共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Tague RG 《American journal of physical anthropology》2007,132(3):395-405
The human sacrum is sexually dimorphic, with males being larger than females in most dimensions. Previous studies, though, suggest that females may have a longer costal process of the first sacral vertebra (S1) than males. However, these studies neither quantified nor tested statistically the costal process of S1. This study compares S1 with the five lumbar vertebrae (L1 to L5) for a number of metric dimensions, including costal process length. Four issues are addressed, the: 1) hypothesis that females have a longer costal process of S1 than males; 2)hypothesis that homologous structures (i.e., costal processes of L1 to S1) differ in their direction of sexual dimorphism; 3) importance of the costal process of S1 to the obstetrical capacity of the pelvis; and 4) evolution of sexual dimorphism in costal process length of S1. One hundred ninety-seven individuals, including males and females of American blacks and whites, from the Hamann-Todd and Terry Collections were studied. Results show that males are significantly larger than females for most vertebral measurements, except that females have a significantly longer costal process of S1 than males. Costal process length of S1 is positively correlated with the transverse diameter and circumference of the pelvic inlet. The magnitude of sexual dimorphism in costal process length of S1 ranks this measure among the most highly dimorphic of the pelvis. Compared with the humans in this study, australopithecines have a relatively long costal process of S1, but their broad sacrum was not associated with obstetrical imperatives. 相似文献
5.
6.
7.
H M McHenry 《American journal of physical anthropology》1978,49(1):15-22
Associated fore- and hindlimb parts of five individuals are known from the hominid Plio-Pleistocene fossil collections in Africa. Four of these have been classified as Australopithecus and show definite evidence that in comparison with humans, forelimbs were relatively large and hindlimbs were relatively small. The fourth individual, placed in the genus Homo, has human proportions. These findings do not necessarily imply locomotor differences: the forelimbs may have been relatively long in Australopithecus simply because they were as yet not completely reduced from their generalized hominoid ancestral state. 相似文献
8.
9.
Christopher B. Ruff 《American journal of physical anthropology》1995,98(4):527-574
A complex of traits in the femur and pelvis of Homo ereclus and early “erectus-like” specimens has been described, but never satisfactorily explained. Here the functional relationships between pelvic and femoral structure in humans are explored using both theoretical biomechanical models and empirical tests within modern samples of diverse body form (Pecos Amerindians, East Africans). Results indicate that a long femoral neck increases mediolateral bending of the femoral diaphysis and decreases gluteal abductor and hip joint reaction forces. Increasing biacetabular breadth along with femoral neck length further increases M-L bending of the femoral shaft and maintains abductor and joint reaction forces at near “normal” levels. When compared to modern humans, Homo erectus and early “erectus-like” specimens are characterized by a long femoral neck and greatly increased M-L relative to A-P bending strength of the femoral shaft, coupled with no decrease in hip joint size and a probable increase in abductor force relative to body size. All of this strongly suggests that biacetabular breadth as well as femoral neck length was relatively large in early Homo. Several features preserved in early Homo partial hip bones also indicate that the true (lower) pelvis was very M-L broad, as well as A-P narrow. This is similar to the lower pelvic shape of australopithecines and suggests that nonrotational birth, in which the newborn's head is oriented transversely through the pelvic outlet, characterized early Homo as well as Australopithecus. Because M-L breadth of the pelvis is constrained by other factors, this may have limited increases in cranial capacity within Homo until rotational birth was established during the late Middle Pleistocene. During or after the transition to rotational birth biacetabular breadth decreased, reducing the body weight moment arm about the hip and allowing femoral neck length (abductor moment arm) to also decrease, both of which reduced M-L bending of the proximal femoral shaft. Variation in femoral structural properties within early Homo and other East African Early Pleistocene specimens has several taxonomic and phylogenetic implications. © 1995 Wiley-Liss, Inc. 相似文献
10.
