共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple, cost-effective, and accurate technique to measure the whole-body-averaged specific absorption rate (SAR) in Sprague-Dawley rat carcasses by a single-gradient-layer calorimeter is described. The results of SAR determinations showed a highly linear relation between the average power density of the incident field (1.25 GHz) and the normalized heat loading of the carcasses. 相似文献
2.
3.
4.
In electromagnetic dosimetry, anatomical human models are commonly obtained by segmentation of magnetic resonance imaging or computed tomography scans. In this paper, a human head model extracted from thermal infrared images is examined in terms of its applicability to specific absorption rate (SAR) calculations. Since thermal scans are two-dimensional (2D) representation of surface temperature, this allows researchers to overcome the extensive computational demand associated with 3D simulation. The numerical calculations are performed using the finite-difference time-domain method with mesh sizes of 2 mm at 900 MHz plane wave irradiation. The power density of the incident plane wave is assumed to be 10 W/m2. Computations were compared with a realistic anatomical head model. The results show that although there were marked differences in the local SAR distribution in the various tissues in the two models, the 1 g peak SAR values are approximately similar in the two models. 相似文献
5.
This study investigated whether the SAR value is a purchase-relevant characteristic of mobile phones for laypersons and what effect the disclosure of a precautionary SAR value has on laypersons' risk perception. The study consisted of two parts: Study part 1 used a conjoint analysis design to explore the relevance of the SAR value and other features of mobile phones for an intended buying decision. Study part 2 used an experimental, repeated measures design to examine the effect of the magnitude of SAR values and the disclosure of a precautionary SAR value on risk perception. In addition, the study included an analysis of prior concerns of the study participants with regard to mobile phone risks. Part 1 indicates that the SAR value has a high relevance for laypersons' purchase intentions. In the experimental purchase setting it ranks even before price and equipment features. The results of study part 2 show that providing information of a precautionary limit value does not influence risk perception. This result suggests that laypersons' underlying subjective \"safety model\" for mobile phones resembles more a \"margin of safety\" concept than a threshold concept. The latter observation holds true no matter how concerned the participants are. 相似文献
6.
D. H. Schaubert 《Bioelectromagnetics》1984,5(2):221-232
The electromagnetic power absorption in tissue-equivalent phantoms that are used for evaluation of diathermy and hyperthermia applicators is analyzed for the purpose of determining the effect of an insulating partition that is frequently used to facilitate separation of the phantom for thermographic analysis of heating distributions. An analysis that is based on the plane wave spectrum decomposition of the electromagnetic field is applied to a simplified model of the medium. The simplified model is valid whenever the insulating partition does not significantly alter the fields in the medium. The curves that are presented indicate that thin partitions do not significantly alter the power absorption for most situations of therapeutic interest. Data on the effects of partition thickness and electrical parameters are presented for microwave and radiofrequencies of interest for diathermy and hyperthermia. 相似文献
7.
Alison H. Doherty Jason D. Frampton Christopher J. Vinyard 《Journal of morphology》2012,273(6):604-617
Long periods of inactivity in most mammals result in bone loss that may not be completely recoverable during an individual's lifetime regardless of future activity. Prolonged inactivity is normal during hibernation, but it remains uncertain whether hibernating mammals suffer decreased bone properties after hibernation that affects survival. We test the hypothesis that relative cortical area (CA), apparent density, bone area fraction (B.Ar/T.Ar), and moments of inertia do not differ between museum samples of woodchucks (Marmota monax) collected before and after hibernation. We used peripheral quantitative computed tomography to examine bone geometry in the femur, tibia, humerus and mandible. We see little evidence for changes in bone measures with hibernation supporting our hypothesis. In fact, when including subadults to increase sample sizes and controlling age statistically, we observed a trend toward increased bone properties following hibernation. Diaphyses were significantly denser in the humerus, femur, and tibia after hibernation, and relative mandibular cortical area was significantly larger. Similarly, relative mechanical indices were significantly larger in the mandible after hibernation. Although tests of individual measures in many cases were not significantly different prehibernation versus posthibernation, the overall pattern of average increase posthibernation was significant for relative CA and densities as well as relative diaphyseal mechanical indices when examining outcomes collectively. The exception to this pattern was a reduction in metaphyseal trabecular bone following hibernation. Individually, only humeral B.Ar/T.Ar was significantly reduced, but the average reduction in trabecular measures post‐hibernation was significant when examined collectively. Because the sample included subadults, we suggest that much of the increased bone relates to their continued growth during hibernation. Our results indicate that woodchucks are more similar to large hibernators that maintain skeletal integrity compared to smaller‐bodied hibernators that may lose bone. This result suggests a potential size‐related trend in bone response to hibernation across mammals. J. Morphol., 2012. © 2012Wiley Periodicals, Inc. 相似文献
8.
