首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two new rhodamine‐based fluorescent probes were synthesized and characterized by NMR, high resolution mass spectrometer (HR‐MS) and IR. The probes displayed a high selectivity for Fe3+ among environmentally and biologically relevant metal ions in aqueous solution (CH3OH–H2O = 3 : 2, v/v). The significant changes in the fluorescence color could be used for naked‐eye detection. Job's plot, IR and 1H NMR indicated the formation of 1: 1 complexes between sensor 1 and Fe3+. The reversibility establishes the potential of both probes as chemosensors for Fe3+ detection. The probe showed highly selectivity in aqueous solution and could be used over the pH range between 5 and 9. A simple paper test‐strip system for the rapid monitoring of Fe3+ was developed, indicating its convenient use in environmental samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Two novel chemosensors (2a and 2b) were synthesized by facile condensation of the binding unit (l ‐histidine) and the fluorophores (anthracene and dansyl groups). Both of them displayed high selectivity and sensitivity towards Fe3+ over other metal ions in aqueous solution. The sensing mechanism was based on the paramagnetic property of Fe3+ that would lead to fluorescence quenching of the fluorophores when Fe3+ was bound to the recognition units. The results showed that l ‐histidine was a good coordination motif for Fe3+ and both the anthracene and dansyl groups can sensitively report the sensing information. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
This work reports a scalable synthesis of water‐dispersible fluorescent carbon nanodots based on the simple hydrothermal method (180 °C for 6 h) of kitchen wastes (grape peel for example). We discuss the feasibility of synthesis from kitchen wastes both experimentally and theoretically, and the as‐prepared nanodots have high selectivity for Fe3+ ions based on fluorescence quenching which is due to the complexes between nanodots and metal ions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
A novel fluorescent sensor bearing a quinoline and an anisidine moiety has been developed for highly selective detection of Fe3+, which shows photo‐induced electron transfer (PET) behavior induced by Fe3+. Binding of Fe3+ to the sensor induced the electron of C = N group transfer from quinoline to iron, the result exhibits fluorescent enhancement. With the features of easy synthesis, simple structural skeleton and excellent sensing ability, the newly synthesized chemosensor also applied as a highly selective fluorescent probe in complex samples containing various competitive metal ions. The probe could fulfill various needs in biological and environmental fields.  相似文献   

5.
A new turn-on fluorescent chemosensor (RBTM) for Fe3+ was designed based on Rhodamine B and a thiocarbonylimidazole moiety. The spectroscopic probe used for characterization of the synthesized system showed 300-fold fluorescence enhancement for the detection of Fe3+ with a 1:1 stoichiometry in EtOH/H2O solution (2:1, v/v, HEPES buffer, 1 mM, pH 7.30). Upon addition of Fe3+ in aqueous ethanol, the probe displayed a significant fluorescence enhancement and a distinct color change (colorless to pink) that can be detected by the naked eye. The binding constant between the probe and Fe3+ was determined to be 1.16 × 104 M−1 and the corresponding detection limit was calculated to be 0.256 µM. In addition, the energy gaps between the HOMO and LUMO in RBTM and RBTM-Fe3+ were calculated using DFT calculations to be 92.93 kcal/mol and 37.49 kcal/mol, respectively. The results indicate that binding of Fe3+ to RBTM lowered the HOMO–LUMO energy gap of the complex and stabilized the system. Fluorescence imaging experiments demonstrated that RBTM can be used as a fluorescent probe to detect Fe3+ in MKN-45 cells and dorsal root ganglia, thus revealing that RBTM could be used for biological applications.  相似文献   