Robert G. Tague 《American journal of physical anthropology》2009,138(4):429-438
High assimilation sacrum is fusion of the caudal‐most lumbar vertebra to the first sacral vertebra. Previous studies have shown that high assimilation is associated with clinical problems, including obstetrical difficulty. This study used adult American males (n = 1,048) and females (n = 1,038) of the Hamann–Todd and Terry skeletal collections to determine the prevalence of high assimilation and its effect on pelvic size, and to consider the obstetrical and evolutionary implications of high assimilation. The prevalence of high assimilation in this sample is 6.3%, with males and females not differing significantly from one another in their prevalence. This prevalence is near the median for that reported in 41 other samples. In both males and females, individuals with high assimilation have significantly longer anteroposterior and posterior sagittal diameters of the inlet, and shorter sacrum compared to those with a nonassimilated sacrum. Females with high assimilation have a significantly narrower sacral angulation (i.e., reduced inclination of ventral axis of sacrum), and shorter posterior sagittal diameter of the outlet compared to those with a nonassimilated sacrum. A short posterior sagittal diameter of the outlet is associated with childbirth difficulty. As high assimilation is partial homeotic transformation of a lumbar vertebra, this study supports previous research that homeotic transformation of vertebrae is selectively disadvantageous. Am J Phys Anthropol, 2009. © 2008 Wiley‐Liss, Inc. 相似文献
11.
12.
Previous analyses of hand morphology in Australopithecus afarensis have concluded that this taxon had modern human‐like manual proportions, with relatively long thumbs and short fingers. These conclusions are based on the A.L.333 composite fossil assemblage from Hadar, Ethiopia, and are premised on the ability to assign phalanges to a single individual, and to the correct side and digit. Neither assignment is secure, however, given the taphonomy and sample composition at A.L.333. We use a resampling approach that includes the entire assemblage of complete hand elements at Hadar, and takes into account uncertainties in identifying phalanges by individual, side and digit number. This approach provides the most conservative estimates of manual proportions in Au. afarensis. We resampled hand long bone lengths in Au. afarensis and extant hominoids, and obtained confidence limits for distributions of manual proportions in the latter. Results confirm that intrinsic manual proportions in Au. afarensis are dissimilar to Pan and Pongo. However, manual proportions in Au. afarensis often fall at the upper end of the distribution in Gorilla, and very lower end in Homo, corresponding to disproportionately short thumbs and long medial digits in Homo. This suggests that manual proportions in Au. afarensis, particularly metacarpal proportions, were not as derived towards Homo as previously described, but rather are intermediate between gorillas and humans. Functionally, these results suggest Au. afarensis could not produce precision grips with the same efficiency as modern humans, which may in part account for the absence of lithic technology in this fossil taxon. Am J Phys Anthropol 152:393–406, 2013. © 2013 Wiley Periodicals, Inc. 相似文献
13.
14.
Helen K. Kurki 《American journal of physical anthropology》2013,151(1):88-101
Obstetric selection acts on the female pelvic canal to accommodate the human neonate and contributes to pelvic sexual dimorphism. There is a complex relationship between selection for obstetric sufficiency and for overall body size in humans. The relationship between selective pressures may differ among populations of different body sizes and proportions, as pelvic canal dimensions vary among populations. Size and shape of the pelvic canal in relation to body size and shape were examined using nine skeletal samples (total female n = 57; male n = 84) from diverse geographical regions. Pelvic, vertebral, and lower limb bone measurements were collected. Principal component analyses demonstrate pelvic canal size and shape differences among the samples. Male multivariate variance in pelvic shape is greater than female variance for North and South Africans. High‐latitude samples have larger and broader bodies, and pelvic canals of larger size and, among females, relatively broader medio‐lateral dimensions relative to low‐latitude samples, which tend to display relatively expanded inlet antero‐posterior (A‐P) and posterior canal dimensions. Differences in canal shape exist among samples that are not associated with latitude or body size, suggesting independence of some canal shape characteristics from body size and shape. The South Africans are distinctive with very narrow bodies and small pelvic inlets relative to an elongated lower canal in A‐P and posterior lengths. Variation in pelvic canal geometry among populations is consistent with a high degree of evolvability in the human pelvis. Am J Phys Anthropol 151:88–101, 2013. © 2013 Wiley Periodicals, Inc. 相似文献
15.
