首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
叶莉  王士斌 《生物工程学报》2010,26(12):1611-1617
干细胞极强的自我更新能力和多向分化潜能使其可以成为绝佳的种子细胞来源,用于各种疑难疾病的治疗。微胶囊不仅可以为细胞提供三维生长微环境,而且具有良好的免疫隔离性能和生物相容性。微囊化干细胞技术为干细胞大规模、高活性体外培养及长期保存提供了新的技术支持,为细胞移植疗法开辟了新途径。以下首先简述了微囊化技术的发展情况,然后介绍了目前用于微囊化干细胞的材料、制备方法及其免疫隔离作用,重点阐述了近年来微囊化各种不同类型干细胞的研究和应用进展。最后,提出目前微胶囊化干细胞的问题所在并对此技术进行展望。  相似文献   

2.
The successful implementation of human embryonic stem cells (hESCs)-based technologies requires the production of relevant numbers of well-characterized cells and their efficient long-term storage. In this study, cells were microencapsulated in alginate to develop an integrated bioprocess for expansion and cryopreservation of pluripotent hESCs. Different three-dimensional (3D) culture strategies were evaluated and compared, specifically, microencapsulation of hESCs as: i) single cells, ii) aggregates and iii) immobilized on microcarriers. In order to establish a scalable bioprocess, hESC-microcapsules were cultured in stirred tank bioreactors.The combination of microencapsulation and microcarrier technology resulted in a highly efficient protocol for the production and storage of pluripotent hESCs. This strategy ensured high expansion ratios (an approximately twenty-fold increase in cell concentration) and high cell recovery yields (>70%) after cryopreservation. When compared with non-encapsulated cells, cell survival post-thawing demonstrated a three-fold improvement without compromising hESC characteristics.Microencapsulation also improved the culture of hESC aggregates by protecting cells from hydrodynamic shear stress, controlling aggregate size and maintaining cell pluripotency for two weeks.This work establishes that microencapsulation technology may prove a powerful tool for integrating the expansion and cryopreservation of pluripotent hESCs. The 3D culture strategy developed herein represents a significant breakthrough towards the implementation of hESCs in clinical and industrial applications.  相似文献   

3.
Mesenchymal stem cells (MSCs) are being assessed for ameliorating the severity of graft‐versus‐host disease, autoimmune conditions, musculoskeletal injuries and cardiovascular diseases. While most of these clinical therapeutic applications require substantial cell quantities, the number of MSCs that can be obtained initially from a single donor remains limited. The utility of MSCs derived from human‐induced pluripotent stem cells (hiPSCs) has been shown in recent pre‐clinical studies. Since adult MSCs have limited capability regarding proliferation, the quantum of bioactive factor secretion and immunomodulation ability may be constrained. Hence, the alternate source of MSCs is being considered to replace the commonly used adult tissue‐derived MSCs. The MSCs have been obtained from various adult and foetal tissues. The hiPSC‐derived MSCs (iMSCs) are transpiring as an attractive source of MSCs because during reprogramming process, cells undergo rejuvination, exhibiting better cellular vitality such as survival, proliferation and differentiations potentials. The autologous iMSCs could be considered as an inexhaustible source of MSCs that could be used to meet the unmet clinical needs. Human‐induced PSC‐derived MSCs are reported to be superior when compared to the adult MSCs regarding cell proliferation, immunomodulation, cytokines profiles, microenvironment modulating exosomes and bioactive paracrine factors secretion. Strategies such as derivation and propagation of iMSCs in chemically defined culture conditions and use of footprint‐free safer reprogramming strategies have contributed towards the development of clinically relevant cell types. In this review, the role of iPSC‐derived mesenchymal stromal cells (iMSCs) as an alternate source of therapeutically active MSCs has been described. Additionally, we also describe the role of iMSCs in regenerative medical applications, the necessary strategies, and the regulatory policies that have to be enforced to render iMSC's effectiveness in translational medicine.  相似文献   

