首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of luteolin on the function of osteoblastic MC3T3-E1 cells and the production of local factors in osteoblasts were investigated. Luteolin (1microM) caused a significant elevation of collagen content, alkaline phosphatase (ALP) activity, and osteocalcin secretion in the cells (P<0.05). The effect of luteolin in increasing collagen content and ALP activity was completely prevented by the presence of 10(-6)M cycloheximide and 10(-6)M tamoxifen, suggesting that luteolin's effect results from a newly synthesized protein component and might be partly involved in estrogen action. We then examined the effect of luteolin on the 3-morpholinosydnonimine (SIN-1)-induced production of oxidative stress markers [nitric oxide (NO) and prostaglan E(2) (PGE(2))] and cytokines [tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6)] in osteoblasts. Luteolin (1 and 10microM) decreased the SIN-1-induced production of NO, PGE(2), TNF-alpha, and IL-6 in osteoblasts. These results suggest that inflammatory mediators can be regulated by luteolin stimulating osteoblastic function.  相似文献   

2.
The murine macrophage‐like cell line J774.1 was treated with heat‐killed cells of Lactobacillus GG (LGG) and L. gasseri TMC0356 (TMC 0356). Interleukin (IL)‐6, IL‐12, and tumor necrosis factor‐α were profiled from the J774.1 cells using enzyme‐linked immunosorbent assay methods. The conditioned medium from cultured J774.1 cells was transferred to the preadipocyte cell line 3T3‐L1 (which is a mouse embryonic fibroblast‐adipose‐like cell line). Growth and differentiation of 3T3‐L1 cells were monitored by analyzing lipid accumulation and expression of peroxisome proliferator‐activated receptor (PPAR)‐γ mRNA. The medium conditioned by 3T3‐L1 cells was added to J774.1 cells and the cytokines in the supernatant analyzed. Compared with that of cells exposed to a PBS‐conditioned medium, lipid accumulation in 3T3‐L1 cells was significantly suppressed in a dose‐dependent manner by each medium that had been conditioned with LGG and TMC0356. PPAR‐γ mRNA expression in 3T3‐L1 cells was also significantly downregulated (P < 0.01, P < 0.05, respectively). The conditioned medium of 3T3‐L1 adipose phenotype significantly stimulated production of IL‐6 and IL‐12 in J774.1 cells treated with LGG and TMC0356. These results suggest that lactobacilli may suppress differentiation of preadipocytes through macrophage activation and alter the immune responses of macrophages to adipose cells.  相似文献   

3.
4.
The influence of insulin and 2-deoxy-glucose (D-glucose) on the intracellular protozoan Toxoplasma gondii replication in 3T3-L1 cells was investigated. Insulin and D-glucose had a dose-responsive mitogenic effect on intracellular T. gondii replication and development in 3T3-L1 cells. Insulin concentrations between 10(-2) and 10(-1) microg/ml combination of 4.5 g/l D-glucose in DMEM medium gave maximum stimulus to T. gondii replication. The number of tachyzoites increased rapidly, with the growth peaking typically on day 3 or 4 of culture, and then declining quickly. However, insulin, in the absence of d-glucose, had comparably less effect on T. gondii growth than two of their combination. d-glucose concentrations significantly affected the tachyzoite replication and appear to be indispensable for maintaining the host 3T3-L1 cells.  相似文献   

5.
Aging is accompanied by altered T‐cell responses that result in susceptibility to various diseases. Previous findings on the increased expression of inhibitory receptors, such as programmed cell death protein 1 (PD‐1), in the T cells of aged mice emphasize the importance of investigations into the relationship between T‐cell exhaustion and aging‐associated immune dysfunction. In this study, we demonstrate that T‐cell immunoglobulin mucin domain‐3 (Tim‐3), another exhaustion marker, is up‐regulated on aged T cells, especially CD8+ T cells. Tim‐3‐expressing cells also produced PD‐1, but Tim‐3+PD‐1+ CD8+ T cells had a distinct phenotype that included the expression of CD44 and CD62L, from Tim‐3?PD‐1+ cells. Tim‐3+PD‐1+ CD8+ T cells showed more evident properties associated with exhaustion than Tim‐3?PD‐1+ CD8+ T cells: an exhaustion‐related marker expression profile, proliferative defects following homeostatic or TCR stimulation, and altered production of cytokines. Interestingly, these cells produced a high level of IL‐10 and induced normal CD8+ T cells to produce IL‐10, which might contribute to immune dysregulation in aged mice. The generation of Tim‐3‐expressing CD8+ T cells in aged mice seems to be mediated by encounters with antigens but not by specific infection, based on their high expression of CD49d and their unbiased TCR Vβ usage. In conclusion, we found that a CD8+ T‐cell population with age‐associated exhaustion was distinguishable by its expression of Tim‐3. These results provide clues for understanding the alterations that occur in T‐cell populations with age and for improving dysfunctions related to the aging of the immune system.  相似文献   