A partial skeleton from Hadar, Ethiopia (A.L. 438-1) attributed to Australopithecus afarensis is comprised of part of the mandible, a frontal bone fragment, a complete left ulna, two second metacarpals, one third metacarpal, plus parts of the clavicle, humerus, radius, and right ulna. It is one of only a few early hominin specimens to preserve both cranial and postcranial elements. It also includes the first complete ulna from a large A. afarensis individual, and the first associated metacarpal and forelimb remains. This specimen, dated to approximately 3Ma, is among the geologically youngest A. afarensis fossils and is also one of the largest individuals known. Its ulnar to mandibular proportions are similar to those of the geologically older and much smaller A.L. 288-1, suggesting that body size increased without disproportional enlargement of the mandible. Overall, however, analysis of this large specimen and of the diminutive A.L. 288-1 demonstrates that the functional morphology of the A. afarensis upper limb was similar at all body sizes; there is no evidence to support the hypothesis that more than one hominin species is present at Hadar. Morphologically, all apparent apomorphic traits of the elbow, forearm, wrist, and hand of A.L. 438-1 are shared uniquely with humans. Compared to humans, A.L. 438-1 does have a more curved ulna, although A.L. 288-1 does not, and it appears to have had slightly less well-developed manipulatory capabilities of its hands, although still more derived than in apes. We conclude that selection for effective arboreality in the upper limb of Australopithecus afarensis was weaker than in non-hominins, and that manipulative ability was of greater selective advantage than in extant great apes. 相似文献
16.
Christine Berge 《American journal of physical anthropology》1998,105(4):441-459
Changes in pelvic shape in human ontogeny and hominid phylogeny suggest that the heterochronic processes involved differ greatly from the neotenic process traditionally described in the evolution of the skull. The morphology of 150 juvenile and adult pelves of African apes, 60 juvenile and adult pelves of modern humans, two adult pelves and a juvenile hip bone of australopithecines (Sts 14, AL 288, MLD 7) was studied. Multivariate results, ontogenetic allometries, and growth curves confirm that the pelvic growth pattern in humans differs markedly from those of the African apes. The results permit the following conclusions. First, the appearance of a new feature (acetabulo-cristal buttress and cristal tubercle) at the time of human birth allows the addition of traits, such as the attainment of a proportionally narrower pelvis, with more sagittally positioned iliac blades. Pelvic proportions and orientation change progressively in early childhood as bipedalism is practiced. Other changes in pelvic proportions occur later with the adolescent growth spurt. Second, comparison of juvenile and adult australopithecines to modern humans indicates that 1) some pelvic traits of adult Australopithecus resemble those of neonate Homo; 2) the pelvic growth of Australopithecus was probably closer to that of apes, than to that of humans; and 3) prolonged growth in length of hindlimb and pelvis after sexual maturity seems to be a unique feature of Homo. The position of the acetabulo-cristal buttress and of the cristal tubercle on the ilium are similar in adult Australopithecus and neonate Homo suggesting that this feature may have been displaced later during hominid evolution. Progressive displacement of the acetabulo-cristal buttress on the ilium occurs both during hominid evolution (from Australopithecus to Homo sapiens) and human growth (from neonate to adult). This suggests peramorphic evolution of the pelvic morphology of hominids combining three processes of recapitulation (pre-displacement, acceleration and time hypermorphosis). The results lend credence to the hypothesis that no single heterochronic process accounts for all human evolutionary change; rather this reflects a combination of relative changes in growth rhythm and duration, including other perturbations, such as the appearance of new morphological features. Am J Phys Anthropol 105:441–459, 1998. © 1998 Wiley-Liss, Inc. 相似文献
17.