4.
5.
The statins (3‐hydroxy‐3‐methylglutaryl coenzyme A reductase inhibitors) were proven to be effective antilipid agents against cardiovascular disease. Recent reports demonstrate an anticancer effect induced by the statins through inhibition of cell proliferation, induction of apoptosis, or inhibition of angiogenesis. These effects are due to suppression of the mevalonate pathway leading to depletion of various downstream products that play an essential role in cell cycle progression, cell signaling, and membrane integrity. Recent evidence suggests a shared genomic fingerprint between embryonic stem cells, cancer cells, and cancer stem cells. Activation targets of NANOG, OCT4, SOX2, and c‐MYC are more frequently overexpressed in certain tumors. In the absence of bona fide cancer stem cell lines, human embryonic stem cells, which have similar properties to cancer and cancer stem cells, have been an excellent model throwing light on the anticancer affects of various putative anticancer agents. It was shown that key cellular functions in karyotypically abnormal colorectal and ovarian cancer cells and human embryonic stem cells are inhibited by the statins and this is mediated via a suppression of this stemness pathway. The strategy for treatment of cancers may thus be the targeting of a putative cancer stem cell within the tumor with specific agents such as the statins with or without chemotherapy. The statins may thus play a dual prophylactic role as a lipid‐lowering drug for the prevention of heart disease and as an anticancer agent to prevent certain cancers. This review examines the relationship between the statins, stem cells, and certain cancers. J. Cell. Biochem. 106: 975–983, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Periodontitis is a bacterially induced chronic inflammatory disease. Dental follicle progenitor cells (DFPCs) have been proposed as biological graft for periodontal regenerative therapies. The potential impact of bacterial toxins on DFPCs properties is still poorly understood. The aim of this study was to investigate whether DFPCs are able to sense and respond to lipopolysaccharide (LPS) from Porphyromonas gingivalis, a major periopathogenic bacterium. Specifically, we hypothesized that LPS could influence the migratory capacity and IL‐6 secretion of DFPCs. DFPCs properties were compared to bone marrow mesenchymal stem cells (BMSCs), a well‐studied class of adult stem cells. The analysis by flow cytometry indicated that DFPCs, similar to BMSCs, expressed low levels of both toll‐like receptor (TLR) 2 and 4. The TLR4 mRNA expression was down‐regulated in response to LPS in both cell populations, while on protein level TLR4 was significantly up‐regulated on BMSCs. The TLR2 expression was not influenced by the LPS treatment in both DFPCs and BMSCs. The migratory efficacy of LPS‐treated DFPCs was evaluated by in vitro scratch wound assays and found to be significantly increased. Furthermore, we assayed the secretion of interleukin‐6 (IL‐6), a potent stimulator of cell migration. Interestingly, the levels of IL‐6 secretion of DFPCs and BMSCs remained unchanged after the LPS treatment. Taken together, these results suggest that DFPCs are able to sense and respond to P. gingivalis LPS. Our study provides new insights into understanding the physiological role of dental‐derived progenitor cells in sites of periodontal infection.  相似文献   

7.
The emergence of medicinal indications for stem cell therapies has seen a need to develop the manufacturing capacity for adherent cells such as mesenchymal stem cells (MSCs). One such development is in the use of microcarriers, which facilitate enhanced cell densities for adherent stem cell cultures when compared with 2D culture platforms. Given the variety of stem cell expansion systems commercially available, novel methods of non‐invasive and automated monitoring of cell number, confluence, and aggregation, within disparate environments, will become imperative to process control, ensuring reliable and consistent performance. The in situ epi‐illumination of mouse embryonic fibroblasts and human mesenchymal stem cells attached to Cytodex 1 and 3 microcarriers was achieved using a bespoke microscope. Robust image processing techniques were developed to provide quantitative measurements of confluence, aggregate recognition, and cell number, without the need for fluorescent labeling or cell detachment. Large datasets of cells counted on individual microcarriers were statistically analyzed and compared with NucleoCounter measurements, with an average difference of less than 7% observed from days 0 to 6 of a 12‐day culture noted, prior to the onset of aggregation. The developed image acquisition system and post‐processing methodologies were successfully applied to dynamically moving colonized microcarriers. The proposed system offers a novel method of cell identification at the individual level, to consistently and accurately assess viable cell number, confluence, and cell distribution, while also minimizing the variability inherent in the current invasive means by which cells adhered to microcarriers are analyzed. Biotechnol. Bioeng. 2017;114: 2032–2042. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