Elastin from bovine ligamentum nuchae is incubated in aqueous solutions of sodium salts of fatty acids (FAS). The FAS are laurate, myristate, and palmitate. Absorption of FAS in the elastin network is studied as a function of time, FAS concentration, and ionic strength. The consequences of this uptake for the elasticity of the elastin are studied by static and dynamic stress–strain measurements. Generally, distinction must be made between the initial time‐dependent stage (I) and the final equilibrium stage (II). In I the initial rate of absorption follows a second‐order binding mechanism, with the rate constant increasing with decreasing length of the FAS. In this regime, the elasticity modulus remains more or less unaffected. Especially in regime II the absorption of FAS is enhanced by a reduction in the cross‐link density in the elastin network. This is ascribed to an osmotic pressure primarily caused by the concomitant uptake of low molecular weight ions in the elastin. The absorption equilibrium can be described by Langmuir theory. The absorption affinity increases with increasing hydrocarbon chain length of the FAS, indicating the contribution of hydrophobic interaction. Although the elasticity is not lost, the modulus is now reduced and a concomitant viscous component is developed. © 1999 John Wiley & Sons, Inc. Biopoly 50: 472–485, 1999 相似文献
9.
With different prevalence in different regions, radio frequency (RF) electromagnetic fields (EMF) are widely used for therapeutic tissue heating. Although short‐wave diathermy (27.12 MHz) is the most popular treatment modality, quantitative data on patient's exposure have been lacking. By numerical simulation with the numerical anatomical model NORMAN, intracorporal distributions of specific absorption rates (SAR) were investigated for different treatment scenarios and applicators. Quantitative data are provided for exposures of target treatment areas as well as for vulnerable regions such as the eye lenses, central nervous system, and testes. Different applicators and distances were investigated. Capacitive and inductive applicators exhibit quite a different heating efficiency. It could be shown that for the same output power therapeutic heat deposition can vary by almost one order of magnitude. By mimicking therapist's practice to use patient's heat perception as an indicator for output power setting, numerical data were elaborated demonstrating that muscle tissue exposures may be several times higher for inductive than for capacitive applicators. Presented quantitative data serve as a guide for power adjustment preventing relevant overexposures without compromising therapy; they also provide a basis for estimating target tissue heat load and developing therapeutic guidelines. Bioelectromagnetics 31:12–19, 2010. © 2009 Wiley‐Liss, Inc. 相似文献
10.
11.
During the last decade, use of radio frequency (RF) applications like mobile phones and other wireless devices, has increased remarkably. This has triggered numerous studies related to possible health risks due to the exposure of RF electromagnetic (EM) fields. One safety aspect is the coupling of EM fields with active and passive implants in the human body. While interactions with active implants have been quite extensively researched, only a few studies have focused on passive implants. The present article reviews interaction mechanisms and studies of passive metallic, that is, conductive, implants in common external RF EM fields. It is found that implants have been mostly studied numerically, and experimental studies are rare. Furthermore, the studies cover mostly far-field conditions and only a few have studied implants in near fields. A summary of results indicates that a conductive object in tissues may cause notable local enhancement of the EM field and thus enhanced power absorption. The degree of enhancement depends, for example, on the orientation, the dimensions, the shape, and the location of the implant. However, in most of the cases, the field enhancement has not been strong enough to cause remarkable excess heating (more than 1 degrees C) of tissues. 相似文献
12.
