共查询到20条相似文献,搜索用时 0 毫秒
1.
《MABS-AUSTIN》2013,5(3):659-670
An advanced two-dimensional liquid chromatography/mass spectrometry platform was used to quantify individual host cell proteins (HCPs) present at various purification steps for several therapeutic monoclonal antibodies (mAbs) produced in Chinese hamster ovary cells. The methodology produced reproducible identifications and quantifications among replicate analyses consistent with a previously documented individual limit of quantification of ~13 ppm. We were able to track individual HCPs from cell culture fluid to protein A eluate pool to subsequent viral inactivation pool and, in some cases, further downstream. Approximately 500 HCPs were confidently identified in cell culture fluid and this number declined progressively through the purification scheme until no HCPs could be confidently identified in polishing step cation-exchange eluate pools. The protein A eluate pool of nine different mAbs contained widely differing numbers, and total levels, of HCPs, yet the bulk of the total HCP content in each case consisted of a small subset of normally intracellular HCPs highly abundant in cell culture fluid. These observations hint that minimizing cell lysis during cell culture/harvest may be useful in minimizing downstream HCP content. Clusterin and actin are abundant in the protein A eluate pools of most mAbs studied. HCP profiling by this methodology can provide useful information to process developers and lead to the refinement of existing purification platforms. 相似文献
2.
Characterization of the co‐elution of host cell proteins with monoclonal antibodies during protein A purification
下载免费PDF全文

Qingchun Zhang Andrew M. Goetze Huanchun Cui Jenna Wylie Ben Tillotson Art Hewig Michael P. Hall Gregory C. Flynn 《Biotechnology progress》2016,32(3):708-717
Protein A chromatography is commonly used as the initial step for purifying monoclonal antibody biotherapeutics expressed in mammalian tissue culture cells. The purpose of this step, as well as later chromatography steps, is, in part, to remove host cell proteins (HCPs) and other related impurities. Understanding the retention mechanism for the subset of HCPs retained during this step is of great interest to monoclonal antibody (mAb) process developers because it allows formation of a guided HCP clearance strategy. However, only limited information is available about the specific HCPs that co‐purify with mAbs at this step. In this study, a comprehensive comparison of HCP subpopulations that associated with 15 different mAbs during protein A chromatography was conducted by a 2D‐LC‐HDMSE approach. We found that a majority of CHO HCPs binding to and eluting with the mAbs were common among the mAbs studied, with only a small percentage (~10% on average) of a mAb's total HCP content in the protein A (PrA) eluate specific for a particular antibody. The abundance of these HCPs in cell culture fluids and their ability to interact with mAbs were the two main factors determining their prevalence in protein A eluates. Potential binding segments for HCPs to associate with mAbs were also studied through their co‐purification with individual Fc and (Fab′)2 antibody fragments. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:708–717, 2016 相似文献
3.
An advanced liquid chromatography/mass spectrometry (MS) platform was used to identify and quantify residual Escherichia coli host cell proteins (HCPs) in the drug substance (DS) of several peptibodies (Pbs). Significantly different HCP impurity profiles were observed among different biotherapeutic Pbs as well as one Pb purified via multiple processes. The results can be rationally interpreted in terms of differences among the purification processes, and demonstrate the power of this technique to sensitively monitor both the quantity and composition of residual HCPs in DS, where these may represent a safety risk to patients. The breadth of information obtained using MS is compared to traditional multiproduct enzyme‐linked immunosorbent assay (ELISA) values for total HCP in the same samples and shows that, in this case, the ELISA failed to detect multiple HCPs. The HCP composition of two upstream samples was also analyzed and used to demonstrate that HCPs that carry through purification processes to be detectable in DS are not always among those that are the most abundant upstream. Compared to ELISA, we demonstrate that MS can provide a more comprehensive, and accurate, characterization of DS HCPs, thereby facilitating process development as well as more rationally assessing potential safety risks posed by individual, identified HCPs. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:951–957, 2013 相似文献
4.
