首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tissue engineered cartilage can be grown in vitro if the necessary physical and biochemical factors are present in the tissue culture environment. Cell metabolism and tissue composition were studied for engineered cartilage cultured for 5 weeks using bovine articular chondrocytes, polymer scaffolds (5 mm diameter x 2 mm thick fibrous discs), and rotating bioreactors. Medium pH and concentrations of oxygen, carbon dioxide, glucose, lactate, ammonia, and glycosoaminoglycan (GAG) were varied by altering the exchange rates of gas and medium in the bioreactors. Cell-polymer constructs were assessed with respect to histomorphology, biochemical composition and metabolic activity. Low oxygen tension ( approximately 40 mmHg) and low pH ( approximately 6.7) were associated with anaerobic cell metabolism (yield of lactate on glucose, YL/G, of 2.2 mol/mol) while higher oxygen tension ( approximately 80 mmHg) and higher pH ( approximately 7.0) were associated with more aerobic cell metabolism (YL/G of 1.65-1.79 mol/mol). Under conditions of infrequent medium replacement (50% once per week), cells utilized more economical pathways such that glucose consumption and lactate production both decreased, cell metabolism remained relatively aerobic (YL/G of 1.67 mol/mol) and the resulting constructs were cartilaginous. More aerobic conditions generally resulted in larger constructs containing higher amounts of cartilaginous tissue components, while anaerobic conditions suppressed chondrogenesis in 3D tissue constructs.  相似文献   

2.
Cartilage tissue engineering typically involves the culture of isolated chondrocytes within a scaffold material. The oxygen tension within the engineered tissue is known to be an essential parameter for implant success. This will be sensitive to the oxygen consumption behavior of the embedded chondrocytes, which remains to be characterized. We report that the oxygen consumption of bovine articular chondrocytes is sensitive to glucose deprivation below 2.7 mM, increasing from a basal level of 9.6x10(-16) to <18.4x10(-16) mol/cell.h in 1.3 mM glucose. Further studies examined the influence of selecting high (18.4 mM) or low (5.1 mM) glucose medium on the oxygen tension in 2 mm thick cellular agarose constructs. A relative upregulation of oxygen consumption was observed in constructs cultured in low glucose medium. This resulted in the near-anoxic oxygen concentration of 5 microM oxygen in constructs seeded with 40x10(6) cells/ml, compared to 57 microM in the corresponding high glucose culture. The upregulation of oxygen consumption generally corresponded to the inhibition of glycolysis, which is consistent with the Crabtree phenomenon. Medium osmolarity (316-600 mOsm) had minimal effects on chondrocyte oxygen consumption rate. In conclusion, glucose availability is a critical parameter that regulates the oxygen tension within tissue engineered constructs.  相似文献   

3.
Degeneration of the intervertebral disc may be initiated and supported by impairment of the nutrition processes of the disc cells. The effects of degenerative changes on cell nutrition are, however, only partially understood. In this work, a finite volume model was used to investigate the effect of endplate calcification, water loss, reduction of disc height and cyclic mechanical loading on the sustainability of the disc cell population. Oxygen, lactate and glucose diffusion, production and consumption were modelled with non-linear coupled partial differential equations. Oxygen and glucose consumption and lactate production were expressed as a function of local oxygen concentration, pH and cell density. The cell viability criteria were based on local glucose concentration and pH. Considering a disc with normal water content, cell death was initiated in the centre of the nucleus for oxygen, glucose, and lactate diffusivities in the cartilaginous endplate below 20% of the physiological values. The initial cell population could not be sustained even in the non-calcified endplates when a reduction of diffusion inside the disc due to water loss was modelled. Alterations in the disc shape such as height loss, which shortens the transport route between the nutrient sources and the cells, and cyclic mechanical loads, could enhance cell nutrition processes.  相似文献   