6.
A novel fluorescent probe‐based naphthalene Schiff, 1‐(C2‐glucosyl‐ylimino‐methyl)‐naphthalene‐2‐ol (L) was synthesized by coupling d ‐glucosamine hydrochloride with 2‐hydroxy‐1‐naphthaldehyde. It exhibited excellent selectivity and highly sensitivity for Al3+ in ethanol with a strong fluorescence response, while other common metal ions such as Pb2+, Mg2+, Cu2+, Co2+, Ni2+, Cd2+, Fe2+, Mn2+, Hg2+, Li+, Na+, K+, Fe3+, Cr3+, Zn2+, Ag+, Ba2+ and Ca2+ did not cause the same fluorescence response. The probe selectively bound Al3+ with a binding constant (Ka) of 5.748 × 103 M?1 and a lowest detection limit (LOD) of 4.08 nM. Moreover, the study found that the fluorescence of the L ? Al3+ complex could be quenched after addition of F? in the same medium, while other anions, including Cl?, Br?, I?, NO2?, NO3?, ClO4?, CO32?, HCO3?, SO42?, HSO4?, CH3COO?, PO43?, HPO42?, S2? and S2O32? had nearly no influence on probe behaviour. Binding of the [L ? Al3+] complex to a F? anion was established by different fluorescence titration studies, with a detection limit of 3.2 nM in ethanol. The fluorescent probe was also successfully applied in the imaging detection of Al3+ and F? in living cells.  相似文献   

7.
An easy and effective strategy for synthesizing a ratiometric fluorescent nanosensor has been demonstrated in this work. Novel fluorescent BSA–AuNPs@Tb–AMP (BSA, bovine serum albumin; AMP, adenosine 5′‐monophosphate; AuNPs, Au nanoparticles) metal–organic framework (MOF) nanostructures were synthesized by encapsulating BSA–AuNPs into Tb–AMP MOFs for the detection of 2,6‐pyridinedicarboxylic acid (DPA) and Hg2+. DPA could strongly co‐ordinate with Tb3+ to replace water molecules from the Tb3+ center and accordingly enhanced the fluorescence of Tb–AMP MOFs. The fluorescence of BSA–AuNPs at 405 nm remained constant. While the fluorescence of BSA–AuNPs at 635 nm was quenched after Hg2+ was added, the fluorescence of Tb–AMP MOFs remained constant. Accordingly, a ratiometric fluorescence nanosensor was constructed for detection of DPA and Hg2+. The ratiometric nanosensor exhibited good selectivity to DPA over other substances. The F545/F405 linearly increased with increase of DPA concentration in the range of 50 nM to 10 μM with a detection limit as low as 17.4 nM. F635/F405 increased linearly with increase of Hg2+ concentration ranging from 50 nM to 1 μM with a detection limit as low as 20.9 nM. Additionally, the nanosensor could be successfully applied for the determination of DPA and Hg2+ in running water.  相似文献   

8.
A rhodamine/coumarin‐based ratiometric fluorescent Fe3+ sensor has been designed and synthesized. The sensor exhibits a good response to Fe3+ ions with high sensitivity, selectivity and a large shift in the emission spectra (>100 nm), which shows Fe3+‐induced FRET OFF–ON and PET ON–OFF behavior. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
A new Schiff base receptor 1 was synthesized and its photophysical properties were investigated by absorption, emission and excitation techniques. Furthermore, its chromogenic and fluorogenic sensing abilities towards various metal ions were examined. Receptor 1 selectively detects Cu2+ ion through fluorescence quenching and detection was not inhibited in the presence of other metal ions. From fluorescence titration, the limit of detection of receptor 1 as a fluorescent ‘turn‐off’ sensor for the analysis of Cu2+ was estimated to be 0.35 μM.  相似文献   