The interaction of body‐worn antennas with the human body causes a significant decrease in antenna efficiency and a shift in resonant frequency. A resonant slot in a small conductive box placed on the body has been shown to reduce these effects. The specific absorption rate is less than international health standards for most wearable antennas due to small transmitter power. This paper reports the linear relationship between power absorbed by biological tissues at different locations on the body and radiation efficiency based on numerical modeling (r = 0.99). While the ?10 dB bandwidth of the antenna remained constant and equal to 12.5%, the maximum frequency shift occurred when the antenna was close to the elbow (6.61%) and on the thigh (5.86%). The smallest change was found on the torso (4.21%). Participants with body‐mass index (BMI) between 17 and 29 kg/m2 took part in experimental measurements, where the maximum frequency shift was 2.51%. Measurements showed better agreement with simulations on the upper arm. These experimental results demonstrate that the BMI for each individual had little effect on the performance of the antenna. Bioelectromagnetics. 39:25–34, 2018. © 2017 Wiley Periodicals, Inc. 相似文献
13.
A frequent problem in the radiofrequency (RF) irradiation of experimental animals in health effects studies is the temporal variation of the specific absorption rate (SAR) with animal movement. An RF power controller that regulates the energy absorption rate has been designed for use with transmission line exposure systems that utilize the power difference method to monitor the SAR. The controller operates by altering the incident power to the exposure cell in order to compensate for the change in RF energy absorption rate that is due to animal motion. A circuit diagram is presented as well as experimental data under three conditions of exposure. The controller is effective in maintaining the mean value of energy absorption rate at the setpoint value even for the case of a highly active animal. 相似文献
14.
In this article, personal electromagnetic field measurements are converted into whole‐body specific absorption rates for exposure of the general public. Whole‐body SAR values calculated from personal exposure meter data are compared for different human spheroid phantoms: the highest SAR values (at 950 MHz) are obtained for the 1‐year‐old child (99th percentile of 17.9 µW/kg for electric field strength of 0.36 V/m), followed by the 5‐year‐old child, 10‐year‐old child, average woman, and average man. For the 1‐year‐old child, whole‐body SAR values due to 9 different radiofrequency sources (FM, DAB, TETRA, TV, GSM900 DL, GSM1800 DL, DECT, UMTS DL, WiFi) are determined for 15 different scenarios. An SAR matrix for 15 different exposure scenarios and 9 sources is provided with the personal field exposure matrix. Highest 95th percentiles of the whole‐body SAR are equal to 7.9 µW/kg (0.36 V/m, GSM900 DL), 5.8 µW/kg (0.26 V/m, DAB/TV), and 7.1 µW/kg (0.41 V/m, DECT) for the 1‐year‐old child, with a maximal total whole‐body SAR of 11.5 µW/kg (0.48 V/m) due to all 9 sources. All values are below the basic restriction of 0.08 W/kg for the general public. 95th percentiles of whole‐body SAR per V/m are equal to 60.1, 87.9, and 42.7 µW/kg for GSM900, DAB/TV, and DECT sources, respectively. Functions of the SAR versus measured electric fields are provided for the different phantoms and frequencies, enabling epidemiological and dosimetric studies to make an analysis in combination with both electric field and actual whole‐body SAR. Bioelectromagnetics 31:286–295, 2010. © 2009 Wiley‐Liss, Inc. 相似文献
15.