4.
The influence of ammonia and lactate on cell growth, metabolic, and antibody production rates was investigated for murine hybridoma cell line 163.4G5.3 during batch culture. The specific growth rate was reduced by one-half in the presence of an initial ammonia concentration of 4 mM. Increasing ammonia levels accelerated glucose and glutamine consumption, decreased ammonia yield from glutamine, and increased alanine yield from glutamine. Although the amount of antibody produced decreased with increasing ammonia concentration, the specific antibody productivity remained relatively constant around a value of 0.22 pg/cell-h. The specific growth rate was reduced by one-half at an initial lactate concentration of 55 mM. Although specific glucose and glutamine uptake rates were increased at high lacatate concentration, they showed a decrease after making corrections for medium osmolarity. The yield coefficient of lactate from glucose decreased at high lactate concentrations. A similar decrease was observed for the ammonia yield coefficient from glutamine. At elevated lactate concentrations, specific antibody productivities increased, possibly due to the increase in medium osmolarity. The specific oxygen uptake rate was insensitive to ammonia and lactate concentrations. Addition of ammonia and lactate increased the calculated metabolic energy production of the cells. At high ammonia and lactate, the contribution of glycolysis to total energy production increased. Decreasing external pH and increasing ammonia concentrations caused cytoplasmic acidification. Effect of lactate on intracellular pH was insignificant, whereas increasing osmolarity caused cytoplasmic alkalinization.  相似文献   

5.
Significant oxygen gradients occur within tissue engineered cartilaginous constructs. Although oxygen tension is an important limiting parameter in the development of new cartilage matrix, its precise role in matrix formation by chondrocytes remains controversial, primarily due to discrepancies in the experimental setup applied in different studies. In this study, the specific effects of oxygen tension on the synthesis of cartilaginous matrix by human articular chondrocytes were studied using a combined experimental‐computational approach in a “scaffold‐free” 3D pellet culture model. Key parameters including cellular oxygen uptake rate were determined experimentally and used in conjunction with a mathematical model to estimate oxygen tension profiles in 21‐day cartilaginous pellets. A threshold oxygen tension (pO2 ≈ 8% atmospheric pressure) for human articular chondrocytes was estimated from these inferred oxygen profiles and histological analysis of pellet sections. Human articular chondrocytes that experienced oxygen tension below this threshold demonstrated enhanced proteoglycan deposition. Conversely, oxygen tension higher than the threshold favored collagen synthesis. This study has demonstrated a close relationship between oxygen tension and matrix synthesis by human articular chondrocytes in a “scaffold‐free” 3D pellet culture model, providing valuable insight into the understanding and optimization of cartilage bioengineering approaches. Biotechnol. Bioeng. 2014;111: 1876–1885. © 2014 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

6.
At early stages of the exponential growth phase in HEK293 cell cultures, the tricarboxylic acid cycle is unable to process all the amount of NADH generated in the glycolysis pathway, being lactate the main by-product. However, HEK293 cells are also able to metabolize lactate depending on the environmental conditions. It has been recently observed that one of the most important modes of lactate metabolization is the cometabolism of lactate and glucose, observed even during the exponential growth phase. Extracellular lactate concentration and pH appear to be the key factors triggering the metabolic shift from glucose consumption and lactate production to lactate and glucose concomitant consumption. The hypothesis proposed for triggering this metabolic shift to lactate and glucose concomitant consumption is that HEK293 cells metabolize extracellular lactate as a response to both extracellular protons and lactate accumulation, by means of cotransporting them (extracellular protons and lactate) into the cytosol. At this point, there exists a considerable controversy about how lactate reaches the mitochondrial matrix: the first hypothesis proposes that lactate is converted into pyruvate in the cytosol, and afterward, pyruvate enters into the mitochondria; the second alternative considers that lactate enters first into the mitochondria, and then, is converted into pyruvate. In this study, lactate transport and metabolization into mitochondria is shown to be feasible, as evidenced by means of respirometry tests with isolated active mitochondria, including the depletion of lactate concentration of the respirometry assay. Although the capability of lactate metabolization by isolated mitochondria is demonstrated, the possibility of lactate being converted into pyruvate in the cytosol cannot be excluded from the discussion. For this reason, the calculation of the metabolic fluxes for an HEK293 cell line was performed for the different metabolic phases observed in batch cultures under pH controlled and noncontrolled conditions, considering both hypotheses. The main objective of this study is to evaluate the redistribution of cellular metabolism and compare the differences or similarities between the phases before and after the metabolic shift of HEK293 cells (shift observed when pH is not controlled). That is from a glucose consumption/lactate production phase to a glucose-lactate coconsumption phase. Interestingly, switching to a glucose and lactate cometabolization results in a better-balanced cell metabolism, with decreased glucose and amino acids uptake rates, affecting minimally cell growth. This behavior could be applied to further develop new approaches in terms of cell engineering and to develop improved cell culture strategies in the field of animal cell technology.  相似文献   

