首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphological scaling relationships between organ and body size—also known as allometries—describe the shape of a species, and the evolution of such scaling relationships is central to the generation of morphological diversity. Despite extensive modeling and empirical tests, however, the modes of selection that generate changes in scaling remain largely unknown. Here, we mathematically model the evolution of the group‐level scaling as an emergent property of individual‐level variation in the developmental mechanisms that regulate trait and body size. We show that these mechanisms generate a “cryptic individual scaling relationship” unique to each genotype in a population, which determines body and trait size expressed by each individual, depending on developmental nutrition. We find that populations may have identical population‐level allometries but very different underlying patterns of cryptic individual scaling relationships. Consequently, two populations with apparently the same morphological scaling relationship may respond very differently to the same form of selection. By focusing on the developmental mechanisms that regulate trait size and the patterns of cryptic individual scaling relationships they produce, our approach reveals the forms of selection that should be most effective in altering morphological scaling, and directs researcher attention on the actual, hitherto overlooked, targets of selection.  相似文献   

2.
Dreyer AP  Shingleton AW 《PloS one》2011,6(12):e28278
The genitalia of most male arthropods scale hypoallometrically with body size, that is they are more or less the same size across large and small individuals in a population. Such scaling is expected to arise when genital traits show less variation than somatic traits in response to factors that generate size variation among individuals in a population. Nevertheless, there have been few studies directly examining the relative sensitivity of genital and somatic traits to factors that affect their size. Such studies are key to understanding genital evolution and the evolution of morphological scaling relationships more generally. Previous studies indicate that the size of genital traits in male Drosophila melanogaster show a relatively low response to variation in environmental factors that affect trait size. Here we show that the size of genital traits in male fruit flies also exhibit a relatively low response to variation in genetic factors that affect trait size. Importantly, however, this low response is only to genetic factors that affect body and organ size systemically, not those that affect organ size autonomously. Further, we show that the genital traits do not show low levels of developmental instability, which is the response to stochastic developmental errors that also influence organ size autonomously. We discuss these results in the context of current hypotheses on the proximate and ultimate mechanisms that generate genital hypoallometry.  相似文献   

3.
Much diversity in animal morphology results from variation in the relative size of morphological traits. The scaling relationships, or allometries, that describe relative trait size can vary greatly in both intercept and slope among species or other animal groups. Yet within such groups, individuals typically exhibit low variation in relative trait size. This pattern of high intra- and low intergroup variation may result from natural selection for particular allometries, from developmental constraints restricting differential growth among traits, or both. Here we explore the relative roles of short-term developmental constraints and natural selection in the evolution of the intercept of the allometry between the forewing and hindwing of a butterfly. First, despite a strong genetic correlation between these two traits, we show that artificial selection perpendicular to the forewing-hindwing scaling relationship results in rapid evolution of the allometry intercept. This demonstrates an absence of developmental constraints limiting intercept evolution for this scaling relationship. Mating experiments in a natural environment revealed strong stabilizing selection favoring males with the wild-type allometry intercept over those with derived intercepts. Our results demonstrate that evolution of this component of the forewing-hindwing allometry is not limited by developmental constraints in the short term and that natural selection on allometry intercepts can be powerful.  相似文献   

4.
Summary From a behavioural perspective on adaptive female choice, I developed a by-product runaway model of adaptive mate choice. The model illustrates the evolution of the tail size of peacocks. I consider the causal mechanisms of adaptive female choice: (1) why (ultimate reasons); (2) how (proximate mechanisms). Assumptions are developed based on these behavioural aspects. For (1) ultimate reasons, I assume that many male losers (low-fitness males) always occur due to genetic and environmental uncertainty (A-1). For (2) proximate mechanisms, I assume that losers tend to differ in the expression of a fitness-sensitive trait (an ultimate target, e.g. body size; A-2), that the fitness-sensitive trait correlates with a secondary sexual trait (a proximate cue, e.g. allometry in body size and tail size; (A-3), and that the cue trait has a genetic basis that is independent of the target trait (e.g. a genetic basis in tail ratio to body size; A-4). The model's results are: persistent female choice by means of a proximate cue (R-1); by-product selection on the independent genetic basis of the cue (R-2); and the non-adaptive or maladaptive runaway evolution of the male proximate cue (R-3). In this model, female mate preferences are non-arbitrary and adaptive, whereas the resulting evolution of male secondary sexual traits is non-adaptive in the sense of survival selection.  相似文献   

