首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A principal challenge to restoring tree‐invaded grasslands is the removal of woody biomass. Burning of slash piles to reduce woody residues from forest restoration practices generates intense, prolonged heating, with adverse effects on soils and vegetation. In this study, we examined vegetation responses to pile burning following tree removal from conifer‐invaded grasslands of the Oregon Cascades. We quantified the longevity and magnitude of fire effects by comparing ground conditions and the cover and richness of plant species in burn‐scar centers (higher‐intensity fire) and edges (lower‐intensity fire) with adjacent unburned vegetation 7 years after treatment. We interpreted patterns of recovery through the responses of species with differing growth forms, habitat affinities, and clonality. Cover of bare ground remained elevated at the centers, but not at the edges of scars; however, much of this effect was due to gopher disturbance. Total plant cover, consisting entirely of native species, was comparable in and adjacent to scars. However, richness remained depressed at the scar centers. Cover of grass, meadow, and non‐clonal species was comparable in and adjacent to scars, but cover of forb, sedge, residual forest, and clonal species was reduced at the centers. Although scar centers had a simpler community structure (fewer but more abundant species) than the adjacent vegetation, they remained free of exotics and recovered quickly, aided by the soil‐disturbing activities of gophers and the regenerative traits of native, disturbance‐adapted species. Pile burning can be a viable and efficient approach to fuel reduction in the absence of exotics.  相似文献   

2.
Ooencyrtus nezarae (Hymenoptera: Encyrtidae) is an egg parasitoid of bean bug Riptortus pedestris (Hemiptera: Alydidae) which is a major pest of beans. Females of O. nezarae are attracted to (E)‐2‐hexenyl (Z)‐3‐hexenoate (EZ), one of the components of aggregation pheromone of Rpedestris. Effects of three isomers (ZE, EE and ZZ) of EZ on the attractiveness of O. nezarae were tested using electroantennography (EAG) and field bioassays. EAG analyses revealed that the response of O. nezarae to ZE was significantly higher than those to air, hexane and two other isomers, even though the response was lower than that to EZ. ZE affected the attractiveness of EZ dose‐dependently in the field. Addition of ZE (100 mg) to EZ (10 mg) caused a significant reduction in the catches of O. nezarae females. Single or binary addition of two other isomers (EE and ZZ) to EZ could not decrease or increase significantly the number of O. nezarae catches of EZ. Even though addition of ZZ (10, 50 or 100 mg) to EZ (10 mg) caused dose‐dependent reduction in the number of O. nezarae female catches, the reductions were not significantly different from that of EZ. EZ and its three isomers were not attractive to O. nezarae males at all.  相似文献   

3.
1. In haplodiploid social insects where males are haploid and females are diploid, inbreeding depression is expressed as the production of diploid males when homozygosity at the sex‐determining locus results in the production of diploid individuals with a male phenotype. Diploid males are often assumed to have reduced fitness compared with their haploid brothers. 2. While studying the reproductive biology of a leaf‐cutting ant, Atta sexdens, in Gamboa, Republic of Panama, we detected the presence of a larger male morph. Using microsatellite markers we were able to confirm that the large male morph was diploid in 87% of cases. 3. We infer that the Gamboa population of A. sexdens experiences inbreeding depression because diploid males were found in three out of five mature colonies. However, their frequencies were relatively low because queens were multiply mated and our estimates suggest that many diploid male larvae may not survive to adulthood. 4. We measured two traits potentially linked to male reproductive success: sperm length and sperm number, and showed that diploid males produced fewer but longer sperm. These results provide indirect evidence that diploid male reproductive success would be reduced compared with haploid males if they were able to copulate. 5. We conclude that diploid male production is likely to affect the fitness of A. sexdens queens with a matched mating, as these males are produced at the cost of workers and, if the colony survives to reach mature size, also gynes.  相似文献   

4.
The application of helical poly[(S)‐3‐vinyl‐2,2'‐dihydroxy‐1, 1'‐binaphthyl] ( L* ) in the asymmetric borane reduction of prochiral ketones was studied. The results showed that L* had excellent catalytic activity as well as enantioselectivity, giving up to 96% yield and up to 99% enantiomeric excess (ee) of the corresponding secondary alcohol at 25 °C. Moreover, L* can be easily recovered and reused without loss of catalytic activity. Chirality 27:422–424, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
Catalytic CO2 reforming of CH4 (CRM) to produce syngas (H2 and CO) provides a promising approach to reducing global CO2 emissions and the extensive utilization of natural gas resources. However, the rapid deactivation of the reported catalysts due to severe carbon deposition at high reaction temperatures and the large energy consumption of the process hinder its industrial application. Here, a method for almost completely preventing carbon deposition is reported by modifying the surface of Ni nanocrystals with silica clusters. The obtained catalyst exhibits excellent durability for CRM with almost no carbon deposition and deactivation after reaction for 700 h. Very importantly, it is found that CRM on the catalyst can be driven by focused solar light, thus providing a promising new approach to the conversion of renewable solar energy to fuel due to the highly endothermic characteristics of CRM. The reaction yields high production rates of H2 and CO (17.1 and 19.9 mmol min?1 g?1, respectively) with a very high solar‐to‐fuel efficiency (η, 12.5%). Even under focused IR irradiation with a wavelength above 830 nm, the η of the catalyst remains as high as 3.1%. The highly efficient catalytic activity arises from the efficient solar‐light‐driven thermocatalytic CRM enhanced by a novel photoactivation effect.  相似文献   