7.
In this study the effects of ammonium and lactate on a culture of channel catfish ovary (CCO) cells were examined. We also made investigation on the influence of glutamine, since our previous research revealed that this amino acid stimulated CCO cell growth more than glucose in a concentration-dependent manner. The effect of ammonium in cell culture included the considerable decrease in cell growth rate with eventual growth arrest as well as the retardation of glucose consumption. At ammonium concentrations above 2.5 mM, the cells displayed specific morphological changes. The effect of lactate was different to that of ammonium since the cell growth rate was progressively decreasing with the increase of lactate concentration, whereas the glucose consumption rate remained almost unchanged. Besides that, it was found that lactate was steadily eliminated from the culture medium when its initial concentration was relatively high. The influence of glutamine on CCO cell propagation showed that nutrient requirements of this cell line were mainly dependent on glutamine rather than glucose. The increase in glutamine concentration led to the increase in cell growth rate and consequent ammonia accumulation while the glucose utilization and lactate production were reduced. Without glutamine in culture medium cell growth was arrested. However, the lack of glucose reversed the stimulating effect of glutamine by decreasing cell growth rate and affecting amino acid utilization.  相似文献   

8.
Monitoring cell growth is crucial to the success of an animal cell culture process that can be accomplished by a variety of direct or indirect methodologies. Glucose is a major carbon and energy source for cultured mammalian cells in most cases, but glycolytic metabolism often results in the accumulation of lactate. Glucose and lactate levels are therefore routinely measured to determine metabolic activities of a culture. Typically, neither glucose consumption rate nor lactate accumulation rate has a direct correlation with cell density due to the changes in culture environment and cell physiology. We discovered that although the metabolic rate of glucose or lactate varies depending on the stages of a culture, the cumulative consumption of glucose and lactate combined (Q(GL)) exhibits a linear relationship relative to the integral of viable cells (IVC), with the slope indicating the specific consumption rate of glucose and lactate combined (q(GL)). Additional studies also showed that the q(GL) remains relatively constant under different culture conditions. The insensitivity of the q(GL) to process variations allows a potentially easy and accurate determination of viable cell density by the measurement of glucose and lactate. In addition, the more predictable nature of a linear relationship will aid the design of better forward control strategies to improve cell culture processes.  相似文献   

9.
t-PA producing CHO cells have been shown to undergo a metabolic shift when the culture medium is supplemented with a mixture of glucose and galactose. This metabolic change is characterized by the reincorporation of lactate and its use as an additional carbon source. The aim of this work is to understand lactate metabolism. To do so, Chinese hamster ovary cells were grown in batch cultures in four different conditions consisting in different combinations of glucose and galactose. In experiments supplemented with glucose, only lactate production was observed. Cultures with glucose and galactose consumed glucose first and produced lactate at the same time, after glucose depletion galactose consumption began and lactate uptake was observed. Comparison of the metabolic state of cells with and without the shift by metabolic flux analysis show that the metabolic fluxes distribution changes mostly in the reactions involving pyruvate metabolism. When not enough pyruvate is being produced for cells to support their energy requirements, lactate dehydrogenase complex changes the direction of the reaction yielding pyruvate to feed the TCA cycle. The slow change from high fluxes during glucose consumption to low fluxes in galactose consumption generates intracellular conditions that allow the influx of lactate. Lactate consumption is possible in cell cultures supplemented with glucose and galactose due to the low rates at which galactose is consumed. Evidence suggests that an excessive production and accumulation of pyruvate during glucose consumption leads to lactate production and accumulation inside the cell. Other internal conditions such as a decrease in internal pH, forces the flow of lactate outside the cell. After metabolic shift the intracellular pool of pyruvate, lactate and H+ drops permitting the reversal of the monocarboxylate transporter direction, therefore leading to lactate uptake. Metabolic analysis comparing glucose and galactose consumption indicates that after metabolic shift not enough pyruvate is produced to supply energy metabolism and lactate is used for pyruvate synthesis. In addition, MFA indicates that most carbon consumed during low carbon flux is directed towards maintaining energy metabolism.  相似文献   

