to be the same within species, interspecific variation exists in the extent to which both joints are dimorphic relative to BSD. While most cercopithecoids exhibit relatively high degrees of JSD (i.e., positive allometry), nonhuman hominoids exhibit degrees of JSD closer to isometry. These results may reflect a fundamental distinction between cercopithecoids and hominoids in joint design. Overall, the results make more sense (from a mechanical standpoint) when adjustments to BSD are made to account for the larger effective female body mass associated with bearing offspring. In contrast to other hominoids, modern humans exhibit relatively high JSD in both the knee and elbow (despite lack of forelimb use in weight support). Estimates of BSD based on fossil limb bones will vary according to the extant analogue chosen for comparison.  相似文献   

10.
11.
Leutenegger and Cheverud (1982, 1985) propose a hypothesis to explain why larger primates are more sexually dimorphic in body weight and canine size. Their hypothesis states that any factor selecting for an evolutionary increase in body size will produce an increase in sexual dimorphism in any character if either heritability or phenotypic variability is greater in males than in females for that character. They cite no evidence for heritability but give some data to suggest that males are, in fact, more variable than females. We test the latter proposition more fully using measurements on the dentitions of platyrrhine primates. Male and female phenotypic variances are not significantly different in most cases. Cases of greater male phenotypic variance are not limited to sexually dimorphic species. We conclude that the hypothesis of Leutenegger and Cheverud does not explain the observed patterns of dental sexual dimorphism, at least in platyrrhines.  相似文献   

12.
  1. In most animals, females are larger than males. Paradoxically, sexual size dimorphism is biased towards males in most mammalian species. An accepted explanation is that sexual dimorphism in mammals evolved by intramale sexual selection. I tested this hypothesis in primates, by relating sexual size dimorphism to seven proxies of sexual selection intensity: operational sex ratio, mating system, intermale competition, group sex ratio, group size, maximum mating percentage (percentage of observed copulations involving the most successful male), and total paternity (a genetic estimate of the percentage of young sired by the most successful male).
  2. I fitted phylogenetic generalised least squares models using sexual size dimorphism as the dependent variable and each of the seven measures of intensity of sexual selection as independent variables. I conducted this comparative analysis with data from 50 extant species of primates, including Homo sapiens, Pan troglodytes, and Gorilla spp.
  3. Sexual dimorphism was positively related to the four measures of female monopolisation (operational sex ratio, mating system, intermale competition, and group sex ratio) and in some cases to group size, but was not associated with maximum mating percentage or total paternity. Additional regression analyses indicated that maximum mating percentage and total paternity were negatively associated with group size.
  4. These results are predicted by reproductive skew theory: in large groups, males can lose control of the sexual behaviour of the other members of the group or can concede reproductive opportunities to others. The results are also consistent with the evolution of sexual size dimorphism before polygyny, due to the effects of natural, rather than sexual, selection. In birds, the study of molecular paternity showed that variance in male reproductive success is much higher than expected by behaviour. In mammals, recent studies have begun to show the opposite trend, i.e. that intensity of sexual selection is lower than expected by polygyny.
  5. Results of this comparative analysis of sexual size dimorphism and sexual selection intensity in primates suggest that the use of intramale sexual selection theory to explain the evolution of polygyny and sexual dimorphism in mammals should be reviewed, and that natural selection should be considered alongside sexual selection as an evolutionary driver of sexual size dimorphism and polygyny in mammals.
  相似文献   

13.
Craniofacial remains (the most abundant identifiable remains in the fossil record) potentially offer important information about body size dimorphism in extinct species. This study evaluates the scaling relationships between body mass dimorphism and different measures of craniofacial dimorphism, evaluating taxonomic differences in the magnitude and scaling of craniofacial dimorphism across higher taxonomic groups. Data on 40 dimensions from 129 primate species and subspecies demonstrate that few dimensions change proportionally with body mass dimorphism. Primates show general patterns of greater facial vs. neurocranial and orbital dimorphism, and greater dimorphism in lengths as opposed to breadths. Within any species, though, different craniofacial dimensions can yield very different reconstructions of size dimorphism. There are significant taxonomic differences in the relationships between size and craniofacial dimorphism among primate groups that can have a significant impact on reconstructions of body mass dimorphism. Hominoids tend to show lower degrees of facial dimorphism proportional to size dimorphism than other primates. This in turn implies that strong craniofacial dimorphism in Australopithecus africanus could imply very strong body size dimorphism, conflicting with the relatively modest size dimorphism inferred from postcrania. Different methods of estimating the magnitude of size dimorphism from craniofacial measurements yield similar results, and yield comparatively low percent prediction errors for a number of dimensions. However, confidence intervals for most estimates are so large as to render most estimates highly tentative.  相似文献   