6.
The development of dual catalysts with high efficiency toward oxygen reduction and evolution reactions (ORR and OER) in acidic media is a significant challenge. Here an active and durable dual catalyst based upon cubic Pt39Ir10Pd11 nanocages with an average edge length of 12.3 nm, porous walls as thin as 1.0 nm, and well‐defined {100} facets is reported. The trimetallic nanocages perform better than all the reported dual catalysts in acidic media, with a low ORR‐OER overpotential gap of only 704 mV at a Pt‐Ir‐Pd loading of 16.8 µgPt+Ir+Pd cm?2geo. For ORR at 0.9 V, when benchmarked against the commercial Pt/C and Pt‐Pd nanocages, the trimetallic nanocages exhibit an enhanced mass activity of 0.52 A mg?1Pt+Ir+Pd (about four and two times as high as those of the Pt/C and Pt‐Pd nanocages) and much improved durability. For OER, the trimetallic nanocages show a remarkable mass activity of 0.20 A mg?1Pt+Ir at 1.53 V, which is 16.7 and 4.3 fold relative to those of the Pt/C and Pt‐Pd nanocages, respectively. These improvements can be ascribed to the highly open structure of the nanocages, and the possible electronic coupling between Ir and Pt atoms in the lattice.  相似文献   

7.
Engin Şahin 《Chirality》2018,30(2):189-194
Piperonyl ring is found in a number of naturally occurring compounds and possesses enormous biological activities. There are many studies in the literature with compounds containing a piperonyl ring, but there are very few studies on the synthesis of chiral piperonyl carbinol. The objective of this study was to determine the microbial reduction ability of bacterial strains and to reveal the effects of different physicochemical parameters on this reduction ability. A total of 15 bacterial isolates were screened for their ability to reduce 1‐(benzo[d][1,3]dioxol‐5‐yl) ethanone 1 to its corresponding alcohol. Among these isolates Lactobacillus paracasei BD101 was found to be the most successful biocatalyst to reduce the ketone containing piperonyl ring to the corresponding alcohol. The reaction conditions were systematically optimized for the reducing agent L paracasei BD101, which showed high enantioselectivity and conversion for the bioreduction. The preparative scale study was performed, and a total of 3.72 g of (R)‐1‐(1,3‐benzodioxol‐5‐yl) ethanol in high enantiomeric form (>99% enantiomeric excess) was produced in a mild, cheap, and environment‐friendly process. This study demonstrates that L paracasei BD101 can be used as a biocatalyst to obtain chiral carbinol with excellent yield and selectivity.  相似文献   

8.
9.
To date, most studies have focused only on the interaction between oxygen and the catalyst, with the intention of minimizing the mass‐transfer resistance by using the rotating disk electrode (RDE) method, which is based on the forced‐convection theory. To begin with, in order to increase the reaction rate, the oxygen should be able to reach the active sites of the catalyst readily (mass transfer). Next, a moderate (i.e., not too strong or weak) interaction (kinetics) should be maintained between the oxygen molecules and the catalyst, in order to allow for better adsorption and desorption. Therefore, these two factors should be taken into consideration when designing electrocatalysts for oxygen reduction. Further, there is bound to be a demand for large‐scale metal‐air batteries in the future. With these goals in mind, in this study, a facile and scalable method is developed for fabricating metal‐air batteries based on the fact that the Prussian blue analogue Mn3[Co(CN)6]2?nH2O and gelatin‐coated Ketjenblack carbon thermally decompose at 400 °C in air (i.e., without requiring high‐temperature pyrolysis under inert conditions) to form porous spinel oxides and N‐doped carbon materials. The intrinsic kinetics characteristics and the overall performance of the resulting catalysts are evaluated using the RDE method and a Zn‐air full cell, respectively.  相似文献   