6.
Platelets are produced from megakaryocytes (MKs), although the pathway leading from stem cells to MK lineages are not yet fully understood. Recently, we reported to obtain abundant MKs and platelets from human subcutaneous adipose tissues. Adipose tissues contain various cell types, most of which are lineage cells from mesenchymal or adipocyte-derived stem cells, distinct from hematopoietic cells. To identify the cells responsible for the differentiation MK lineages in adipose tissues, this study examined whether the preadipocyte cell line 3T3-L1 and fibroblast cell line 3T3 differentiated into MK lineages in vitro. Cells were cultured in megakaryocyte lineage induction medium. By day 4, most of 3T3 cell-derived cells leaded to cell death. In contrast, 3T3-L1-derived cells on days 8 showed to have typical characterizations of MK lineages in analyses for specific marker, DNA ploidy, transmission electro micrograph. 3T3-L1-derived platelet-sized cells on day 12 could be stimulated by ADP and PAR4-activating peptide. This study clearly shows in vitro differentiation from 3T3-L1 cells, not from 3T3 cells, into MK lineages.  相似文献   

7.
8.
Background: Helicobacter pylori infection is associated with development of chronic inflammation and infiltration of immune cells into the gastric mucosa. As unconventional T‐lymphocytes expressing natural killer cell receptors are considered to play central roles in the immune response against infection, a study investigating their frequencies in normal and H. pylori‐infected gastric mucosa was undertaken. Materials and Methods: Flow cytometry was used to quantify T‐cells expressing the natural killer cell markers CD161, CD56, and CD94 in freshly isolated lymphocytes from the epithelial and lamina propria layers of gastric mucosa. Thirteen H. pylori‐positive and 24 H. pylori‐negative individuals were studied. Results: CD94+ T‐cells were the most abundant (up to 40%) natural killer receptor‐positive T‐cell population in epithelial and lamina propria layers of H. pylori‐negative gastric mucosa. CD161+ T‐cells accounted for about one‐third of all T‐cells in both compartments, but the lowest proportion were of CD56+ T‐cells. Compared with H. pylori‐negative mucosa, in H. pylori‐infected mucosa the numbers of CD161+ T‐cells were significantly greater (p = .04) in the epithelium, whereas the numbers of CD56+ T‐cells were lower (p = .01) in the lamina propria. A minor population (< 2%) of T‐cells in both mucosal layers of H. pylori‐negative subjects were natural killer T‐cells, and whose proportions were not significantly different (p > .05) to those in H. pylori‐infected individuals. Conclusions: The predominance, heterogeneity, and distribution of natural killer cell receptor‐positive T‐cells at different locations within the gastric mucosa reflects a potential functional role during H. pylori infection and warrants further investigation.  相似文献   

9.
We have quantitated by autoradiography the binding of [125I]labeled 3T3 plasma membrane fragments to 3T3 cells growing on the surface of plastic dishes; ie, the same conditions in which these membranes specifically arrest the growth of 3T3 cells early in the G1 phase of the cell cycle. We have been able to demonstrate that binding of membranes to cells is coincidental with the expression of the growth inhibitory activity of protein(s) present in the membrane fragments. Treatments that reduce binding (heat denaturation of the membranes or culture in the presence of high scrum) also reduce growth inhibitory activity. [125I]labeled membranes bound to cells are located primarily on the cell surface (as determined by electron microscope autoradiography) and are exchangeable with unlabeled membranes. We conclude that binding of membranes to cells is necessary but may not be sufficient for the expression of the growth inhibitory activity of these membranes. This approach provides information not only on the average level of binding of membranes to cells, but also provides a quantitative assessment of the variation of the level of membrane to cell binding between different cells in the population.  相似文献   

10.
Cyclic AMP (cAMP) is a ubiquitous second messenger that regulates diverse cellular functions. It has been found that CD4+CD25+ regulatory T (TREG) cells exert their suppressor function by transferring cAMP to responder T cells. Here, we show that miR-142-3p regulates the production of cAMP by targeting adenylyl cyclase (AC) 9 messenger RNA in CD4+CD25 T cells and CD4+CD25+ TREG cells. miR-142-3p limits the level of cAMP in CD4+CD25 T cells by inhibiting AC9 production, whereas forkhead box P3 (FOXP3) downregulates miR-142-3p to keep the AC9/cAMP pathway active in CD4+CD25+ TREG cells. These findings reveal a new molecular mechanism through which CD4+CD25+ TREG cells contain a high level of cAMP for their suppressor function, and also suggest that the microRNA controlling AC expression might restrict the final level of cAMP in various types of cells.  相似文献   

