首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 726 毫秒
1.
Recombinant human adenovirus (rhAd) has been used extensively for functional protein expression in mammalian cells including those of human and nonhuman origin. High-level protein production by rhAd vectors is expected in their permissive host cells, such as the human embryonic kidney 293 (HEK293) cell line. This is attributed primarily to the permissiveness of HEK293 to rhAd infection and their ability to support viral DNA replication by providing the missing El proteins. However, the HEK293 cells tend to suffer from cytopathic effect (CPE) as a result of virus replication. Under these circumstances, the host cell function is compromised and the culture viability will be reduced. Consequently, newly synthesized polypeptides may not be processed properly at posttranslational levels. Therefore, the usefulness of HEK293 cells for the expression of complex targets such as secreted proteins could be limited. In the search for a more robust cell line as a production host for rhAd expression vectors, a series of screening experiments was performed to isolate clones from Chinese hamster ovary-K1 (CHO-K1) cells. First, multiple rounds of infection of CHO-K1 cells were performed utilizing an rhAd expressing GFP. After each cycle of infection, a small population of CHO cells with high GFP levels was enriched by FACS. Second, individual clones more permissive to human adenovirus infection were isolated from the highly enriched subpopulation by serial dilution. A single clone, designated CHO-K1-C5, was found to be particularly permissive to rhAd infection than the parental pool and has served as a production host in the successful expression of several secreted proteins.  相似文献   

2.
The global availability of a therapeutically effective influenza virus vaccine during a pandemic remains a major challenge for the biopharmaceutical industry. Long production time, coupled with decreased supply of embryonated chicken eggs (ECE), significantly affects the conventional vaccine production. Transformed cell lines have attained regulatory approvals for vaccine production. Based on the fact that the avian influenza virus would infect the cells derived from its natural host, the viral growth characteristics were studied on chicken embryo-derived primary cell cultures. The viral propagation was determined on avian origin primary cell cultures, transformed mammalian cell lines, and in ECE. A comparison was made between these systems by utilizing various cell culture-based assays. In-vitro substrate susceptibility and viral infection characteristics were evaluated by performing hemagglutination assay (HA), 50 % tissue culture infectious dose (TCID50) and monitoring of cytopathic effects (CPE) caused by the virus. The primary cell culture developed from chicken embryos showed stable growth characteristics with no contamination. HA, TCID50, and CPE exhibited that these cell systems were permissive to viral infection, yielding 2–10 times higher viral titer as compared to mammalian cell lines. Though the viral output from the ECE was equivalent to the chicken cell culture, the time period for achieving it was decreased to half. Some of the prerequisites of inactivated influenza virus vaccine production include generation of higher vial titer, independence from exogenous sources, and decrease in the production time lines. Based on the tests, it can be concluded that chicken embryo primary cell culture addresses these issues and can serve as a potential alternative for influenza virus vaccine production.  相似文献   

3.
A proteomic approach was used to investigate the dynamic cellular host cell response induced by influenza virus infection in two different vaccine production cell lines, MDCK and Vero. For identification of proteins possibly involved in global host cell response mechanisms and virus–host cell interactions in these producer cell lines, quantitative 2-D DIGE and nanoHPLC-nanoESI-MS/MS analysis were performed. In particular, host cell proteome alterations caused by infection with influenza virus variants showing differences in replication characteristics in MDCK cells were compared. Moreover, the host cell response to virus infection in Vero cells with respect to their deficiency in interferon (IFN) production and the need for virus adaptation to optimize productivity of this cell line were analyzed. Several proteins with differential abundance profiles were identified and Western blot analysis was performed for further confirmation of selected proteins. IFN-induced signal transduction, cytoskeleton remodeling, vesicle transport and proteolysis were the principal pathways that changed in infected MDCK cells. In Vero cells alterations of cell interactions, heat shock and oxidative stress response were detected. The findings will improve understanding of host cell response mechanisms during influenza vaccine production and viral strategies to evade these responses and to replicate efficiently in different cell lines.  相似文献   