10.
Chinese hamster ovary (CHO) cells represent a group of predominantly used mammalian hosts for producing recombinant therapeutic proteins. Known for their rapid proliferation rates, CHO cells undergo aerobic glycolysis that is characterized by fast glucose consumption, that ultimately gives rise to a group of small-molecule organic acids. However, only the function of lactate has been extensively studied in CHO cell culture. In this study, we observed the accumulation of acetate from the late exponential phase to harvest day, potentially contributing to the pH decline in late culture stage regardless of lactate consumption. In addition, we evaluated the acidification of the fresh media and the cell culture suspension, and the data revealed that acetate presented a lower acidification capacity compared to lactate and exhibited limited inhibitory effect on cells with less than 20 mM supplemented in the media. This study also explored the ways to control acetate accumulation in CHO cell culture by manipulating the process parameters such as temperature, glucose, and pH control. The positive correlation between the specific glucose consumption rate and acetate generation rate provides evidence of the endogenous acetate generation from overflow metabolism. Reducing these parameters (temperature, glucose consumption) and HCl-controlled low pH ultimately suppress acetate build-up. In addition, the specific acetate generation rate and relevant glucose consumption rate are found to be a metabolic trait associated with specific cell lines. Taken together, the results presented in these experiments provide a means to advance industrial CHO cell culture process control and development.  相似文献   

11.
On-line characterization of a hybridoma cell culture process   总被引:2,自引:0,他引:2  
The on-line determination of the physiological state of a cell culture process requires reliable on-line measurements of various parameters and calculations of specific rates from these measurements. The cell concentration of a hybridoma culture was estimated on-line by measuring optical density (OD) with a laser turbidity probe. The oxygen uptake rate (OUR) was determined by monitoring dynamically dissolved oxygen concentration profiles and closing oxygen balances in the culture. The base addition for neutralizing lactate produced by cells was also monitored on-line via a balance. Using OD and OUR measurements, the specific growth and specific oxygen consumption rates were determined on-line. By combining predetermined stoichiometric relationships among oxygen and glucose consumption and lactate production, the specific glucose consumption and lactate production rates were also calculated on-line. Using these on-line measurements and calculations, the hybridoma culture process was characterized on-line by identifying the physiological states. They will also facilitate the implementation of nutrient feeding strategies for fed-batch and perfusion cultures. (c) 1994 John Wiley & Sons, Inc.  相似文献   

12.
Lactate accumulation in mammalian cell culture is known to impede cellular growth and productivity. The control of lactate formation and consumption in a hybridoma cell line was achieved by pH alteration during the early exponential growth phase. In particular, lactate consumption was induced even at high glucose concentrations at pH 6.8, whereas highly increased production of lactate was obtained at pH 7.8. Consequently, constraint‐based metabolic flux analysis was used to examine pH‐induced metabolic states in the same growth state. We demonstrated that lactate influx at pH 6.8 led cells to maintain high fluxes in the TCA cycle and malate‐aspartate shuttle resulting in a high ATP production rate. In contrast, under increased pH conditions, less ATP was generated and different ATP sources were utilized. Gene expression analysis led to the conclusion that lactate formation at high pH was enabled by gluconeogenic pathways in addition to facilitated glucose uptake. The obtained results provide new insights into the influence of pH on cellular metabolism, and are of importance when considering pH heterogeneities typically present in large scale industrial bioreactors. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:347–357, 2015  相似文献   

13.
Hybridomas are finding increased use for the production of a wide variety of monoclonal antibodies. Understanding the roles of physiological and environmental factors on the growth and metabolism of mammalian cells is a prerequisite for the development of rational scale-up procedures. An SP2/0-derived mouse hybridoma has been employed in the present work as a model system for hybridoma suspension culture. In preliminary shake flask studies to determine the effect of glucose and glutamine, it was found that the specific growth rate, the glucose and glutamine metabolic quotients, and the cumulative specific antibody production rate were independent of glucose concentration over the range commonly employed in cell cultures. Only the specific rate of glutamine uptake was found to depend on glutamine concentration. The cells were grown in continuous culture at constant pH and oxygen concentration at a variety of dilution rates. Specific substrate consumption rates and product formation rates were determined from the steady state concentrations. The specific glucose uptake rate deviated from the maintenance energy model(1) at low specific growth rates, probably due to changes in the metabolic pathways of the cells. Antibody production was not growth-associated; and higher specific antibody production rates were obtained at lower specific growth rates. The effect of pH on the metabolic quotients was also determined. An optimum in viable cell concentration was obtained between pH 7.1 and 7.4. The viable cell number and viability decreased dramatically at pH 6.8. At pH 7.7 the viable cell concentration initially decreased, but then recovered to values typical of pH 7.1-7.4. Higher specific nutrient consumption rates were found at the extreme pH values; however, glucose consumption was inhibited at low pH. The pH history also influenced the behavior at a given pH. Higher antibody metabolic quotients were obtained at the extreme pH values. Together with the effect of specific growth rate, this suggests higher antibody production under environmental or nutritional stress.  相似文献   