A mechanistic model of photoinhibition 总被引:2,自引:0,他引:2
A mechanistic model was developed, to simulate the main facets of photoinhibition in phytoplankton. Photoinhibition is modelled as a time dependent decrease in the initial slope of a photosynthesis versus irradiance curve, related to D1 (photosystem II reaction centre protein) damage and non-photochemical quenching. The photoinhibition model was incorporated into an existing ammonium-nitrate nutrition interaction model capable of simulating photoacclimation and aspects of nitrogen uptake and utilization. Hence the current model can simulate the effects of irradiance on photosynthesis from sub-saturating to inhibitory photon flux densities, during growth on different nitrogen sources and under nutrient stress. Model output conforms well to experimental data, allowing the extent of photoinhibition to be predicted under a range of nutrient and light regimes. The ability of the model to recreate the afternoon depression of photosynthesis and the enhancement of photosynthesis during fluctuating light suggests that these two processes are related to photoinhibition. The model may be used to predict changes in biomass and/or carbon fixation under a wide range of oceanographic situations, and it may also help to explain the progression to dominance of certain algal species, and bloom formation under defined irradiance and nutrient conditions. 相似文献
16.
We numerically assess the effects of head properties (anatomy and dielectric parameters) on the performance of a scalp‐implantable antenna for telemetry in the Medical Implant Communications Service band (402.0–405.0 MHz). Safety issues and performance (resonance, radiation) are analyzed for an experimentally validated implantable antenna (volume of 203.6 mm3), considering five head models (3‐ and 5‐layer spherical, 6‐, 10‐, and 13‐tissue anatomical) and seven scenarios (variations ± 20% in the reference permittivity and conductivity values). Simulations are carried out at 403.5 MHz using the finite‐difference time‐domain method. Anatomy of the head model around the implantation site is found to mainly affect antenna performance, whereas overall tissue anatomy and dielectric parameters are less significant. Compared to the reference dielectric parameter scenario within the 3‐layer spherical head, maximum variations of ?19.9%, +3.7%, ?55.1%, and ?39.2% are computed in the maximum allowable net input power imposed by the IEEE Std C95.1‐1999 and Std C95.1‐2005 safety guidelines, return loss, and maximum far‐field gain, respectively. Compliance with the recent IEEE Std C95.1‐2005 is found to be almost insensitive to head properties, in contrast with IEEE Std C95.1‐1999. Taking tissue property uncertainties into account is highlighted as crucial for implantable antenna design and performance assessment. Bioelectromagnetics 34:167–179, 2013. © 2012 Wiley Periodicals, Inc. 相似文献
17.
Wout Joseph Patrizia Frei Martin Röösli Günter Vermeeren John Bolte György Thuróczy Peter Gajšek Tomaž Trček Evelyn Mohler Péter Juhász Viktoria Finta Luc Martens 《Bioelectromagnetics》2012,33(8):682-694
In five countries (Belgium, Switzerland, Slovenia, Hungary, and the Netherlands), personal radio frequency electromagnetic field measurements were performed in different microenvironments such as homes, public transports, or outdoors using the same exposure meters. From the mean personal field exposure levels (excluding mobile phone exposure), whole‐body absorption values in a 1‐year‐old child and adult male model were calculated using a statistical multipath exposure method and compared for the five countries. All mean absorptions (maximal total absorption of 3.4 µW/kg for the child and 1.8 µW/kg for the adult) were well below the International Commission on Non‐Ionizing Radiation Protection (ICNIRP) basic restriction of 0.08 W/kg for the general public. Generally, incident field exposure levels were well correlated with whole‐body absorptions (SARwb), although the type of microenvironment, frequency of the signals, and dimensions of the considered phantom modify the relationship between these exposure measures. Exposure to the television and Digital Audio Broadcasting band caused relatively higher SARwb values (up to 65%) for the 1‐year‐old child than signals at higher frequencies due to the body size‐dependent absorption rates. Frequency Modulation (FM) caused relatively higher absorptions (up to 80%) in the adult male. Bioelectromagnetics 33:682–694, 2012. © 2012 Wiley Periodicals, Inc. 相似文献
18.