8.
9.
Communication networks between cells and tissues are necessary for homeostasis in multicellular organisms. Intercellular (between cell) communication networks are particularly relevant in stem cell biology, as stem cell fate decisions (self‐renewal, proliferation, lineage specification) are tightly regulated based on physiological demand. We have developed a novel mathematical model of blood stem cell development incorporating cell‐level kinetic parameters as functions of secreted molecule‐mediated intercellular networks. By relation to quantitative cellular assays, our model is capable of predictively simulating many disparate features of both normal and malignant hematopoiesis, relating internal parameters and microenvironmental variables to measurable cell fate outcomes. Through integrated in silico and experimental analyses, we show that blood stem and progenitor cell fate is regulated by cell–cell feedback, and can be controlled non‐cell autonomously by dynamically perturbing intercellular signalling. We extend this concept by demonstrating that variability in the secretion rates of the intercellular regulators is sufficient to explain heterogeneity in culture outputs, and that loss of responsiveness to cell–cell feedback signalling is both necessary and sufficient to induce leukemic transformation in silico.  相似文献   

10.
Ex vivo‐expanded stem cells have long been a cornerstone of biotherapeutics and have attracted increasing attention for treating intractable diseases and improving tissue regeneration. However, using exogenous cellular materials to develop restorative treatments for large numbers of patients has become a major concern for both economic and safety reasons. Advances in cell biological research over the past two decades have expanded the potential for using endogenous stem cells during wound healing processes, and in particular, recent insight into stem cell movement and homing has prompted regenerative research and therapy based on recruiting endogenous cells. Inspired by the natural healing process, artificial administration of specific chemokines as signals systemically or at the injury site, typically using biomaterials as vehicles, is a state‐of‐the‐art strategy that potentiates stem cell homing and recreates an anti‐inflammatory and immunomodulatory microenvironment to enhance in situ tissue regeneration. However, pharmacologically coaxing endogenous stem cells to act as therapeutics in the field of biomedicine remains in the early stages; its efficacy is limited by the lack of innovative methodologies for chemokine presentation and release. This review describes how to direct the homing of endogenous stem cells via the administration of specific signals, with a particular emphasis on targeted signalling molecules that regulate this homing process, to enhance in situ tissue regeneration. We also provide an outlook on and critical considerations for future investigations to enhance stem cell recruitment and harness the reparative potential of these recruited cells as a clinically relevant cell therapy.  相似文献   