4.
Over the last years virus–host cell interactions were investigated in numerous studies. Viral strategies for evasion of innate immune response, inhibition of cellular protein synthesis and permission of viral RNA and protein production were disclosed. With quantitative proteome technology, comprehensive studies concerning the impact of viruses on the cellular machinery of their host cells at protein level are possible. Therefore, 2‐D DIGE and nanoHPLC‐nanoESI‐MS/MS analysis were used to qualitatively and quantitatively determine the dynamic cellular proteome responses of two mammalian cell lines to human influenza A virus infection. A cell line used for vaccine production (MDCK) was compared with a human lung carcinoma cell line (A549) as a reference model. Analyzing 2‐D gels of the proteomes of uninfected and influenza‐infected host cells, 16 quantitatively altered protein spots (at least ±1.7‐fold change in relative abundance, p<0.001) were identified for both cell lines. Most significant changes were found for keratins, major components of the cytoskeleton system, and for Mx proteins, interferon‐induced key components of the host cell defense. Time series analysis of infection processes allowed the identification of further proteins that are described to be involved in protein synthesis, signal transduction and apoptosis events. Most likely, these proteins are required for supporting functions during influenza viral life cycle or host cell stress response. Quantitative proteome‐wide profiling of virus infection can provide insights into complexity and dynamics of virus–host cell interactions and may accelerate antiviral research and support optimization of vaccine manufacturing processes.  相似文献   

5.
Many viruses induce cell death and lysis as part of their replication and dissemination strategy, and in many cases features of apoptosis are observed. Attempts have been made to further increase productivity by prolonging cell survival via the over‐expression of anti‐apoptotic genes. Here, we extend the study to investigate the association between virus replication and apoptosis, pertinent to large‐scale vector production for gene therapy. Infection of an HEK293 cell line with a replication defective type‐5‐adenovirus expressing a GFP reporter (Ad5GFP) resulted in rapid decline in viability associated with increased virus titer. The over‐expression of bcl‐2 resulted in improved cell resistance to apoptosis and prolonged culture duration, but reduced virus specific and total productivity. In contrast, the over‐expression of pro‐caspase‐3 (Yama/CPP32/apopain) resulted in reduced cell survival but increased virus productivity. The treatment of infected cells with caspase inhibitors support the preposition that caspase‐3 dependent apoptosis, and to a lesser degree caspase‐9 dependent apoptosis, represent important steps in virus production, thus implicating the intrinsic apoptosis pathway in the production of adenovirus from HEK293 cells. The suppression of apoptosis by the over‐expression of XIAP (inhibitors of caspase family cell death proteases) further shows that caspase‐mediated activation plays an important role in virus infection and maturation. Biotechnol. Bioeng. 2009; 104: 752–765 © 2009 Wiley Periodicals, Inc.  相似文献   

6.
Highly pathogenic influenza H5N1 virus continues to pose a threat to public health. Although the mechanisms underlying the pathogenesis of the H5N1 virus have not been fully defined, it has been suggested that cytokine dysregulation plays an important role. As the human respiratory epithelium is the primary target cell for influenza viruses, elucidating the viral tropism and innate immune responses of influenza H5N1 virus in the alveolar epithelium may help us to understand the pathogenesis of the severe pneumonia associated with H5N1 disease. Here we used primary cultures of differentiated human alveolar type II cells, alveolar type I-like cells, and alveolar macrophages isolated from the same individual to investigate viral replication competence and host innate immune responses to influenza H5N1 (A/HK/483/97) and H1N1 (A/HK/54/98) virus infection. The viral replication kinetics and cytokine and chemokine responses were compared by quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA). We demonstrated that influenza H1N1 and H5N1 viruses replicated productively in type II cells and type I-like cells although with different kinetics. The H5N1 virus replicated productively in alveolar macrophages, whereas the H1N1 virus led to an abortive infection. The H5N1 virus was a more potent inducer of proinflammatory cytokines and chemokines than the H1N1 virus in all cell types. However, higher levels of cytokine expression were observed for peripheral blood monocyte-derived macrophages than for alveolar macrophages in response to H5N1 virus infection. Our findings provide important insights into the viral tropisms and host responses of different cell types found in the lung and are relevant to an understanding of the pathogenesis of severe human influenza disease.  相似文献   