14.
It has been repeatedly suggested that twinning frequency in most catarrhine primates is approximately the same as in humans, whereas the frequency in the chimpanzee and the gorilla might be higher. This study presents a re-evaluation of the evidence from the pertinent literature. It can be demonstrated that most data on twinning frequency in Old World monkeys and apes should not be used because of their small sample size. A lower limit of 1500 pregnancies is suggested here. If all frequency estimates taken from smaller samples are rejected, only four estimates forMacaca mulatta andPapio hamadryas remain. The estimates range from 0.19 to 0.35% and are in fact lower than the frequencies of most (but necessarily all) human populations. The published birth samples for apes are, however, relatively small, and the resulting twinning rates may not be reliable.  相似文献   

15.
It has been repeatedly suggested that twinning frequency in most catarrhine primates is approximately the same as in humans, whereas the frequency in the chimpanzee and the gorilla might be higher. This study presents a re-evaluation of the evidence from the pertinent literature. It can be demonstrated that most data on twinning frequency in Old World monkeys and apes should not be used because of their small sample size. A lower limit of 1500 pregnancies is suggested here. If all frequency estimates taken from smaller samples are rejected, only four estimates forMacaca mulatta andPapio hamadryas remain. The estimates range from 0.19 to 0.35% and are in fact lower than the frequencies of most (but necessarily all) human populations. The published birth samples for apes are, however, relatively small, and the resulting twinning rates may not be reliable. A republication, occasioned by publisher's errors, of this article that originally appeared in Human Evolution 2: 547–555 (1987). It is recommended that all references to this article be cited from the present publication.  相似文献   

16.
17.
18.
Adolescent exaggeration in female catarrhine primates   总被引:3,自引:0,他引:3  
Adolescent females of 11 primate species display exaggerated versions of the cues to sexual cycle state or fertility which are displayed by adult females: anubis baboons; geladas; Assamese, Barbary, crab-eating, Japanese, and stump-tailed macaques; patas monkeys; gorillas; and humans. These cases are briefly described and a variety of hypotheses is presented and evaluated to account for the adolescent exaggeration. Such exaggeration may be a super-normal sexual stimulus, a barrier to cross-species hybridization, a helpful prop in female:female competition, a passport for transfers, an insurance policy where unpredictable changes of circumstance are likely, or a non-adaptive side-effect of some other phenomenon. The transfer and unpredictability hypotheses seem to apply to the largest number of species, including humans.  相似文献   

19.
Sexual dimorphism in the postcranial skeleton of New World primates   总被引:2,自引:0,他引:2  
This study examines sexual dimorphism in 24 dimensions of the postcranial skeleton of four platyrrhine species: Callithrix jacchus, Saguinus nigricollis, Saimiri sciureus, and Cebus albifrons. The two callitrichid species show a relatively small amount of variation in the degree of sexual dimorphism among the different dimensions. Variation is considerably higher in the two cebid species as reflected by a mosaic pattern of sexual dimorphisms with males being significantly larger than females in some dimensions, and females significantly larger than males in others. In dimensions of the pectoral girdle and limb bones, males and females in each of the two cebid species are essentially scaled versions of each other, with males being peramorphic compared to females. This pattern is primarily the result of time hypermorphosis, i.e. an extension of the growth period in time in males. Rate hypermorphosis, i.e. an increase in the rate of growth in time in males, appears to play an additional role, however, in S. sciureus. By contrast, in dimensions of the true pelvis, sex differences in shape are dissociated from those in size. They are interpreted as the result of acceleration, i.e. increase in rate of shape change in females, as an adaptation to obstetrical functions. Interspecific analyses indicate positive allometry of mean degree of postcranial dimorphism with respect to body size. This coincides with previous findings by Leutenegger and Cheverud [1982, 1985] on the scaling of sexual dimorphism in body weight and canine size, and thus supports their model which posits selection on body size as the prime mover for the evolution of sexual dimorphism.  相似文献   

20.
Morphometric analysis of Professor A.H. Schultz's data on the overall proportions of primates reveals differences between the sexes. Univariate examinations of these data confirm the existence of the spectrum of sexual dimorphism already well known. This spectrum relates mainly to differences in the proportions of the trunk. It has a differential expression with largest differences between the sexes in species such as orangutans and boboons, and smallest in species such as spider monkeys and douroucoulis. Multivariate statistical study of these same data reveal, however, further unsuspected sexual dimorphisms. Although differences between the sexes are only small when measures of the relative lengths of bodily parts are examined, they are big when bodily breadths are studied. Investigation of breadths alone reveals that the primates display two major patterns of sexual dimorphisms and seven unique sexual dimorphisms among the 18 genera examined. Such findings mean that sexual dimorphism of bodily structure is not a single phenomenon with differential expression, a concept widely noted in the literature and most recently associated with social organization. There are several different sexual dimorphisms and this suggests that their causation is likely to be multifactorial with multiple complex interactions among the factors. Some of the sexual dimorphisms must have evolved in parallel a number of times, and, given that chimpanzees, gorillas, and humans each display a different sexual dimorphism, at least some of the evolutionary changes in different sexual dimorphisms must be very recent. The findings even imply the possibility of further unique patterns of sexual dimorphism in some fossils. By further extension, the findings may have some implications for our understanding of nonstructural dimorphisms in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号