James A Madsen Victor Farutin Theresa Carbeau Steve Wudyka Yan Yin Stephen Smith James Anderson Ishan Capila 《MABS-AUSTIN》2015,7(6):1128-1137
Host cell protein (HCP) impurities are generated by the host organism during the production of therapeutic recombinant proteins, and are difficult to remove completely. Though commonly present in small quantities, if levels are not controlled, HCPs can potentially reduce drug efficacy and cause adverse patient reactions. A high resolution approach for thorough HCP characterization of therapeutic monoclonal antibodies is presented herein. In this method, antibody samples are first depleted via affinity enrichment (e.g., Protein A, Protein L) using milligram quantities of material. The HCP-containing flow-through is then enzymatically digested, analyzed using nano-UPLC-MS/MS, and proteins are identified through database searching. Nearly 700 HCPs were identified from samples with very low total HCP levels (< 1 ppm to ∼10 ppm) using this method. Quantitation of individual HCPs was performed using normalized spectral counting as the number of peptide spectrum matches (PSMs) per protein is proportional to protein abundance. Multivariate analysis tools were utilized to assess similarities between HCP profiles by: 1) quantifying overlaps between HCP identities; and 2) comparing correlations between individual protein abundances as calculated by spectral counts. Clustering analysis using these measures of dissimilarity between HCP profiles enabled high resolution differentiation of commercial grade monoclonal antibody samples generated from different cell lines, cell culture, and purification processes. 相似文献
5.
《MABS-AUSTIN》2013,5(6):1128-1137
Host cell protein (HCP) impurities are generated by the host organism during the production of therapeutic recombinant proteins, and are difficult to remove completely. Though commonly present in small quantities, if levels are not controlled, HCPs can potentially reduce drug efficacy and cause adverse patient reactions. A high resolution approach for thorough HCP characterization of therapeutic monoclonal antibodies is presented herein. In this method, antibody samples are first depleted via affinity enrichment (e.g., Protein A, Protein L) using milligram quantities of material. The HCP-containing flow-through is then enzymatically digested, analyzed using nano-UPLC-MS/MS, and proteins are identified through database searching. Nearly 700 HCPs were identified from samples with very low total HCP levels (< 1 ppm to ~10 ppm) using this method. Quantitation of individual HCPs was performed using normalized spectral counting as the number of peptide spectrum matches (PSMs) per protein is proportional to protein abundance. Multivariate analysis tools were utilized to assess similarities between HCP profiles by: 1) quantifying overlaps between HCP identities; and 2) comparing correlations between individual protein abundances as calculated by spectral counts. Clustering analysis using these measures of dissimilarity between HCP profiles enabled high resolution differentiation of commercial grade monoclonal antibody samples generated from different cell lines, cell culture, and purification processes. 相似文献
6.
Small blocks of beech wood were exposed to the white-rot fungus Trametes versicolor for a period of 84 days to investigate chemical alteration in decayed wood by infrared spectroscopy. Decayed samples were analyzed at 2 week intervals by using attenuated total teflection (ATR) infrared spectroscopy as a rapid method. Analyses showed that chemical alteration in wood began after the second week of exposure. The appearance of new peaks indicated chemical modification of cell walls between days 28 and 70 of exposure to the fungus, and the disappearance of the peaks at day 84 indicates removal of the cell wall constituents. This investigation showed that ATR spectroscopy is a very applicable and rapid method for studying wood biodegradation. 相似文献
7.
I Martin 《生物化学与生物物理学报:生物膜》2003,1614(1):97-103
Membrane fusion proceeds via a merging of two lipid bilayers and a redistribution of aqueous contents and bilayer components. It involves transition states in which the phospholipids are not arranged in bilayers and in which the monolayers are highly curved. Such transition states are energetically unfavourable since biological membranes are submitted to strong repulsive hydration electrostatic and steric barriers. Viral membrane proteins can help to overcome these barriers. Viral proteins involved in membrane fusion are membrane associated and the presence of lipids restricts drastically the potential of methods (RMN, X-ray crystallography) that have been used successfully to determine the tertiary structure of soluble proteins. We describe here how IR spectroscopy allows to solve some of the problems related to the lipid environment.The principles of the method, the experimental setup and the preparation of the samples are briefly described. A few examples illustrate how attenuated total reflection Fourier-transform IR (ATR-FTIR) spectroscopy can be used to gain information on the orientation and the accessibility to the water phase of the fusogenic domain of viral proteins. Recent developments suggest that the method could also be used to detect changes located in the membrane domains and to identify intermediate structural states involved in the fusion process. 相似文献
8.