10.
Two novel Rhodamine–pyrazolone‐based colorimetric off–on fluorescent chemosensors for Fe3+ ions were designed and synthesized using pyrazolone as the recognition moiety and Rhodamine 6G as the signalling moiety. The photophysical properties and Fe3+‐binding properties of sensors L1 and L2 in acetonitrile–aqueous solution were also investigated. Both sensors successfully exhibit a remarkably ‘turn‐on’ response, toward Fe3+, which was attributed to 1: 2 complex formation between Fe3+ and L1/L2. The fluorescent and colorimetric response to Fe3+ can be detected by the naked eye, which provides a facile method for the visual detection of Fe3+. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
A new ratiometric probe composed of a dansyl–rhodamine dyad for the detection of Hg2+ via fluorescence resonance energy transfer was designed and synthesized. Rhodamine, dansyl chloride, and hydrazide were selected as the acceptor, donor, and reaction site, respectively. It displayed high selectivity and sensitivity to Hg2+ with obvious colour change and fluorescence change due to Hg2+‐assisted hydrolysis of rhodamine hydrazide. A good linear relationship ranging from 0 to 16 μM and 0–28 μM for the Hg2+ concentration was found based on absorbance and fluorescence assay, respectively. Detection limits of absorbance and fluorescence for Hg2+ were calculated to be 1.22 μM and 9.10 μM, respectively.  相似文献   

12.
Novel phenanthroline Schiff base fluorescent sensors L1 , L2 , and D1 were designed and synthesized. The sensing abilities of the compounds in the presence of metal cations (Li+, Na+, K+, Ag+, Mg2+, Ba2+, Ca2+, Mn2+, Pb2+, Hg2+, Ni2+, Zn2+, Cd2+, Co2+, Cu2+, Cr3+, Fe3+, Fe2+, Al3+, and Eu3+) were studied by UV‐vis and fluorescent spectroscopy. The compounds L1 , L2 , and D1 could act as Eu3+ ion turn‐off fluorescent sensors based on ligand‐to‐metal binding mechanism in DMSO‐H2O solution (v/v = 1:1, 10 mM Tris, pH = 7.4). Additionally, the L1 –Eu3+ and D1 –Eu3+ complexes could be applied as turn‐on enantioselective sensors sensing of malate anion isomers with color changes. Furthermore, biological experiments using living PC‐12 cells demonstrated that L1 and D1 had excellent membrane permeability and could be used as effective fluorescent sensors for detecting Eu3+ and malate anion in living cells.  相似文献   

13.
A new Rhodamine B-based fluorescent probe (RBO) is successfully designed and synthesized, which is a higher selective and sensitive chemosensor for Cu2+ than other ions. Under physiological conditions (pH = 7.0), the non emission RBO displays a rapid fluorescence increase together with a color change after addition of Cu2+ and the detection limit is down to 28 nM, which can clearly illustrate the distribution of Cu2+ with the help of laser scanning confocal microscope in plant tissues. Eventually, it confirmed that the Cu2+ accumulates mostly in the vascular cylinder and very less in the epidermal cells of maize roots, which is important to understand how the plants take up, transport and store in the Cu2+.  相似文献   

14.
In the present work, Fe3O4–carbon nanotubes (CNTs) composite was explored as a sensing material candidate for ammonium sulfide. Intense chemiluminescence emission can be observed during the catalytic oxidation of ammonium sulfide on the surface of Fe3O4–CNTs composite. Based on this phenomenon, a selective and sensitive gas sensor for the determination of ammonium sulfide was demonstrated. Under the optimized conditions, the linear range of cataluminescence intensity vs concentration of ammonium sulfide gas was 1.4–115 µg mL?1 (R = 0.998) with a limit of detection (S/N = 3) of 0.05 µg mL?1. The relative standard deviation (n = 5) for 14.3 µg mL?1 ammonium sulfide was 1.9%. There was no response to common foreign substances, such as sulfur dioxide, toluene, aether, ethanol, acetone, hydrogen sulfide, carbon bisulfide, benzene and ammonia. The proposed sensor was successfully applied for the determination of ammonium sulfide in artificial air samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
An aqueous fluorescent probe, 1, was developed for the rapid detection of Hg2+ with high sensitivity and excellent selectivity. Upon the addition of Hg2+ in pure aqueous media, the Hg2+‐mediated hydrolysis of vinyl ether and subsequent cyclization reactions converted probe 1 into the corresponding iminocoumarin dye, which is strongly fluorescent when excited. The application of this probe for the detection of intracellular Hg2+ was successfully demonstrated in living cells. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
In this work, a simple and selective fluorescence sensor approach called ‘turn‐on–off’ for the determination of thiamine (TM) has been developed. As known, the o‐phenanthroline (o‐phen) has inner fluorescence, though when reacted with zinc ions to form the o‐phen–Zn2+ complex the fluorescence intensity was enhanced effectively, while upon addition of TM into the o‐phen–Zn2+ complex solution, the intensity of the system was gently quenched, which was termed the ‘turn‐on–off’ probe. Notably, the method possessed highly selective, sensitive determination for TM with a detection limit of 0.25 μmol L?1 and the reduced fluorescence intensity was proportional to the concentration of TM in the range 0.84–80.0 μmol L?1. Besides, the proposed mechanism was also investigated through exploring the Fourier transform infrared (FT‐IR), nuclear magnetic resonance (NMR) spectroscopy. Furthermore, this manner was successfully applied into practical samples for TM detection with satisfactory results.  相似文献   