11.
12.
Huntington's disease (HD) is a late‐onset neurodegenerative disease characterized by a progressive loss of medium spiny neurons in the basal ganglia. The development of stem cell‐based therapies for HD aims to replace lost neurons and/or to prevent cell death. This review will discuss pre‐clinical studies which have utilized stem or progenitor cells for transplantation therapy using HD animal models. In several studies, neural stem and progenitor cells used as allotransplants and xenografts have been shown to be capable of surviving transplantation and differentiating into mature GABAergic neurons, resulting in behavioral improvements. Beneficial effects have also been reported for transplantation of stem cells derived from non‐neural tissue, for example, mesenchymal‐ and adipose‐derived stem cells, which have mainly been attributed to their secretion of growth and neurotrophic factors. Finally, we review studies using stem cells genetically engineered to over‐express defined neurotrophic factors. While these studies prove the potential of stem cells for transplantation therapy in HD, it also becomes clear that technical and ethical issues regarding the availability of stem cells must be solved before human trials can be conducted. J. Cell. Biochem. 114: 754–763, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Purpose: Recently sodium alginate (SA)‐poly‐l‐ornithine (PLO) microcapsules containing pancreatic β‐cells that showed good morphology but low cell viability (<27%) was designed. In this study, two new polyelectrolytes, polystyrenic sulfonate (PSS; at 1%) and polyallylamine (PAA; at 2%) were incorporated into a microencapsulated‐formulation, with the aim of enhancing the physical properties of the microcapsules. Following incorporation, the structural characteristics and cell viability were investigated. The effects of the anti‐inflammatory bile acid, ursodeoxycholic acid (UDCA), on microcapsule morphology, size, and stability as well as β‐cell biological functionality was also examined. Methods: Microcapsules were prepared using PLO‐PSS‐PAA‐SA mixture and two types of microcapsules were produced: without UDCA (control) and with UDCA (test). Microcapsule morphology, stability, and size were examined. Cell count, microencapsulation efficiency, cell bioenergetics, and activity were also examined. Results: The new microcapsules showed good morphology but cell viability remained low (29% ± 3%). UDCA addition improved cell viability post‐microencapsulation (42 ± 5, P < 0.01), reduced swelling (P < 0.01), improved mechanical strength (P < 0.01), increased Zeta‐potential (P < 0.01), and improved stability. UDCA addition also increased insulin production (P < 0.01), bioenergetics (P < 0.01), and decreased β‐cell TNF‐α (P < 0.01), IFN‐gamma (P < 0.01), and IL‐6 (P < 0.01) secretions. Conclusions: Addition of 4% UDCA to a formulation system consisting of 1.8% SA, 1% PLO, 1% PSS, and 2% PAA enhanced cell viability post‐microencapsulation and resulted in a more stable formulation with enhanced encapsulated β‐cell metabolism, bioenergetics, and biological activity with reduced inflammation. This suggests potential application of UDCA, when combined with SA, PLO, PSS, and PAA, in β‐cell microencapsulation and diabetes treatment. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:501–509, 2016  相似文献   

14.
Background information. Although MSCs (mesenchymal stem cells) and fibroblasts have been well studied, differences between these two cell types are not fully understood. We therefore comparatively analysed antigen and gene profiles, colony‐forming ability and differentiation potential of four human cell types in vitro: commercially available skin‐derived fibroblasts [hSDFs (human skin‐derived fibroblasts)], adipose tissue‐derived stem cells [hASCs (human adipose tissue‐derived stem cells)], embryonic lung fibroblasts (WI38) and dermal microvascular endothelial cells [hECs (human dermal microvascular endothelial cells)]. Results. hSDFs, hASCs and WI38 exhibited a similar spindle‐like morphology and expressed same antigen profiles: positive for MSC markers (CD44, CD73 and CD105) and fibroblastic markers [collagen I, HSP47 (heat shock protein 47), vimentin, FSP (fibroblast surface protein) and αSMA (α smooth muscle actin)], and negative for endothelial cell marker CD31 and haemopoietic lineage markers (CD14 and CD45). We further analysed 90 stem cell‐associated gene expressions by performing real‐time PCR and found a more similar gene expression pattern between hASCs and hSDFs than between hSDFs and WI38. The expression of embryonic stem cell markers [OCT4, KLF4, NANOG, LIN28, FGF4 (fibroblast growth factor 4) and REST] in hASCs and hSDFs was observed to differ more than 2.5‐fold as compared with WI38. In addition, hSDFs and hASCs were able to form colonies and differentiate into adipocytes, osteoblasts and chondrocytes in vitro, but not WI38. Moreover, single cell‐derived hSDFs and hASCs obtained by clonal expansion were able to differentiate into adipocytes and osteoblasts. However, CD31 positive hECs did not show differentiation potential. Conclusions. These findings suggest that (i) so‐called commercially available fibroblast preparations from skin (hSDFs) consist of a significant number of cells with differentiation potential apart from terminally differentiated fibroblasts; (ii) colony‐forming capacity and differentiation potential are specific important properties that discriminate MSCs from fibroblasts (WI38), while conventional stem cell properties such as plastic adherence and the expression of CD44, CD90 and CD105 are unspecific for stem cells.  相似文献   