5.
The evolutionary significance of widespread hypo‐allometric scaling of genital traits in combination with rapid interspecific genital trait divergence has been of key interest to evolutionary biologists for many years and remains poorly understood. Here, we provide a detailed assessment of quantitative genital trait variation in males and females of the sexually highly dimorphic and cannibalistic orb‐weaving spider Argiope aurantia. We then test how this trait variation relates to sperm transfer success. In particular, we test specific predictions of the one‐size‐fits‐all and lock‐and‐key hypotheses for the evolution of genital characters. We use video‐taped staged matings in a controlled environment with subsequent morphological microdissections and sperm count analyses. We find little support for the prediction of the one‐size‐fits‐all hypothesis for the evolution of hypo‐allometric scaling of genital traits, namely that intermediate trait dimensions confer highest sperm transfer success. Likewise, our findings do not support the prediction of the lock‐and‐key hypothesis that a tight fit of male and female genital traits mediates highest sperm transfer success. We do, however, detect directional effects of a number of male and female genital characters on sperm transfer, suggesting that genital trait dimensions are commonly under selection in nature. Importantly, even though females are much larger than males, spermatheca size limits the number of sperm transferred, contradicting a previous hypothesis about the evolutionary consequences of genital size dimorphism in extremely size‐dimorphic taxa. We also find strong positive effects of male body size and copulation duration on the probability of sperm transfer and the number of sperm transferred, with implications for the evolution of extreme sexual size dimorphism and sexual cannibalism in orb weavers.  相似文献   

6.
Size and scaling of sexually-selected traits in the lizard, Uta palmeri   总被引:1,自引:0,他引:1  
Differences between the sexes in overall body size and in the size of other morphological traits, relative to overall body size, are common in many animals. In this study, patterns of growth and scaling of sexually dimorphic tratis are assessedin a lilzard and then used to sugest general developmental mechanisms responsible for sexual size dimorphism (SSD). Adult make Uta palmeri lizards are larger than adult females inoverall body size (snout-vent length, SVL), body mass, jaw length head width, and head depth. Two general growth processes produce this adult SSD. First, juvenile males have greater annual SVL growth rates than do juvenile females, contributing to adult SSD because males will be larger than females in any trait positively correlated with SVL. Secondly, males and females differ in age-related changes in growth of the three head size traits, relative to growth in SVL. Comparing slopes from reduced major axis regressions of each trait on SVL reveals that the sexes do not differ in the scaling of these traits as juveniles, but as adults males have greater slopes than adult females, indicating ontogenetic differences in scaling of these traits in males. Two other topics in SSD are addressed with these data. First, comparing these data on scaling to those of an earlier analysis that used ordinary least squares regression reveals that conclusions about underlying mechanisms in an analysis of scaling can be altered by the choice of a regression model. Secondly, these data indicate that postmaturational differences in scaling contribute to adult sexual size differences, contrary to an earlier study. Shine (1990) found that for many ectotherms, which continue to grow after sexual maturation, post-maturational events contribute little to sexual differences in overall body size. Results for U. palmeri suggest that these findings may only hold for measures of overall body size (e.g. SVL) and may not generalize to traits that exhibit sex difference in scaling.  相似文献   