Tague RG 《American journal of physical anthropology》2005,127(4):392-405
Schultz ([1949] Am. J. Phys. Anthropol. 7:401-424) presented a conundrum: among primates, sexual dimorphism of the pelvis is a developmental adjunct to dimorphism in other aspects of the body, albeit in the converse direction. Among species in which males are larger than females in body size, females are larger than males in some pelvic dimensions; species with little sexual dimorphism in nonpelvic size show little pelvic dimorphism. Obstetrical difficulty does not explain this relationship. The present study addresses this issue, evaluating the relationship between pelvic and femoral sexual dimorphism in 12 anthropoid species. The hypothesis is that species in which males are significantly larger than females in femoral size will have a higher incidence, magnitude, and variability of pelvic sexual dimorphism, with females having relatively larger pelves than males, compared with species monomorphic in femoral size. The results are consistent with the hypothesis. The proposed explanation is that the default pelvic anatomy in adulthood is that of the female; testosterone redirects growth from the default type to that of the male by differentially enhancing and repressing growth among the pelvic dimensions. Testosterone also influences sexual dimorphism of the femur. The magnitude of the pelvic response to testosterone is greater in species that are sexually dimorphic in the femur than in those that are monomorphic. 相似文献
18.
Tague RG 《American journal of physical anthropology》2011,145(3):426-437
Humans do not have a tail, but we have four rudimentary coccygeal vertebrae. This study considers several issues pertaining to fusion of the coccyx to the sacrum, including prevalence, sexual differences, effect on pelvic size, and obstetrical and evolutionary implications. Previous research on sacral-coccygeal fusion has reported: (1) lower prevalence in females than males, (2) prevalence increases with age, (3) range in prevalence among 13 samples from 0 to 72%, and (4) obstetrical complications. This study uses a sample of 2,354 American skeletons of known sex, age 20 years and older to ascertain prevalence of sacral-coccygeal fusion and to evaluate some of its correlates. Results show that the sexes do not differ in prevalence of sacral-coccygeal fusion for five of seven decades of life, but that prevalence does increase with advancing age-from 24 to 47% from the third to eighth decades of life in females. Pelvimetric analysis of 132 females shows that those with sacral-coccygeal fusion have a shorter posterior sagittal diameter of the outlet compared to those without fusion; more than half of those with sacral-coccygeal fusion have an obstetrically contracted posterior sagittal diameter. Shortening of the posterior sagittal diameter is important, because its conjoint occurrence with a narrow subpubic arch may result in an obstetrically inadequate outlet. This study concludes that sacral-coccygeal fusion is a principal contributor to the evolution of sexual dimorphism in sacral angulation, which is a determinant of the length of the posterior sagittal diameter of the outlet. 相似文献
19.
20.
Mark D. Uhen 《Marine Mammal Science》2014,30(3):1029-1066
New material of Natchitochia from the Bartonian Archusa Marl Member is described here, including thoracic, lumbar, sacral, and caudal vertebrae, an innominate, proximal femur, and pedal? phalanx. The vertebrae and innominate are similar to those of Qaisracetus and Georgiacetus. The structure of the caudal vertebrae support previous observations that as sacral vertebrae disconnect from the sacrum, they become caudalized, developing hemal processes on the posteroventral margins of the bodies, reminiscent of chevron bones associated with true caudal vertebrae. The innominate of Natchitochia shares an elongate ilium and pubis with Qaisracetus and Georgiacetus, which differ from the innominata of the more apomorphic archaeocetes. Comparison of archaeocete innominata and sacra in a phylogenetic context indicates that the apomorphic sacrum composed of 4 vertebrae (Pakicetus, Ambulocetus, Rodhocetus, Maiacetus) was reduced to 3 (Qaisracetus) to 2 (Protocetus?, Natchitochia) to 0 (Georgiacetus, Basilosauridae), while the innominata remained robust, supporting a large hind limb until the origin of the Basilosauridae. In Georgiacetus, the innominate is large but detached from the vertebral column, preventing the use of the hind limb in terrestrial locomotion. More crownward cetaceans for which the innominate is known display greatly reduced innominata and hind limbs are disconnected from the vertebral column. 相似文献