Barbara Kay Grove Gary Schwartz Frank E. Stockdale 《Journal of cellular biochemistry》1981,17(2):147-152
The differentiation of skeletal muscle is characterized by recognition, alignment, and subsequent fusion of myoblast cells at their surfaces to form large, multinucleated myotubes. Monoclonal antibodies were used to investigate anti-genie changes in the cell surface membrane specific for various stages of myogenesis. Chick embryonic skeletal muscle cells were cultured in vitro to the desired stage of differentiation and then injected into BALB/c mice. Spleen cells from the immunized mice were hybridized with NS-1 or P3 8653 mouse myeloma cells. Hybrid cell clones were selected in HAT medium and screened using an indirect radioimmunoassay for the production of monoclonal antibodies specific to myogenic cell surfaces. Target cells for the radioimmunoassay included three stages of myogenesis (myoblasts, midfusion myoblasts, and myotubes) and chick lung cells as a control for polymorphic antigens. Sixty-one clones were obtained which produced antibodies specific for myogenic cells. Thirty-five of these clones were generated from mice immunized with midfusion myoblast stages of myogenesis and 26 were obtained from mice immunized with the later myotube stage of myogenesis. Quantitative measurements by RIA of myogenic determinants per cell surface area on each target cell type revealed that most of the determinants decrease during myogenesis when midfusion myoblasts are used as the immunogen. When myotube stages are used as the immunogen, more determinants increase with cell differentiation. Therefore, the most common pattern of determinant change is for them to be present at all stages of myogenesis but to vary quantitively through development. There are determinants unique to each stage of myogenesis and marked quantitative differences within a cell stage for each determinant. 相似文献
9.
Florian Capito Romas Skudas Harald Kolmar Bernd Stanislawski 《Biotechnology and bioengineering》2013,110(1):252-259
Process development in up‐ and downstream processing requires enhanced, non‐time‐consuming, and non‐expensive monitoring techniques to track product purity, for example, the level of endotoxins, viral particles, and host cell proteins (HCPs). Currently, HCP amounts are measured by laborious and expensive HCP‐enzyme‐linked immunosorbent assay (ELISA) assays best suited for measuring HCP amounts in the low concentration regime. The measurement of higher HCP amounts using this method requires dilution steps, adding dilution errors to the measurement. In this work we evaluated the suitability of attenuated total reflection spectroscopy for HCP quantification in process development, using clarified cell culture fluid from monoclonal antibody producing Chinese hamster ovary‐cells after treatment with different polyelectrolytes for semi‐selective clarification. Forty undiluted samples were chosen for multivariate data analysis in the middle infrared range and predicted HCP‐values were in good agreement with results obtained by an ELISA‐assay, suggesting the suitability of this new method for HCP‐quantification. As this method is able to quantify HCP titers ranging from approximately at least 20,000–200,000 ng mL?1, it is suitable especially for monitoring of process development steps with higher HCP concentrations, omitting dilution errors associated with ELISA assays. Biotechnol. Bioeng. 2013; 110: 252–259. © 2012 Wiley Periodicals, Inc. 相似文献
10.
Secondary structure and dosage of soluble and membrane proteins by attenuated total reflection Fourier-transform infrared spectroscopy on hydrated films 总被引:16,自引:0,他引:16
Attenuated total reflection Fourier-transform infrared spectroscopy of thin hydrated films of soluble and membrane protein included in a phospholipid bilayer is shown to provide useful information as to the secondary structure of the protein. The analysis of the amide I band of deuterated samples by Fourier self-deconvolution followed by a curve fitting was performed by a new procedure in which all the input parameters are generated by the computer rather than by the investigator. The results of this analysis provide a correct estimation of the alpha-helix and beta-sheet structure content with a standard deviation of 8.6% when X-ray structures are taken as a reference. We also show that the orientation of the different secondary structures resolved by the Fourier self-deconvolution/curve-fitting procedure and of the phospholipid acyl chains can be simultaneously evaluated for membrane proteins reconstituted in a lipid bilayer. Of special interest for reconstitution of membrane proteins, the lipid/protein ratio can be accurately and quickly determined from the infrared spectrum. 相似文献
11.