10.
Hydroxyamide‐based ligands have occupied a considerable place in asymmetric synthesis. Here we report the synthesis of seven β‐hydroxyamide‐based ligands from the reaction of 2‐hydroxynicotinic acid with chiral amino alcohols and test their effect on the enantioselective reduction of aromatic prochiral ketones with borane in tetrahydofuran (THF). They produce the corresponding secondary alcohols with up to 76% enantiomeric excess (ee) and good to excellent yields (86‐99%). Chirality 26:21–26, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
The mixtures of room temperature ionic liquid 1‐ethyl‐3‐methylimidazolium trifluoromethanesulfonate ([EMIM]TFO) and water as electrolytes for reduction of CO2 to CO are reported. Linear sweep voltammetry shows overpotentials for CO2 reduction and the competing hydrogen evolution reaction (HER), both of which vary as a function of [EMIM]TFO concentration in the range from 4 × 10?3m (0.006 mol%) to 4869 × 10?3m (50 mol%). A steady lowering of overpotentials up to an optimum for 334 × 10?3m is identified. At 20 mol% and more of [EMIM]TFO, a significant CO2 reduction plateau and inhibition of HER, which is limited by H2O diffusion, is noted. Such a plateau in CO2 reduction correlates to high CO Faraday efficiencies. In case of 50 mol% [EMIM]TFO, a broad plateau spanning over a potential range of 0.58 V evolves. At the same time, the overpotential for HER is increased by 1.20 V when compared to 334 × 10?3m and, in turn, HER is largely inhibited. The Faraday efficiencies for CO and H2 formation feature 95.6% ± 6.8% and 0.5% ± 0.3%, respectively, over a period of 3 h in a separator divided cell. Cathodic as well as anodic electrochemical stability of the electrolyte throughout this time period is corroborated in 1H NMR spectroscopic measurements.  相似文献   

12.
13.
A total of 120 fungal strains were isolated from soil samples and evaluated in the bioreduction of substituted acetophenones to the corresponding (R)‐alcohols. Among these strains, isolate Trichothecium roseum EBK‐18 was highly effective in the production of (R)‐alcohols with excellent enantioselectivity (ee > 99%). Gram scale preparation of (R)‐1‐phenylethanol is reported. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
15.
(S)‐(?)‐1‐(1′‐napthyl)‐ethanol (S‐NE) is an important intermediate for the preparation of mevinic acid analogs, which is used for the treatment of hyperlipidemia. The objectives of the study were to isolate a microorganism that could effectively reduce 1‐acetonaphthone (1‐ACN) to S‐NE, to determine the influence that the physicochemical parameters would have on the reduction by the isolated microorganism, and to attempt large‐scale studies with the microorganism. Over the years fungi have been considered a promising biocatalyst and it has been presumed that many fungal species have not been isolated and therefore the current study focused on possible isolation of these microorganisms. A total of 72 fungal isolates were screened for their ability to reduce 1‐ACN to its corresponding alcohol. The isolate, EBK‐62, identified as Alternaria alternata, was found to be the most successful at reducing the ketone to the corresponding alcohol in the submerged culture. The reaction conditions were systematically optimized for the reducing agent A. alternata EBK62, which showed high stereospecificity and good conversion for the reduction. The preparative scale study was carried out in a 2 L bioreactor and a total of 4.9 g of S‐NE in optically pure form (>99% enantiomeric excess) was produced in 48 h. Chirality 28:669–673, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
17.
18.
Overexpression of multiple copies in T‐cell lymphoma‐1 (MCT‐1) oncogene accompanies malignant phenotypic changes in human lymphoma cells. Specific disruption of MCT‐1 results in reduced tumorigenesis, suggesting a potential for MCT‐1‐targeted therapeutic strategy. MCT‐1 is known as a cap‐binding protein and has a putative RNA‐binding motif, the PUA‐domain, at its C‐terminus. We determined the crystal structure of apo MCT‐1 at 1.7 Å resolution using the surface entropy reduction method. Notwithstanding limited sequence identity to its homologs, the C‐terminus of MCT‐1 adopted a typical PUA‐domain fold that includes secondary structural elements essential for RNA recognition. The surface of the N‐terminal domain contained positively charged patches that are predicted to contribute to RNA‐binding. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
20.
The development of high‐performance oxygen reduction reaction (ORR) catalysts derived from non‐Pt group metals (non‐PGMs) is urgent for the wide applications of proton exchange membrane fuel cells (PEMFCs). In this work, a facile and cost‐efficient supramolecular route is developed for making non‐PGM ORR catalyst with atomically dispersed Fe‐Nx/C sites through pyrolyzing the metal‐organic polymer coordinative hydrogel formed between Fe3+ and α‐L‐guluronate blocks of sodium alginate (SA). High‐angle annular dark field scanning transmission electron microscopy (HAADF‐STEM) and X‐ray absorption spectroscopy (XAS) verify that Fe atoms achieve atomic‐level dispersion on the obtained SA‐Fe‐N nanosheets and a possible fourfold coordination with N atoms. The best‐performing SA‐Fe‐N catalyst exhibits excellent ORR activity with half‐wave potential (E1/2) of 0.812 and 0.910 V versus the reversible hydrogen electrode (RHE) in 0.5 m H2SO4 and 0.1 m KOH, respectively, along with respectable durability. Such performance surpasses that of most reported non‐PGM ORR catalysts. Density functional theory calculations suggest that the relieved passivation effect of OH* on Fe‐N4/C structure leads to its superior ORR activity to Pt/C in alkaline solution. The work demonstrates a novel strategy for developing high‐performance non‐PGM ORR electrocatalysts with atomically dispersed and stable M‐Nx coordination sites in both acidic and alkaline media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号