14.
将从新生乳鼠心室肌组织获取的心肌细胞接种于鼠尾胶原膜三维支架和组织培养板,以细胞形态、细胞搏动、葡萄糖比消耗率(qglu)、乳酸比产率(qlac)、乳酸转化率(Ylac/glu)、肌酸激酶及乳酸脱氢酶的活力为观察指标,比较心肌细胞在鼠尾胶原膜中三维(3D)培养和组织培养板中二维(2D)培养的差异。培养于鼠尾胶原膜的乳鼠心肌细胞在第5天形成闰盘连接,形成面积约为80mm3、肉眼可见自律性同步收缩的心肌细胞3D培养物。3D培养体系中乳鼠心肌细胞的qglu、qlac和Ylac/glu的均值分别为7.37 μmol/10.6cells/d、2.92 μmol/106cells/d和0.38 μmol/μmol;2D培养体系中乳鼠心肌细胞的qglu、qlac和Ylac/glu的均值分别为7.59 μmol/10.6cells/d、3.83 μmol/10.6cells/d和 0.51 μmol/μmol。两种培养体系中乳鼠心肌细胞的肌酸激酶及乳酸脱氢酶的活力无明显差别。实验结果表明:培养于鼠尾胶原膜的心肌细胞保持正常心肌细胞的代谢活力和收缩功能。  相似文献   

15.
Hybridomas are finding increased use for the production of a wide variety of monoclonal antibodies. Understanding the roles of physiological and environmental factors on the growth and metabolism of mammalian cells is a prerequisite for the development of rational scale-up procedures. An SP2/0-derived mouse hybridoma has been employed in the present work as a model system for hybridoma suspension culture. In preliminary shake flask studies to determine the effect of glucose and glutaminE, it was found that the specific growth rate, the glucose and glutamine metabolic quotients, and the cumulative specific antibody production rate were independent of glucose concentration over the range commonly employed in cell cultures. Only the specific rate of glutamine uptake was found to depend on glutamine concentration. The cells were grown in continuous culture at constant pH and oxygen concentration at a variety of dilution rates. Specific substrate consumption rates and product formation rates were determined from the steady state concentrations. The specific glucose uptake rate deviated from the maintenance energy model(1) at low specific growth rates, probably due to changes in the metabolic pathways of the cells. Antibody production was not growth-associated; and higher specific antibody production rates were obtained at lower specific growth rates. The effect of pH on the metabolic quotients was also determined. An optimum in viable cell concentration was obtained between pH 7.1 and 7.4. The viable cell number and viability decreased dramatically at pH 6.8. At pH 7.7 the viable cell concentration initially decreased, but then recovered to values typical of pH 7.1-7.4. Higher specific nutrient consumption rates were found at the extreme pH values; however, glucose consumption was inhibited at low pH. The pH history also influenced the behavior at a given pH. Higher antibody metabolic quotients were obtained at the extreme pH values. Together with the effect of specific growth rate, this suggests higher antibody production under environmental or nutritional stress.  相似文献   

16.
Bioreactors are crucial tools for the manufacturing of living cell‐based tissue engineered products. However, to reach the market successfully, higher degrees of automation, as well as a decreased footprint still need to be reached. In this study, the use of a benchtop bioreactor for in vitro perfusion culture of scaffold‐based tissue engineering constructs is assessed. A low‐footprint benchtop bioreactor system is designed, comprising a single‐use fluidic components and a bioreactor housing. The bioreactor is operated using an in‐house developed program and the culture environment is monitored by specifically designed sensor ports. A gas‐exchange module is incorporated allowing for heat and mass transfers. Titanium‐based scaffolds are seeded with human periosteum‐derived cells and cultured up to 3 weeks. The benchtop bioreactor constructs are compared to benchmark perfusion systems. Live/Dead stainings, DNA quantifications, glucose consumption, and lactate production assays confirm that the constructs cultured in the benchtop bioreactor grew similarly to the benchmark systems. Manual regulation of the system set points enabled efficient alteration of the culture environment in terms of temperature, pH, and dissolved oxygen. This study provides the necessary basis for the development of low‐footprint, automated, benchtop perfusion bioreactors and enables the implementation of active environment control.  相似文献   

