首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
“Smart”-scales are a new tool for frequent monitoring of weight change as well as weigh-in behavior. These scales give researchers the opportunity to discover patterns in the frequency that individuals weigh themselves over time, and how these patterns are associated with overall weight loss. Our motivating data come from an 18-month behavioral weight loss study of 55 adults classified as overweight or obese who were instructed to weigh themselves daily. Adherence to daily weigh-in routines produces a binary times series for each subject, indicating whether a participant weighed in on a given day. To characterize weigh-in by time-invariant patterns rather than overall adherence, we propose using hierarchical clustering with dynamic time warping (DTW). We perform an extensive simulation study to evaluate the performance of DTW compared to Euclidean and Jaccard distances to recover underlying patterns in adherence time series. In addition, we compare cluster performance using cluster validation indices (CVIs) under the single, average, complete, and Ward linkages and evaluate how internal and external CVIs compare for clustering binary time series. We apply conclusions from the simulation to cluster our real data and summarize observed weigh-in patterns. Our analysis finds that the adherence trajectory pattern is significantly associated with weight loss.  相似文献   

2.
This paper presents an electrocardiogram (ECG) data mining scheme based on the ECG frame classification realised by a dynamic time warping (DTW) matching technique, which has been used successfully in speech recognition. We use the DTW to classify ECG frames because ECG and speech signals have similar non-stationary characteristics. The DTW mapping function is obtained by searching the frame from its end to start. A threshold is setup for DTW matching residual either to classify an ECG frame or to add a new class. Classification and establishment of a template set are carried out simultaneously. A frame is classified into a category with a minimal residual and satisfying a threshold requirement. A classification residual of 1.33% is achieved by the DTW for a 10-min ECG recording.  相似文献   

3.
色谱是目前蛋白质组学流程中的一个基本环节,而色谱的保留时间对齐是有效提高鉴定和定量准确性的重要步骤之一。经过多年的发展,目前已经产生了一系列保留时间对齐算法。文中主要从可用性角度对蛋白质组学分析中色谱保留时间对齐算法及工具进行了系统总结,并对其发展趋势及应用方向进行了展望。  相似文献   

4.
Peak detection is a pivotal first step in biomarker discovery from MS data and can significantly influence the results of downstream data analysis steps. We developed a novel automatic peak detection method for prOTOF MS data, which does not require a priori knowledge of protein masses. Random noise is removed by an undecimated wavelet transform and chemical noise is attenuated by an adaptive short‐time discrete Fourier transform. Isotopic peaks corresponding to a single protein are combined by extracting an envelope over them. Depending on the S/N, the desired peaks in each individual spectrum are detected and those with the highest intensity among their peak clusters are recorded. The common peaks among all the spectra are identified by choosing an appropriate cut‐off threshold in the complete linkage hierarchical clustering. To remove the 1 Da shifting of the peaks, the peak corresponding to the same protein is determined as the detected peak with the largest number among its neighborhood. We validated this method using a data set of serial peptide and protein calibration standards. Compared with MoverZ program, our new method detects more peaks and significantly enhances S/N of the peak after the chemical noise removal. We then successfully applied this method to a data set from prOTOF MS spectra of albumin and albumin‐bound proteins from serum samples of 59 patients with carotid artery disease compared to vascular disease‐free patients to detect peaks with S/N≥2. Our method is easily implemented and is highly effective to define peaks that will be used for disease classification or to highlight potential biomarkers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号