7.
Although clinical trials with human subjects are essential for determination of safety, infectivity, and immunogenicity, it is desirable to know in advance the infectiousness of potential candidate live attenuated influenza vaccine strains for human use. We compared the replication kinetics of wild-type and live attenuated influenza viruses, including H1N1, H3N2, H9N2, and B strains, in Madin-Darby canine kidney (MDCK) cells, primary epithelial cells derived from human adenoids, and human bronchial epithelium (NHBE cells). Our data showed that despite the fact that all tissue culture models lack a functional adaptive immune system, differentiated cultures of human epithelium exhibited the greatest restriction for all H1N1, H3N2, and B vaccine viruses studied among three cell types tested and the best correlation with their levels of attenuation seen in clinical trials with humans. In contrast, the data obtained with MDCK cells were the least predictive of restricted viral replication of live attenuated vaccine viruses in humans. We were able to detect a statistically significant difference between the replication abilities of the U.S. (A/Ann Arbor/6/60) and Russian (A/Leningrad/134/17/57) cold-adapted vaccine donor strains in NHBE cultures. Since live attenuated pandemic influenza vaccines may potentially express a hemagglutinin and neuraminidase from a non-human influenza virus, we assessed which of the three cell cultures could be used to optimally evaluate the infectivity and cellular tropism of viruses derived from different hosts. Among the three cell types tested, NHBE cultures most adequately reflected the infectivity and cellular tropism of influenza virus strains with different receptor specificities. NHBE cultures could be considered for use as a screening step for evaluating the restricted replication of influenza vaccine candidates.  相似文献   

8.
9.
10.
An overproduction of reactive oxygen species (ROS) mediated by NADPH oxidase 2 (NOX2) has been related to airway inflammation typical of influenza infection. Virus‐induced oxidative stress may also control viral replication, but the mechanisms underlying ROS production, as well as their role in activating intracellular pathways and specific steps of viral life cycle under redox control have to be fully elucidated. In this study, we demonstrate that influenza A virus infection of lung epithelial cells causes a significant ROS increase that depends mainly on NOX4, which is upregulated at both mRNA and protein levels, while the expression of NOX2, the primary source of ROS in inflammatory cells, is downregulated. Inhibition of NOX4 activity through chemical inhibitors or RNA silencing blocks the ROS increase, prevents MAPK phosphorylation, and inhibits viral ribonucleoprotein (vRNP) nuclear export and viral release. Overall these data, obtained in cell lines and primary culture, describe a so far unrecognized role for NOX4‐derived ROS in activating redox‐regulated intracellular pathways during influenza virus infection and highlight their relevance in controlling specific steps of viral replication in epithelial cells. Pharmacological modulation of NOX4‐mediated ROS production may open the way for new therapeutic approaches to fighting influenza by targeting cell and not the virus.  相似文献   

11.
This contribution is concerned with population balance modeling of virus–host cell interactions during vaccine production. Replication of human influenza A virus in cultures of adherent Madin–Darby canine kidney (MDCK) cells is considered as a model system. The progress of infection can be characterized by the intracellular amount of viral nucleoprotein (NP) which is measured via flow cytometry. This allows the differentiation of the host cell population and gives rise to a distributed modeling approach. For this purpose a degree of fluorescence is introduced as an internal coordinate which is linearly linked to the intracellular amount of NP. Experimental results for different human influenza A subtypes reveal characteristic dynamic phenomena of the cell distribution like transient multimodality and reversal of propagation direction. The presented population balance model provides a reasonable explanation for these dynamic phenomena by the explicit consideration of different states of infection of individual cells. Kinetic parameters are determined from experimental data. To translate the emerging infinite dimensional parameter estimation problem to a finite dimension the parameters are assumed to depend linearly on the internal coordinate. As a result, the model is able to reproduce all characteristic dynamic phenomena of the considered process for the two examined virus strains and allows deeper insight into the underlying kinetic processes. Thus, the model is an important contribution to the understanding of the intracellular virus replication and virus spreading in cell cultures and can serve as a stepping stone for optimization in vaccine production. Biotechnol. Bioeng. 2013; 110: 2252–2266. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
Epstein Barr Virus (EBV) replicates in oral epithelial cells and gains entry to B-lymphocytes. In B-lymphocytes, EBV expresses a restricted subset of genes, the Latency III program, which converts B-lymphocytes to proliferating lymphoblasts. Latent Membrane Protein 1 (LMP1) and the other Latency III associated proteins are also expressed during virus replication. LMP1 is essential for virus replication and egress from Akata Burkitt Lymphoma cells, but a role in epithelial cell replication has not been established. Therefore, we have investigated whether LMP1 enhances EBV replication and egress from HEK293 cells, a model epithelial cell line used for EBV recombinant molecular genetics. We compared wild type (wt) and LMP1-deleted (LMP1Δ) EBV bacterial artificial chromosome (BAC) based virus replication and egress from HEK293. Following EBV immediate early Zta protein induction of EBV replication in HEK293 cells, similar levels of EBV proteins were expressed in wt- and LMP1Δ-infected HEK293 cells. LMP1 deletion did not impair EBV replication associated DNA replication, DNA encapsidation, or mature virus release. Indeed, virus from LMP1Δ-infected HEK293 cells was as infectious as EBV from wt EBV infected HEK cells. Trans-complementation with LMP1 reduced Rta expression and subsequent virus production. These data indicate that LMP1 is not required for EBV replication and egress from HEK293 cells.  相似文献   