With over 25 monoclonal antibodies (mAbs) currently approved and many more in development, there is considerable interest in gaining improved productivity by increasing cell density and enhancing cell survival of production cell lines. In addition, high costs and growing safety concerns with use of animal products have made the availability of serum-free cell lines more appealing. We elected to transfect the myeloma cell line Sp2/0-Ag14 with Bcl2-EEE, the constitutively active phosphomimetic mutant of Bcl2, for extended cell survival. After adaptation of the initial transfectants to serum-independent growth, a clone with superior growth properties, referred to as SpESF, was isolated and further subjected to iterative rounds of stressful growth over a period of 4 months. The effort resulted in the selection of a promising clone, designated SpESFX-10, which was shown to exhibit robust growth and resist apoptosis induced by sodium butyrate or glutamine deprivation. The advantage of SpESFX-10 as a host for generating mAb-production cell lines was demonstrated by its increased transfection efficiency, culture longevity, and mAb productivity, as well as by the feasibility of accomplishing the entire cell line development process, including transfection, subcloning, and cryopreservation, in the complete absence of serum. 相似文献
12.
Orientation and lipid-peptide interactions of gramicidin A in lipid membranes: polarized attenuated total reflection infrared spectroscopy and spin-label electron spin resonance
下载免费PDF全文

Gramicidin A was incorporated at a peptide/lipid ratio of 1:10 mol/mol in aligned bilayers of dimyristoyl phosphatidylcholine (DMPC), phosphatidylserine (DMPS), phosphatidylglycerol (DMPG), and phosphatidylethanolamine (DMPE), from trifluoroethanol. Orientations of the peptide and lipid chains were determined by polarized attenuated total reflection infrared spectroscopy. Lipid-peptide interactions with gramicidin A in DMPC bilayers were studied with different spin-labeled lipid species by using electron spin resonance spectroscopy. In DMPC membranes, the orientation of the lipid chains is comparable to that in the absence of peptide, in both gel and fluid phases. In gel-phase DMPC, the effective tilt of the peptide exceeds that of the lipid chains, but in the fluid phase both are similar. For gramicidin A in DMPS, DMPG, and DMPE, the degree of orientation of the peptide and lipid chains is less than in DMPC. In the fluid phase of DMPS, DMPG, and DMPE, gramicidin A is also less well oriented than are the lipid chains. In DMPE especially, gramicidin A is largely disordered. In DMPC membranes, three to four lipids per monomer experience direct motional restriction on interaction with gramicidin A. This is approximately half the number of lipids expected to contact the intramembranous perimeter of the gramicidin A monomer. A selectivity for certain negatively charged lipids is found in the interaction with gramicidin A in DMPC. These results are discussed in terms of the integration of gramicidin A channels in lipid bilayers, and of the interactions of lipids with integral membrane proteins. 相似文献
13.
Christel Fenge Elisabeth Fraune Ruth Freitag Thomas Scheper Karl Schügerl 《Cytotechnology》1991,6(1):55-63
An automated flow injection system for on-line analysis of proteins in real fermentation fluids was developed by combining the principles of stopped-flow, merging zones flow injection analysis (FIA) with antigen-antibody reactions. IgG in the sample reacted with its corresponding antibody (a-IgG) in the reagent solution. Formation of insoluble immunocomplexes resulted in an increase of the turbidity which was determined photometrically. This system was used to monitor monoclonal antibody production in high cell density perfusion culture of hybridoma cells. Perfusion was performed with a newly developed static filtration unit equipped with hydrophilic microporous tubular membranes. Different sampling devices were tested to obtain a cell-free sample stream for on-line product anlysis of high molecular weight (e.g., monoclonal antibodies) and low molecular weight (e.g., glucose, lactate) medium components. In fermentation fluids a good correlation (coefficient: 0.996) between the FIA method and an ELISA test was demonstrated. In a high density perfusion cultivation process mAb formation was succesfully monitored on-line over a period of 400 h using a reliable sampling system. Glucose and lactate were measured over the same period of time using a commercially available automatic analyser based on immobilized enzyme technology.Abbreviations TIA
Turbidimetric immunoassay
- mAb
Monoclonal Antibody 相似文献
14.