7.
Male genital morphology in insects and arachnids is characterized by static hypoallometry and low intrapopulational levels of phenotypic variation relative to other male traits. The one-size-fits-all model of genital evolution attributes these patterns to stabilizing sexual selection. This model relies on the assumption that the observed patterns of variation and allometry reflect the form of sexual selection acting these traits. We test this by examining the patterns of scaling and trait variation for a set of genitalic and somatic morphological traits in male water striders (Aquarius remigis). This suite of traits is of particular interest because previous work has shown that the genitalic traits are under strong directional selection whereas the somatic traits are under either weak directional or stabilizing selection. Because the selection regime for these traits is known, we can, for the first time, test the purported relationship between trait variation, scaling, and the form of sexual selection. We show that the patterns of variation and scaling of these traits differ sharply from those predicted for traits experiencing strong directional sexual selection. Specifically, the male genital structures show static hypoallometry and low intrapopulational levels of phenotypic variation relative to other male traits, in spite of consistent, strong, directional sexual selection. These scaling relationships and levels of variation are typical of genital traits in other insect species, where they have been presumed to reflect stabilizing sexual selection. Our data clearly refute the assumption of the one-size-fits-all hypothesis that hypoallometric scaling of genitalic traits implies stabilizing selection. We discuss the implications of this finding and propose future directions for improving our current understanding of genital evolution in arthropods.  相似文献   

8.
Explaining the repeated evolution of similar sets of traits under similar environmental conditions is an important issue in evolutionary biology. The extreme alternative classes of explanations for correlated suites of traits are optimal adaptation and genetic constraint resulting from pleiotropy. Adaptive explanations presume that individual traits are free to evolve to their local optima and that convergent evolution represents particularly adaptive combinations of traits. Alternatively, if pleiotropy is strong and difficult to break, strong selection on one or a few particularly important characters would be expected to result in consistent correlated evolution of associated traits. If pleiotropy is common, we predict that the pattern of divergence among populations will consistently reflect the within-population genetic architecture. To test the idea that the multivariate life-history phenotype is largely a byproduct of strong selection on body size, we imposed divergent artificial selection on size at maturity upon two populations of the cladoceran Daphnia pulicaria, chosen on the basis of their extreme divergence in body size. Overall, the trajectory of divergence between the two natural populations did not differ from that predicted by the genetic architecture within each population. However, the pattern of correlated responses suggested the presence of strong pleiotropic constraints only for adult body size and not for other life-history traits. One trait, offspring size, appears to have evolved in a way different from that expected from the within-population genetic architecture and may be under stabilizing selection.  相似文献   

9.
Although models of evolution usually assume that the strength of selection on a trait and the expression of genetic variation in that trait are independent, whenever the same ecological factor impacts both parameters, a correlation between the two may arise that accelerates trait evolution in some environments and slows it in others. Here, we address the evolutionary consequences and ecological causes of a correlation between selection and expressed genetic variation. Using a simple analytical model, we show that the correlation has a modest effect on the mean evolutionary response and a large effect on its variance, increasing among‐population or among‐generation variation in the response when positive, and diminishing variation when negative. We performed a literature review to identify the ecological factors that influence selection and expressed genetic variation across traits. We found that some factors – temperature and competition – are unlikely to generate the correlation because they affected one parameter more than the other, and identified others – most notably, environmental novelty – that merit further investigation because little is known about their impact on one of the two parameters. We argue that the correlation between selection and genetic variation deserves attention alongside other factors that promote or constrain evolution in heterogeneous landscapes.  相似文献   

10.
The scaling of body parts is central to the expression of morphology across body sizes and to the generation of morphological diversity within and among species. Although patterns of scaling‐relationship evolution have been well documented for over one hundred years, little is known regarding how selection acts to generate these patterns. In part, this is because it is unclear the extent to which the elements of log‐linear scaling relationships—the intercept or mean trait size and the slope—can evolve independently. Here, using the wing–body size scaling relationship in Drosophila melanogaster as an empirical model, we use artificial selection to demonstrate that the slope of a morphological scaling relationship between an organ (the wing) and body size can evolve independently of mean organ or body size. We discuss our findings in the context of how selection likely operates on morphological scaling relationships in nature, the developmental basis for evolved changes in scaling, and the general approach of using individual‐based selection experiments to study the expression and evolution of morphological scaling.  相似文献   