13.
We have developed an efficient, reproducible, and scaleable cell culture process for a recombinant adenoviral vector expressing therapeutic transgenes for clinical trials. HEK 293 cells – which support the propagation of E1 deficient adenovirus – were first adapted to serum free media and suspension growth. Subsequent studies focused on the infection, virus production and harvest from suspension culture bioreactors. Future studies are planned to address the kinetics of adenovirus production in HEK 293 as well as in other cell lines. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
15.
Inactivated mouse-brain-derived vaccines for Japanese encephalitis virus (JEV) have been used for many years. Recently, attempts have been made to employ cultured Vero cells to replace mouse brain tissues for developing cell-culture-derived vaccines that will be more suitable for worldwide usage. In this study, JEV replication processes in Vero and BHK cells and between stationary and microcarrier culture systems were investigated. Our results demonstrated that a stationary Vero cell culture system produced higher viral titers of JEV, including the Beijin-1 vaccine strain and the attenuated strain CH2195LA, than microcarrier culture did. BHK cells showed less significant differences in their replication kinetics between stationary and microcarrier cultures. Reducing serum concentration during infection led to an overall decrease of JEV production in Vero cells but an increase in BHK cells. By establishing a complete serum-free Vero cell culture, the microcarrier system resulted in a more than 4-log lowered yield compared to that of the stationary culture for JEV production. Thus, the stationary culture is the most efficient system for JEV production from cultured Vero cells.  相似文献   

16.
Elevated circulating levels of chemokines have been reported in patients with dengue fever and are proposed to contribute to the pathogenesis of dengue disease. To establish in vitro models for chemokine induction by dengue 2 virus (DEN2V), we studied a variety of human cell lines and primary cells. DEN2V infection of HepG2 and primary dendritic cells induced the production of interleukin-8 (IL-8), RANTES, MIP-1alpha, and MIP-1beta, whereas only IL-8 and RANTES were induced following dengue virus infection of HEK293 cells. Chemokine secretion was accompanied by an increase in steady-state mRNA levels. No chemokine induction was observed in HEK293 cells treated with poly(I:C) or alpha interferon, suggesting a direct effect of virus infection. To determine the mechanism(s) involved in the induction of chemokine production by DEN2V, individual dengue virus genes were cloned into plasmids and expressed in HEK293 cells. Transfection of a plasmid expressing NS5 or a dengue virus replicon induced IL-8 gene expression and secretion. RANTES expression was not induced under these conditions, however. Reporter assays showed that IL-8 induction by NS5 was principally through CAAT/enhancer binding protein, whereas DEN2V infection also induced NF-kappaB. These results indicate a role for the dengue virus NS5 protein in the induction of IL-8 by DEN2V infection. Recruitment and activation of potential target cells to sites of DEN2V replication by virus-induced chemokine production may contribute to viral replication as well as to the inflammatory components of dengue virus disease.  相似文献   

17.
Trypsin is commonly used in Madin–Darby canine kidney (MDCK) cell culture-based influenza vaccine production to facilitate virus infection by proteolytic activation of viral haemagglutinin, which enables multi-cycle replication. In this study, we were able to demonstrate that trypsin also interferes with pathogen defence mechanisms of host cells. In particular, a trypsin concentration of 5 BAEE U/mL (4.5 μg/mL porcine trypsin) used in vaccine manufacturing strongly inhibited interferon (IFN) signalling by proteolytic degradation of secreted IFN. Consequently, absence of trypsin during infection resulted in a considerably stronger induction of IFN signalling and apoptosis, which significantly reduced virus yields. Under this condition, multi-cycle virus replication in MDCK cells was not prevented but clearly delayed. Therefore, incomplete infection can be ruled out as the reason for the lower virus titres. However, suppression of IFN signalling by overexpression of viral IFN antagonists (influenza virus PR8-NS1, rabies virus phosphoprotein) partially rescued virus titres in the absence of trypsin. In addition, virus yields could be almost restored by using the influenza strain A/WSN/33 in combination with fetal calf serum (FCS). For this strain, FCS enabled trypsin-independent fast propagation of virus infection, probably outrunning cellular defence mechanisms and apoptosis induction in the absence of trypsin. Overall, addition of trypsin provided optimal conditions for high yield vaccine production in MDCK cells by two means. On the one hand, proteolytic degradation of IFN keeps cellular defence at a low level. On the other hand, enhanced virus spreading enables viruses to replicate before the cellular response becomes fully activated.  相似文献   