17.
Tumors and multicellular tumor spheroids can develop gradients in oxygen concentration, glucose concentration, and extracellular pH as they grow. In order to calculate these gradients and assess their impact on tumor growth, it is necessary to quantify the effect of these variables on tumor cell metabolism and growth. In this work, the oxygen consumption rates, glucose consumption rates, and growth rates of EMT6/Ro mouse mammary tumor cells were measured at a variety of oxygen concentrations, glucose concentrations, and extracellular pH levels. At an extracellular pH of 7.25, the oxygen consumption rate of EMT6/Ro cells increased by nearly a factor of 2 as the glucose concentration was decreased from 5.5 mM to 0.4 mM. This effect of glucose concentration on oxygen consumption rate, however, was slight at an extracellular pH of 6.95 and disappeared completely at an extracellular pH of 6.60. The glucose consumption rate of EMT6/Ro cells increased by roughly 40% when the oxygen concentration was reduced from 0.21 mM to 0.023 mM and decreased by roughly 60% when the extracellular pH was decreased from 7.25 to 6.95. The growth rate of EMT6/Ro cells decreased with decreasing oxygen concentration and extracellular pH; however, severe conditions were required to stop cell growth (0.0082 mM oxygen and an extracellular pH of 6.60). Empirical correlations were developed from these data to express EMT6/Ro cell growth rates, oxygen consumption rates, and glucose consumption rates, as functions of oxygen concentration, glucose concentration, and extracellular pH. These empirical correlations make it possible to mathematically model the gradients in oxygen concentration, glucose concentration, and extracellular pH in EMT6/Ro multicellular spheroids by solution of the diffusion/reaction equations. Computations such as these, along with oxygen and pH microelectrode measurements in EMT6/Ro multicellular spheroids, indicated that nutrient concentration and pH levels in the inner regions of spheroids were low enough to cause significant changes in nutrient consumption rates and cell growth rates. However, pH and oxygen concentrations measured or calculated in EMT6/Ro spheroids where quiescent cells have been observed were not low enough to cause the cessation of cell growth, indicating that the observed quiescence must have been due to factors other than acidic pH, oxygen depletion, or glucose depletion.  相似文献   

18.
A hybridoma cell line was cultivated in fed-batch cultures using a low-protein, serum-free medium. On-line oxygen uptake rate (OUR) measurement was used to adjust the nutrient feeding rate based on glucose consumption, which was estimated on-line using the stoichiometric relations between glucose and oxygen consumption. Through on-line control of the nutrient feeding rate, not only sufficients were supplied for cell growth and antibody production, but also the concentrations of glucose and other important nutrients such as amino acids were maintained at low levels during the cell growth phase. During the cultivation, cell metabolism changed from high lactate production and low oxygen consumption to low lactate production and high oxygen consumption. As a result the accumulation of lactate was reduced and the growth phase was extended. In comparison with the batch cultures, in which cells reached a concentration of approximately 2 x 10(6) cells/mL, a very high concentration of 1.36 x 10(7) cells/mL with a high cell viability (>90%) was achieved in the fed-batch culture. By considering the consumption of glucose and amino acids, as well as the production of cell mass, metabolites, and antibodies, a well-closed material balance was established. Our results demonstrate the value of coupling on-line OUR measurement and the stoichiometric realations for dynamic nutrient feeding in high cell concentration fed batch cultures. (c) 1995 John Wiley & Sons, Inc.  相似文献   

19.
20.
Little is known about the cellular physiology of Escherichia coli at high cell densities (e.g., greater than 50 g [dry cell weight] per liter), particularly in relation to the cellular response to different growth conditions. E. coli W3100 cultures were grown under identical physical and nutritional conditions, by using a computer-controlled fermentation system which maintains the glucose concentration at 0.5 g/liter, to high cell densities at pH values of 6.0, 6.5, 7.0, and 7.5. The data suggest a relationship between the pH of the environment and the amount of acetate excreted by the organism during growth. At pH values of 6.0 and 6.5, the acetate reached a concentration of 6 g/liter, whereas at pH 7.5, the acetate reached a concentration of 12 g/liter. Furthermore, at pH values of 6.0 to 7.0, the E. coli culture undergoes a dramatic metabolic switch in which oxygen and glucose consumption and CO2 evolution all temporarily decreased by 50 to 80%, with a concomitant initiation of acetate utilization. After a 30-min pause in which approximately 50% of the available acetate is consumed, the culture recovers and resumes consuming glucose and oxygen and producing acetate and CO2 at preswitch levels. During the switch period, the specific activity of isocitrate lyase typically increases approximately fourfold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号