11.
Brain size is an energetically costly trait to develop and maintain. Investments into other costly aspects of an organism's biology may therefore place important constraints on brain size evolution. Sexual traits are often costly and could therefore be traded off against neural investment. However, brain size may itself be under sexual selection through mate choice on cognitive ability. Here, we use guppy (Poecilia reticulata) lines selected for large and small brain size relative to body size to investigate the relationship between brain size, a large suite of male primary and secondary sexual traits, and body condition index. We found no evidence for trade‐offs between brain size and sexual traits. Instead, larger‐brained males had higher expression of several primary and precopulatory sexual traits – they had longer genitalia, were more colourful and developed longer tails than smaller‐brained males. Larger‐brained males were also in better body condition when housed in single‐sex groups. There was no difference in post‐copulatory sexual traits between males from the large‐ and small‐brained lines. Our data do not support the hypothesis that investment into sexual traits is an important limiting factor to brain size evolution, but instead suggest that brain size and several sexual traits are positively genetically correlated.  相似文献   

12.
Biologists have been fascinated with the extreme products of sexual selection for decades. However, relatively few studies have characterized patterns of selection acting on ornaments and weapons in the wild. Here, we measure selection on a wild population of weapon‐bearing beetles (frog‐legged leaf beetles: Sagra femorata) for two consecutive breeding seasons. We consider variation in both weapon size (hind leg length) and in relative weapon size (deviations from the population average scaling relationship between hind leg length and body size), and provide evidence for directional selection on weapon size per se and stabilizing selection on a particular scaling relationship in this population. We suggest that whenever growth in body size is sensitive to external circumstance such as nutrition, then considering deviations from population‐level scaling relationships will better reflect patterns of selection relevant to evolution of the ornament or weapon than will variation in trait size per se. This is because trait‐size versus body‐size scaling relationships approximate underlying developmental reaction norms relating trait growth with body condition in these species. Heightened condition‐sensitive expression is a hallmark of the exaggerated ornaments and weapons favored by sexual selection, yet this plasticity is rarely reflected in the way we think about—and measure—selection acting on these structures in the wild.  相似文献   

13.
Environmental factors during juvenile growth such as temperature and nutrition have major effects on adult morphology and life-history traits. In Drosophila melanogaster, ovary size, measured as ovariole number, and body size, measured as thorax length, are developmentally plastic traits with respect to larval nutrition. Herein we investigated the genetic basis for plasticity of ovariole number and body size, as well the genetic basis for their allometric relationship using recombinant inbred lines (RILs) derived from a natural population in Winters, California. We reared 196 RILs in four yeast concentrations and measured ovariole number and body size. The genetic correlation between ovariole number and thorax length was positive, but the strength of this correlation decreased with increasing yeast concentration. Genetic variation and genotype-by-environment (G x E) interactions were observed for both traits. We identified quantitative trait loci (QTL), epistatic, QTL-by-environment, and epistatic-by-environment interactions for both traits and their scaling relationships. The results are discussed in the context of multivariate trait evolution.  相似文献   

14.
Sexual selection is generally held responsible for the exceptional diversity in secondary sexual traits in animals. Mating system evolution is therefore expected to profoundly affect the covariation between secondary sexual traits and mating success. Whereas there is such evidence at the interspecific level, data within species remain scarce. We here investigate sexual selection acting on the exaggerated male fore femur and the male wing in the common and widespread dung flies Sepsis punctum and S. neocynipsea (Diptera: Sepsidae). Both species exhibit intraspecific differences in mating systems and variation in sexual size dimorphism (SSD) across continents that correlates with the extent of male–male competition. We predicted that populations subject to increased male–male competition will experience stronger directional selection on the sexually dimorphic male foreleg. Our results suggest that fore femur size, width and shape were indeed positively associated with mating success in populations with male‐biased SSD in both species, which was not evident in conspecific populations with female‐biased SSD. However, this was also the case for wing size and shape, a trait often assumed to be primarily under natural selection. After correcting for selection on overall body size by accounting for allometric scaling, we found little evidence for independent selection on any of these size or shape traits in legs or wings, irrespective of the mating system. Sexual dimorphism and (foreleg) trait exaggeration is therefore unlikely to be driven by direct precopulatory sexual selection, but more so by selection on overall size or possibly selection on allometric scaling.  相似文献   