15.
Recent evidence suggests that most malignancies are driven by “cancer stem cells” sharing the signature characteristics of adult stem cells: the ability to self renew and to differentiate. Furthermore these cells are thought to be quiescent, infrequently dividing cells with a natural resistance to chemotherapeutic agents. These studies theorize that therapies, which effectively treat the majority of tumor cells but ‘miss’ the stem cell population, will fail, while therapies directed at stern cells can potentially eradicate tumors. In breast cancer, researchers have isolated ‘breast cancer stem cells’ capable of recreating the tumor in vivo and in vitro. Generated new tumors contained both additional numbers of cancer stem cells and diverse mixed populations of cells present in the initial tumor, supporting the intriguing self‐renewal and differentiation characteristics. In the present study, an antibody phage library has been used to search for phage displayed‐single chain antibodies (scFv) with selective affinity to specific targets on breast cancer stem cells. We demonstrate evidence of two clones binding specifically to a cancer stem cell population isolated from the SUMl59 breast cancer cell line. These clones had selective affinity for cancer stem cells and they were able to select cancer stem cells among a large population of non‐stem cancer cells in paraffin‐embedded sections. The applicability of these clones to paraffin sections and frozen tissue specimens made them good candidates to be used as diagnostic and prognostic markers in breast cancer patient samples taking into consideration the cancer stern cell concept in tumor biology. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

16.
Liver cancer is the sixth most common tumor in the world and the majority of patients with this disease usually die within 1 year. The effective treatment for end‐stage liver disease (also known as liver failure), including liver cancer or cirrhosis, is liver transplantation. However, there is a severe shortage of liver donors worldwide, which is the major handicap for the treatment of patients with liver failure. Scarcity of liver donors underscores the urgent need of using stem cell therapy to the end‐stage liver disease. Notably, hepatocytes have recently been generated from hepatic and extra‐hepatic stem cells. We have obtained mature and functional hepatocytes from rat hepatic stem cells. Here, we review the advancements on hepatic differentiation from various stem cells, including hepatic stem cells, embryonic stem cells, the induced pluripotent stem cells, hematopoietic stem cells, mesenchymal stem cells, and probably spermatogonial stem cells. The advantages, disadvantages, and concerns on differentiation of these stem cells into hepatic cells are highlighted. We further address the methodologies, phenotypes, and functional characterization on the differentiation of numerous stem cells into hepatic cells. Differentiation of stem cells into mature and functional hepatocytes, especially from an extra‐hepatic stem cell source, would circumvent the scarcity of liver donors and human hepatocytes, and most importantly it would offer an ideal and promising source of hepatocytes for cell therapy and tissue engineering in treating liver disease. J. Cell. Physiol. 228: 298–305, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
The self‐renewal and differentiation of tissue stem cells must be tightly controlled. Unrestrained self‐renewal leads to over‐proliferation of stem cells, which may cause tumor formation, while uncontrolled differentiation leads to depletion of the stem cell pool. In this issue of The EMBO Journal, Demitrack et al (2015) show that the Notch pathway is a key regulator of Lgr5 antral stem cell self‐renewal and differentiation. Notch signaling controls the proliferation and differentiation of stem cells as well as gastric tissue growth, while uncontrolled Notch activity in stem cells leads to polyp formation.  相似文献   

18.
The major signaling pathways regulating gastric stem cells are unknown. Here we report that Notch signaling is essential for homeostasis of LGR5+ antral stem cells. Pathway inhibition reduced proliferation of gastric stem and progenitor cells, while activation increased proliferation. Notch dysregulation also altered differentiation, with inhibition inducing mucous and endocrine cell differentiation while activation reduced differentiation. Analysis of gastric organoids demonstrated that Notch signaling was intrinsic to the epithelium and regulated growth. Furthermore, in vivo Notch manipulation affected the efficiency of organoid initiation from glands and single Lgr5‐GFP stem cells, suggesting regulation of stem cell function. Strikingly, constitutive Notch activation in LGR5+ stem cells induced tissue expansion via antral gland fission. Lineage tracing using a multi‐colored reporter demonstrated that Notch‐activated stem cells rapidly generate monoclonal glands, suggesting a competitive advantage over unmanipulated stem cells. Notch activation was associated with increased mTOR signaling, and mTORC1 inhibition normalized NICD‐induced increases in proliferation and gland fission. Chronic Notch activation induced undifferentiated, hyper‐proliferative polyps, suggesting that aberrant activation of Notch in gastric stem cells may contribute to gastric tumorigenesis.  相似文献   