18.
Influenza H5N1 virus continues to be enzootic in poultry and transmits zoonotically to humans. Although a swine-origin H1N1 virus has emerged to become pandemic, its virulence for humans remains modest in comparison to that seen in zoonotic H5N1 disease. As human respiratory epithelium is the primary target cells for influenza viruses, elucidating the viral tropism and host innate immune responses of influenza H5N1 virus in human bronchial epithelium may help to understand the pathogenesis. Here we established primary culture of undifferentiated and well differentiated normal human bronchial epithelial (NHBE) cells and infected with highly pathogenic influenza H5N1 virus (A/Vietnam/3046/2004) and a seasonal influenza H1N1 virus (A/Hong Kong/54/1998), the viral replication kinetics and cytokine and chemokine responses were compared by qPCR and ELISA. We found that the in vitro culture of the well differentiated NHBE cells acquired the physiological properties of normal human bronchi tissue which express high level of α2-6-linked sialic acid receptors and human airway trypsin-like (HAT) protease, in contrast to the low expression in the non-differentiated NHBE cells. When compared to H1N1 virus, the H5N1 virus replicated more efficiently and induced a stronger type I interferon response in the undifferentiated NHBE cells. In contrast, in well differentiated cultures, H5N1 virus replication was less efficient and elicited a lower interferon-beta response in comparison with H1N1 virus. Our data suggest that the differentiation of bronchial epithelial cells has a major influence in cells'' permissiveness to human H1N1 and avian H5N1 viruses and the host innate immune responses. The reduced virus replication efficiency partially accounts for the lower interferon-beta responses in influenza H5N1 virus infected well differentiated NHBE cells. Since influenza infection in the bronchial epithelium will lead to tissue damage and associate with the epithelium regeneration, the data generated from the undifferentiated NHBE cultures may also be relevant to disease pathogenesis.  相似文献   

19.
Adenovirus production is currently operated at low cell density because infection at high cell densities still results in reduced cell‐specific productivity. To better understand nutrient limitation and inhibitory metabolites causing the reduction of specific yields at high cell densities, adenovirus production in HEK 293 cultures using NSFM 13 and CD 293 media were evaluated. For cultures using NSFM 13 medium, the cell‐specific productivity decreased from 3,400 to 150 vp/cell (or 96% reduction) when the cell density at infection was increased from 1 to 3 × 106 cells/mL. In comparison, only 50% of reduction in the cell‐specific productivity was observed under the same conditions for cultures using CD 293 medium. The effect of medium osmolality was found critical on viral production. Media were adjusted to an optimal osmolality of 290 mOsm/kg to facilitate comparison. Amino acids were not critical limiting factors. Potential limiting nutrients including vitamins, energy metabolites, bases and nucleotides, or inhibitory metabolites (lactate and ammonia) were supplemented to infected cultures to further investigate their effect on the adenovirus production. Accumulation of lactate and ammonia in a culture infected at 3 × 106 cells/mL contributed to about 20% reduction of the adenovirus production yield, whereas nutrient limitation appeared primarily responsible for the decline in the viral production when NSFM 13 medium was used. Overall, the results indicate that multiple factors contribute to limiting the specific production yield at cell densities beyond 1 × 106 cells/mL and underline the need to further investigate and develop media for better adenoviral vector productions. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

20.
Apoptosis is a major problem in animal cell cultures during production of biopharmaceuticals, such as recombinant proteins or viral vectors. A 293 cell line constitutively expressing vMIA (viral mitochondria-localized inhibitor of apoptosis) was constructed and examined on production of a model recombinant protein, green fluorescent protein (GFP) in the adenovirus-293 expression system, and on production of a model infectious adenoviral vector. vMIA-293 cells were more resistant than the parental 293 cells to apoptosis induced by either oxidative stress, or by adenovirus infection. The yield of GFP produced in vMIA-293 cell cultures was consistently higher (140%) compared to that in the parental cells. vMIA reduced production of adenovirus infectious particles, which was not due to a decline of adenovirus replication, since adenoviral DNA replication rate in vMIA-293 cells was higher than that in the parental cells.In conclusion, introduction of the vMIA gene into the 293 cell line is a promising strategy to improve recombinant protein production in the adenovirus-293 expression system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号