15.
Alternative reproductive tactics (ARTs) have provided valuable insights into how sexual selection and life history trade‐offs can lead to variation within a sex. However, the possibility that tactics may constrain evolution through intralocus tactical conflict (IATC) is rarely considered. In addition, when IATC has been considered, the focus has often been on the genetic correlations between the ARTs, while evidence that the ARTs have different optima for associated traits and that at least one of the tactics is not at its optimum is often missing. Here, we investigate selection on three traits associated with the ARTs in the swordtail fish Xiphophorus multilineatus; body size, body shape, and the sexually selected trait for which these fishes were named, sword length (elongation of the caudal fin). All three traits are tactically dimorphic, with courter males being larger, deeper bodied and having longer swords, and the sneaker males being smaller, more fusiform and having shorter swords. Using measures of reproductive success in a wild population we calculated selection differentials, as well as linear and quadratic gradients. We demonstrated that the tactics have different optima and at least one of the tactics is not at its optimum for body size and sword length. Our results provide the first evidence of selection in the wild on the sword, an iconic trait for sexual selection. In addition, given the high probability that these traits are genetically correlated to some extent between the two tactics, our study suggests that IATC is constraining both body size and the sword from reaching their phenotypic optima. We discuss the importance of considering the role of IATC in the evolution of tactical dimorphism, how this conflict can be present despite tactical dimorphism, and how it is important to consider this conflict when explaining not only variation within a species but differences across species as well.  相似文献   

16.
Sexual selection has driven the evolution of exaggerated traits among diverse animal taxa. The production of exaggerated traits can come at a cost to other traits through trade-offs when resources allocated to trait development are limited. Alternatively some traits can be selected for in parallel to support or compensate for the cost of bearing the exaggerated trait. Male giraffe weevils (Lasiorhynchus barbicornis) display an extremely elongated rostrum used as a weapon during contests for mates. Here we characterise the scaling relationship between rostrum and body size and show that males have a steep positive allometry, but that the slope is non-linear due to a relative reduction in rostrum length for the largest males, suggesting a limitation in resource allocation or a diminishing requirement for large males to invest increasingly into larger rostra. We also measured testes, wings, antennae, fore- and hind-tibia size and found no evidence of a trade-off between these traits and rostrum length when comparing phenotypic correlations. However, the relative length of wings, antennae, fore- and hind-tibia all increased with relative rostrum length suggesting these traits may be under correlational selection. Increased investment in wing and leg length is therefore likely to compensate for the costs of flying with, and wielding the exaggerated rostrum of larger male giraffe weevils. These results provide a first step in identifying the potential for trait compensation and trades-offs, but are phenotypic correlations only and should be interpreted with care in the absence of breeding experiments.  相似文献   

17.
Natural selection is a key mechanism of evolution, which results from the differential reproduction of individuals due to differences in phenotype. We describe fecundity selection on 13 anthropometric traits in a sample of 4000–10,000 of Estonian girls, who were born between 1937 and 1962 and measured at around 13 years of age. Direct selection favoured shorter, slimmer and lighter girls with smaller heads, more masculine facial and body shapes and slower rates of sexual maturation. Selection was stabilizing for weight, body mass index and face roundness. Direct selection was absent on two markers of general health and viability – handgrip strength and vital lung capacity – although these traits experience negative indirect selection due to their association with educational attainment. Similarly, indirect selection, mediated by educational attainment, accounted for a significant portion of selection for girls with smaller heads, narrower faces, and higher shoulder/hip ratios. These traits are thus subject to gene-culture coevolution, in that selection on body dimensions arises via cultural and behavioural mechanisms.  相似文献   