17.
Fluorescent chemosensors based on 4‐hydroxy cyclopentenones were synthesized by the base catalyzed reaction of 1,5‐diphenyl‐pentane‐1,3,5‐trione with benzil and thenil. The molecule obtained by the benzil reaction was found to be useful for the selective detection of Fe3+ by fluorescence turn‐off, while the molecule synthesized by the thenil reaction was useful for selective detection of Cu2+ by fluorescent turn‐on. Details of the synthesis, complexation mode, nature of binding, reversibility, and pH studies of the two sensors are discussed. The studies revealed that the sensors were suitable for determining Fe3+ and Cu2+ content in real water samples.  相似文献   

18.
A new colorimetric and fluorescent probe MNTPZ based on 1H‐imidazo[4,5‐b]phenazine derivative has been designed and synthesized for successive detection of Ag+ and I?. The probe MNTPZ shows selective colorimetric response by a change in color from yellow to orange and “turn‐off” fluorometric response upon binding with Ag+ in DMSO: Water (pH = 7, 1:1, v/v) over other cations. The binding mode of probe MNTPZ to Ag+ was studied by Job's plot, 1H NMR studies, FT‐IR spectroscopy and DFT calculations. Moreover, the situ generated probe MNTPZ + Ag+ complex acted as an efficient fluorometric “turn‐on” probe for I? via Ag+ displacement approach. The detection limit of probe MNTPZ for Ag+ and the resultant complex probe MNTPZ + Ag+ for I? were determined to be 1.36 μmol/L and 1.03 μmol/L respectively. Notably, the developed probe was successfully used for quantitative determination of I? in real samples with satisfactory results.  相似文献   

19.
A new fluorescent chemosensor based on a Rhodamine B and pyrrole conjugate (RBPY) has been designed and synthesized. UV–vis absorption and fluorescence spectroscopic studies show that RBPY exhibits a high selectivity and sensitivity toward Fe3+ among many other metal cations in a MeOH/H2O solution (3:2, v/v, pH 7.10, HEPES buffer, 0.1 mM) by forming a 1:1 complex with Fe3+. Furthermore, results reveal that the formation of the RBPY–Fe3+ complex is fully reversible in the presence of sulfide anions and could also be used as an efficient sensor for S2−. Importantly, fluorescence microscopy experiments further demonstrated that RBPY can be utilized as a fluorescent probe for the detection of Fe3+ in human liver (L-02) cells.  相似文献   

20.
In this paper, a sensitive resonance light scattering (RLS) method for the determination of protein is reported. In the Tris–HCl (pH 7.50) buffer, protein enhanced the RLS intensity of the Y3+–2‐thenoyltrifluoroacetone (TTA)–sodium dodecyl sulphate (SLS) system. The enhanced RLS intensities were in proportion to the concentrations of proteins in the range 8.0 × 10?9–1.0 × 10?5 g/mL for BSA, 1.0 × 10–8–1.0 × 10?5 g/mL for HSA and 1.0 × 10–8–1.0 × 10?6 g/mL for EA, and their detection limits were 5.0, 5.4 and 6.7 ng/mL, respectively. Actual samples were satisfactorily determined. The interaction mechanism was also studied. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号