On-line monitoring of monoclonal antibodies in animal cell culture using a grating coupler 总被引:1,自引:0,他引:1
Polzius R Bier FF Bilitewski U Jäger V Schmid RD 《Biotechnology and bioengineering》1993,42(11):1287-1292
A grating coupler was used for the on-line determination of monoclonal antibodies produced in perfused animal cell bioreactor. The device was connected with the culture vessel via a flow-injection analysis (FIA) system, which was controlled automatically. Specific antimouse lgG antibodies were immobilized on the surface of the sensor-chip. After injection of the sample, the binding of mouse lgG was observed in real time. The regeneration of the binding sites of the immobilized antibodies using an acidic solution allowed the on-line detection of produced monoclonal antibodies in the range of 10 to 150 mug/mL. In contrast to other techniques coupled to bioprocesses, the developed method represents a regenerable direct immunosensor. Results were compared with standard ELISA techniques (off-line) and a competitive immunochemical assay using the grating coupler (off-line). (c) 1993 John Wiley & Sons, Inc. 相似文献
15.
Process analytical technology (PAT) is a guide to improve process development in biotech industry. Optical sensors such as near and mid infrared spectrometers fulfill an essential part for PAT. NIRS and MIRS were investigated as non-invasive on line monitoring tools for animal cell cultivations in order to predict critical process parameters, like cell parameters as well as substrate and metabolite concentrations. Eight cultivations were performed with frequent sampling. Variances between cultivations were induced by spiking experiments with intent to break correlations between analytes; to keep causality of the models; and to increase model robustness. 相似文献
16.
Identification of an IgG CDR sequence contributing to co‐purification of the host cell protease cathepsin D
下载免费PDF全文

Jared S. Bee LeeAnn M. Machiesky Li Peng Kristin C. Jusino Matthew Dickson Jeffrey Gill Douglas Johnson Hung‐Yu Lin Kenneth Miller Jenny Heidbrink Thompson Richard L. Remmele Jr 《Biotechnology progress》2017,33(1):140-145
Recombinant therapeutic monoclonal antibodies (mAbs) must be purified from host cell proteins (HCPs), DNA, and other impurities present in Chinese hamster ovary (CHO) cell culture media. HCPs can potentially result in adverse clinical responses in patients and, in specific cases, have caused degradation of the final mAb product. As reported previously, residual traces of cathepsin D caused particle formation in the final product of mAb‐1. The current work was focused on identification of a primary sequence in mAb‐1 responsible for the binding and consequent co‐purification of trace levels of CHO cathepsin D. Surface plasmon resonance (SPR) was used to detect binding between immobilized CHO cathepsin D and a panel of mAbs. Out of 13 mAbs tested, only mAb‐1 and mAb‐6 bound to cathepsin D. An LYY motif in the HC CDR2 was common, yet unique, to only these two mAbs. Mutation of LYY to AAA eliminated binding of mAb‐1 to cathepsin D providing confirmation that this sequence motif was involved in the binding to CHO cathepsin D. Interestingly, the binding between mAb‐1 and cathepsin D was weaker than that of mAb‐6, which may be related to the fact that two aspartic acid residues near the LYY motif in mAb‐1 are replaced with neutral serine residues in mAb‐6. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:140–145, 2017 相似文献
17.
Nathan Ockman 《生物化学与生物物理学报:生物膜》1981,643(1):220-232
The effects of pH, Mn2+ and Ca2+ and urea denaturation on the interaction of monolayers of concanavalin A on saline with the polysaccharide dextran B-1355 and the monosaccharides methyl α-d-mannopyranoside and d-galactose have been investigated. Infrared absorption spectra of compressed monolayers of the protein and the protein-dextran complex coated on a germanium plate have been obtained by means of attenuated total reflectance spectroscopy. Except in one case of denaturation, the amide I absorption of concanavalin A peaked around 1631 cm?1, indicating a predominance of the β-pleated sheet conformation, in agreement with its secondary structure in the solution and crystalline phases. The contribution to the absorbance of the concanavalin A-dextran films at 3300 cm?1 due to absorption by the O-H stretching modes of the polysaccharide is a measure of its binding. Increasing the pH from 6.1 to 7.5 appreciably reduced the dextran binding, at pH 9.3 the binding was zero. Adding 1 mM Mn2+ and Ca2+ to the subphase at pH 7.5 restored both the dextran binding and the affinity of concanavalin A for methyl α-d-mannopyranoside to that of the native protein at pH 6.1. At this latter pH, the weak binding of dextran to monolayers of demetallized concanavalin A (apo-concanavalin A) was also restored to that for the native molecule by the addition of these divalents. This indicates the requirement of concanavalin A for these ions to maintain the integrity of the saccharide-binding site. The loss of dextran binding with urea denaturation was also observed. These results parallel those for solutions of the protein, indicating the validity of the monolayer system for the study of these interactions. 相似文献
18.