18.
The existence of discrete phenotypic variation within one sex poses interesting questions regarding how such intrasexual polymorphisms are produced and modified during the course of evolution. Approaching these kinds of questions requires insights into the genetic architecture underlying a polymorphism and an understanding of the proximate mechanisms determining phenotype expression. Here we explore the genetic underpinnings and proximate factors influencing the expression of beetle horns – a dramatic sexually selected trait exhibiting intramale dimorphism in many species. Two relatively discrete male morphs are present in natural populations of the dung beetle Onthophagus taurus (Scarabaeidae, Onthophagini). Males exceeding a critical body size develop a pair of long, curved horns on their heads, while those smaller than this critical body size remain essentially hornless. We present results from laboratory breeding experiments designed to assess the relative importance of inherited and environmental factors as determinants of male morphology. Using father–son regressions, our findings demonstrate that horn length and body size of male progeny are not predicted from paternal morphology. Instead, natural variation in an environmental factor, the amount of food available to larvae, determined both the body sizes exhibited by males as adults and the presence or absence of horns. The nonlinear scaling relationship between the body size and horn length of males bred in the laboratory did not differ from the pattern of variation present in natural populations, suggesting that nutritional conditions account for variation in male morphology in natural populations as well. We discuss our results by extending ideas proposed to explain the evolution of conditional expression of alternative phenotypes in physically heterogeneous environments toward incorporating facultative expression of secondary sexual traits. We use this synthesis to begin characterizing the potential origin and subsequent evolution of facultative horn expression in onthophagine beetles.  相似文献   

19.
Developmental constraints and selective pressures interact to determine the strength of allometric scaling relationships between body size and the size of morphological traits among related species. Different traits are expected to relate to body size with different scaling exponents, depending on how their function changes disproportionately with increasing body size. For trematodes parasitic in vertebrate guts, the risk of being dislodged should increase disproportionately with body size, whereas basic physiological functions are more likely to increase in proportion to changes in body size. Allometric scaling exponents for attachment structures should thus be higher than those for other structures and should be higher for trematode families using endothermic hosts than for those using ectotherms, given the feeding and digestive characteristics of these hosts. These predictions are tested with data on 363 species from 13 trematode families. Sizes of four morphological structures were investigated, two associated with attachment (oral and ventral suckers) and the other two with feeding and reproduction (pharynx and cirrus sac). The scaling exponents obtained were generally low, the majority falling between 0.2 and 0.5. There were no consistent differences within families between the magnitude of scaling exponents for different structures. Also, there was no difference in the values of scaling exponents between families exploiting endothermic hosts and those using ectotherms. There were strong correlations across families between the values of the scaling exponents for the oral sucker, the ventral sucker and the pharynx: in families where the size of one trait increases relatively steeply as a function of body size, the same is generally true of the other traits. These results suggest either that developmental constraints link several morphological features independently of their specific roles or that similar selection pressures operate on different structures, leading to covariation of scaling exponents. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 96 , 533–540.  相似文献   

20.
For almost a century, biologists have used trait scaling relationships(bi-variate scatter-plots of trait size versus body size) tocharacterize phenotypic variation within populations, and tocompare animal shape across populations or species. Scalingrelationships are a popular metric because they have long beenthought to reflect underlying patterns of trait growth and development.However, the physiological mechanisms generating animal scalingare not well understood, and it is not yet clear how scalingrelationships evolve. Here we review recent advances in developmentalbiology, genetics, and physiology as they pertain to the controlof growth of adult body parts in insects. We summarize fourmechanisms known to influence either the rate or the durationof cell proliferation within developing structures, and suggesthow mutations in these mechanisms could affect the relativesizes of adult body parts. By reviewing what is known aboutthese four processes, and illustrating how they may contributeto patterns of trait scaling, we reveal genetic mechanisms likelyto be involved in the evolution of insect form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号