We report on the comprehension of novel europium activated hybrid organic Eu(dmh)3phen (Eu: europium, dmh: 2,6‐dimethyl‐3,5‐heptanedione, phen: 1,10 phenanthroline) organo‐metallic complexes, synthesized at different pH values by the solution technique. Photo physical properties of these complexes in various basic and acidic solvents were probed by UV–vis optical absorption and photoluminescence (PL) spectra. Minute differences in optical absorption peaks with variable optical densities were encountered with the variation in solvent from basic (chloroform, toluene, tetrahydrofuran) to acidic (acetic acid) media, revealing bathochromic shift in the absorption peaks. The PL spectra of the complex in various acidic and basic organic solvents revealed the position of the emission peak at 613 nm irrespective of the changes in solvents whereas the excitation spectrum almost matched with that of the UV–vis absorption data. The optical density was found to be maximum for the complex with pH 7.0 whereas it gradually decreased when pH was lowered to 6.0 or raised to 8.0 at an interval of 0.5, demonstrating its pH sensitive nature. Several spectroscopic parameters related to probability of transition such as absorbance A(λ), Napierian absorption coefficient α(λ), molecular absorption cross‐section σ(λ), radiative lifetime (τ0) and oscillator strength (f) were calculated from UV–vis spectra. The relative intensity ratio (R‐ratio), calculated from the emission spectra was found to be almost the same in all the organic solvents. The optical energy gap, calculated for the designed complexes were found to be well in accordance with the ideal acceptance value of energy gap of the emissive materials used for fabrication of red organic light‐emitting diode (OLED). The relation between Stoke's shift and solvent polarity function was established by Lippert–Mataga plot. This remarkable independence of the electronic absorption spectra of Eu complexes on the nature of the solvent with unique emission wavelength furnishes its potential to serve as a red light emitter for solution processed OLEDs, display panels and solid‐state lighting. 相似文献
19.
Cabrera CM Nieto A Cortes JL Montes RM Catalina P Cobo F Barroso-Del-Jesus A Concha A 《Cell biology international》2007,31(9):1072-1078
Human embryonic stem cells (hESCs) represent a promise for future strategies of tissue replacement. However, there are different issues that should be resolved before these cells can be used in cellular therapies; among others, the rejection of transplantable hESCs as a result of HLA incompatibility between donor cells and recipients. The hESCs exhibit a weak HLA class I expression on the cell surface, but today the responsible mechanisms are unknown. We have analyzed the level expression of HLA class I heavy chain, beta2-microglobulin (beta2-m), and antigen-processing machinery (APM) components (TAP1, TAP2, LMP2, LMP7, and Tapasin) using the HS293 hESC line by real-time quantitative RT-PCR. This analysis has revealed a low expression of beta2-m, HLA-B, and Tapasin, and an absence of expression of: TAP1, TAP2, LMP2, and LMP7 genes in the HS293 hESC line respect to the embryoid bodies (EBs) and the induced stem cells with IFNgamma (with significant differences, p<0.05). The lack or loss of HLA class I molecules due to the down-regulation of the APM components has been frequently found in tumors of different histology as specific mechanisms of immune-evasion. We described for the first time in this report that the hESCs shared similar mechanisms with respect to tumor cells responsible for the weak HLA class I expression on the cell surface. 相似文献
20.
Jijun Han Deqiang Yang Houjun Sun Sherman Xuegang Xin 《Electromagnetic biology and medicine》2017,36(2):169-176
Inverse method is inherently suitable for calculating the distribution of source current density related with an irregularly structured electromagnetic target field. However, the present form of inverse method cannot calculate complex field–tissue interactions. A novel hybrid inverse/finite-difference time domain (FDTD) method that can calculate the complex field–tissue interactions for the inverse design of source current density related with an irregularly structured electromagnetic target field is proposed. A Huygens’ equivalent surface is established as a bridge to combine the inverse and FDTD method. Distribution of the radiofrequency (RF) magnetic field on the Huygens’ equivalent surface is obtained using the FDTD method by considering the complex field–tissue interactions within the human body model. The obtained magnetic field distributed on the Huygens’ equivalent surface is regarded as the next target. The current density on the designated source surface is derived using the inverse method. The homogeneity of target magnetic field and specific energy absorption rate are calculated to verify the proposed method. 相似文献