Deciphering how Listeria monocytogenes exploits the host cell machinery to invade mammalian cells during infection isa key issue for the understanding how this food-borne pathogen causes a pleiotropic disease ranging from gastro-enteritis to meningitis and abortions. Using multidisciplinary approaches, essentially combining bacterial genetics and cell biology, we have identified two bacterial proteins critical for entry into target cells, InlA and InlB. Their cellular ligands have been also identified: InlA interacts with the adhesion molecule E-cadherin, while InlB interacts with the receptor for the globular head of the complement factor Clq (gClq-R), with the hepatocyte growth factor receptor (c-Met) and with glycosaminoglycans(including heparan sulphate). The dynamic interaction between these cellular receptors and the actin cytoskeleton is currently under investigation. Several intracellular molecules have been recognized as key effectors for Listeria entry into target cells,including catenins (implicated in the connection of E-cadherin to actin) and the actin depolymerising factor/cofilin (involved in the rearrangement of the cytoskeleton in the InlB-dependent internalisation pathway). At the organism level, species specificity has been discovered concerning the interaction between InlA and E-cadherin, leading to the generation of transgenic mice expressing the human E-cadherin, in which the critical role of InlA in the crossing of the intestinal barrier has been clearly determined. Listeria appears as an instrumental model for addressing critical questions concerning both the complex process of bacterial pathogenesis and also fundamental molecular processes, such as phagocytosis. 相似文献
19.
Deciphering how Listeria monocytogenes exploits the host cell machinery to invade mammalian cells during infection is a key issue for the understanding how this food-borne pathogen causes a pleiotropic disease ranging from gastro-enteritis to meningitis and abortions. Using multidisciplinary approaches, essentially combining bacterial genetics and cell biology, we have identified two bacterial proteins critical for entry into target cells, InlA and InlB. Their cellular ligands have been also identified: InlA interacts with the adhesion molecule E-cadherin, while InlB interacts with the receptor for the globular head of the complement factor C1q (gC1q-R), with the hepatocyte growth factor receptor (c-Met) and with glycosaminoglycans (including heparan sulphate). The dynamic interaction between these cellular receptors and the actin cytoskeleton is currently under investigation. Several intracellular molecules have been recognized as key effectors for Listeria entry into target cells, including catenins (implicated in the connection of E-cadherin to actin) and the actin depolymerising factor/cofilin (involved in the rearrangement of the cytoskeleton in the InlB-dependent internalisation pathway). At the organism level, species specificity has been discovered concerning the interaction between InlA and E-cadherin, leading to the generation of transgenic mice expressing the human E-cadherin, in which the critical role of InlA in the crossing of the intestinal barrier has been clearly determined. Listeria appears as an instrumental model for addressing critical questions concerning both the complex process of bacterial pathogenesis and also fundamental molecular processes, such as phagocytosis. 相似文献
20.
Intracellular antibody Fab' fragments periplasmically expressed in Escherichia coli require the release of Fab' from the cells before initial product recovery. This work demonstrates the utility of microscale bioprocessing techniques to evaluate the influence of different cell disruption operations on subsequent solid–liquid separation and product recovery. Initially, the industrial method of Fab' release by thermochemical extraction was established experimentally at the microwell scale and was observed to yield Fab' release consistent with the larger scale process. The influence of two further cell disruption operations, homogenization and sonication, on subsequent Fab' recovery by microfiltration was also examined. The results showed that the heat‐extracted cells give better dead‐end microfiltration performance in terms of permeate flux and specific cake resistance. In contrast, the cell suspensions prepared by homogenization and sonication showed more efficient product release but with lower product purity and poorer microfiltration performance. Having established the various microscale methods the linked sequence was automated on the deck of a laboratory robotic platform and used to show how different conditions during thermochemical extraction impacted on the optimal performance of the linked unit operations. The results illustrate the power of microscale techniques to evaluate crucial unit operation interactions in a bioprocess sequence using only microliter volumes of feed. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010 相似文献