19.
Mesenchymal stem cells (MSCs) have emerged as a potential cell‐based therapy for pulmonary emphysema in animal models. Our previous study demonstrated that human induced pluripotent stem cell–derived MSCs (iPSC‐MSCs) were superior over bone marrow–derived MSCs (BM‐MSCs) in attenuating cigarette smoke (CS)‐induced airspace enlargement possibly through mitochondrial transfer. This study further investigated the effects of iPSC‐MSCs on inflammation, apoptosis, and proliferation in a CS‐exposed rat model and examined the effects of the secreted paracrine factor from MSCs as another possible mechanism in an in vitro model of bronchial epithelial cells. Rats were exposed to 4% CS for 1 hr daily for 56 days. At days 29 and 43, human iPSC‐MSCs or BM‐MSCs were administered intravenously. We observed significant attenuation of CS‐induced elevation of circulating 8‐isoprostane and cytokine‐induced neutrophil chemoattractant‐1 after iPSC‐MSC treatment. In line, a superior capacity of iPSC‐MSCs was also observed in ameliorating CS‐induced infiltration of macrophages and neutrophils and apoptosis/proliferation imbalance in lung sections over BM‐MSCs. In support, the conditioned medium (CdM) from iPSC‐MSCs ameliorated CS medium‐induced apoptosis/proliferation imbalance of bronchial epithelial cells in vitro. Conditioned medium from iPSC‐MSCs contained higher level of stem cell factor (SCF) than that from BM‐MSCs. Deprivation of SCF from iPSC‐MSC‐derived CdM led to a reduction in anti‐apoptotic and pro‐proliferative capacity. Taken together, our data suggest that iPSC‐MSCs may possess anti‐apoptotic/pro‐proliferative capacity in the in vivo and in vitro models of CS‐induced airway cell injury partly through paracrine secretion of SCF.  相似文献   

20.
Induced pluripotent stem cells (iPSCs) are expected to be an ideal cell source for biomedical applications, but such applications usually require a large number of cells. Suspension culture of iPSC aggregates can offer high cell yields but sometimes results in excess aggregation or cell death by shear stress. Hydrogel‐based microencapsulation can solve such problems observed in Suspension culture, but there is no systematic evaluation of the possible capsule formulations. In addition, their biological effects on entrapped cells are still poorly studied so far. We, therefore, immobilized mouse iPSCs in three different types of calcium–alginate (Alg–Ca) hydrogel‐based microcapsules; (i) Alg–Ca capsules without further treatment (Naked), (ii) Alg–Ca capsules with poly‐l ‐lysine (PLL) coating (Coated), and (iii) Alg–PLL membrane capsules with liquid cores (Hollow). After 10 days of culture within the medium containing serum and leukemia inhibitory factor, we obtained good cellular expansions (10–13‐fold) in Coated and Hollow capsules that were similar to Suspension culture. However, 32 ± 9% of cellular leakage and lower cell yield (about threefold) were observed in Naked capsules. This was not observed in Coated and Hollow capsules. In addition, immunostaining and quantitative RT‐PCR showed that the formation of primitive endodermal layers was suppressed in Coated capsules contrary to all other formulations. This agenesis of primitive endoderm layers in Coated capsules is likely to be the main cause of the significantly better pluripotency maintenance in hydrogel‐based encapsulation culture. These results are helpful in further optimizing hydrogel‐based iPSC culture, which can maintain better local cellular environments and be compatible with mass culture. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:896–904, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号