11.
K2P5.1 channels (also called TASK‐2 or Kcnk5) have already been shown to be relevant in the pathophysiology of autoimmune disease because they are known to be upregulated on peripheral and central T lymphocytes of multiple sclerosis (MS) patients. Moreover, overexpression of K2P5.1 channels in vitro provokes enhanced T‐cell effector functions. However, the molecular mechanisms regulating intracellular K2P5.1 channel trafficking are unknown so far. Thus, the aim of the study is to elucidate the trafficking of K2P5.1 channels on T lymphocytes. Using mass spectrometry analysis, we have identified 14‐3‐3 proteins as novel binding partners of K2P5.1 channels. We show that a non‐classical 14‐3‐3 consensus motif (R‐X‐X‐pT/S‐x) at the channel's C‐terminus allows the binding between K2P5.1 and 14‐3‐3. The mutant K2P5.1/S266A diminishes the protein‐protein interaction and reduces the amplitude of membrane currents. Application of a non‐peptidic 14‐3‐3 inhibitor (BV02) significantly reduces the number of wild‐type channels in the plasma membrane, whereas the drug has no effect on the trafficking of the mutated channel. Furthermore, blocker application reduces T‐cell effector functions. Taken together, we demonstrate that 14‐3‐3 interacts with K2P5.1 and plays an important role in channel trafficking.   相似文献   

12.
13.
Immune cell products such as interferon (IFN)‐γ and interleukin (IL)‐12 are potent inhibitors of osteoclast formation. We previously characterized the human osteoclast inhibitory peptide‐1 (OIP‐1/hSca), a Ly‐6 gene family member and showed IFN‐γ modulation of OIP‐1 expression in bone marrow cells. Whether, IL‐12 regulates OIP‐1 expression in the bone microenvironment is unclear. Real‐time PCR analysis revealed that IL‐12 treatment significantly enhanced OIP‐1 mRNA expression in human bone marrow mononuclear cells. Because IL‐12 induces IFN‐γ production by T cells, we tested whether IFN‐γ participates in IL‐12 stimulation of OIP‐1 gene expression in these cells. IL‐12 treatment in the presence of IFN‐γ neutralizing antibody significantly increased OIP‐1 mRNA expression, suggesting that IL‐12 directly regulates OIP‐1 gene expression. Interestingly, real‐time PCR analysis demonstrated that IL‐12 induces OIP‐1 expression (3.2‐fold) in CD4+ T cells; however, there was no significant change in CD8+ T cells. Also, IL‐12 (10 ng/ml) treatment of Jurkat cells transfected with OIP‐1 gene (?1 to ?1,988 bp) promoter‐luciferase reporter plasmid demonstrated a 5‐fold and 2.7‐fold increase in OIP‐1 gene promoter activity in the presence and absence of antibody against IFN‐γ, respectively. We showed that STAT‐1,3 inhibitors treatment significantly decreased IL‐12 stimulated OIP‐1 promoter activity. Chromatin immunoprecipitation (ChIP) assay confirmed STAT‐3, but not STAT‐1 binding to the OIP‐1 gene promoter in response to IL‐12 stimulation. These results suggest that IL‐12 stimulates the OIP‐1 gene expression through STAT‐3 activation in CD4+ T cells. J. Cell. Biochem. 107: 104–111, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Park JW  Kim S  Bahk YY 《Proteomics》2006,6(8):2433-2443
To elucidate an understanding into H-Ras protein network, we have established various oncogene H-Ras-expressing NIH/3T3 mouse embryonic fibroblast cell clones, which are expressing G12V H-Ras, G12R H-Ras, and G12V/T35S H-Ras proteins under the tight control of expression by an antibiotic doxycycline. Here we provide a catalog of proteome profiles in total cell lysate derived from the oncogenic and partial loss of function H-Ras-expressing NIH/3T3 cells. In this biological context, we compared total proteome changes by the combined methods of 2-DE, quantitative image analysis and MALDI-TOF-MS analysis both commonly in oncogenic and partial loss of function H-Ras expression system. Thus, we tried to dissect H-Ras signaling pathway, especially a downstream effector molecule, Raf in NIH/3T3 cells using proteomics tools. In this study, we centralized upon the proteome profile changes as common targets for oncogenic H-Ras and a partial loss of function H-Ras in the H-Ras-expressing cells. Thirteen protein spots were selected as what the staining intensities on the gels for 2-DE images from both kinds of cells were consistently changed in their protein expression level. Differentially regulated expression was further confirmed for some subsets of candidates by semiquantitative RT-PCR and Western blot analysis using specific antibodies. Taken together, our results obtained and present here show that the comparative analysis of proteome from oncogenic and partial loss of function H-Ras-expressing cells has yielded interpretable data to elucidate the protein network directly and/or indirectly.  相似文献   

15.
The differentiation of murine mesenchymal stem cells occurs in nonterminal and terminal phases. In previous reports we established the characteristics of nonterminally differentiated cells and showed that transition from the nonterminal to the terminal state of differentiation can be induced by human plasma. We also showed that this transition is blocked by protein synthesis inhibitors and other pharmacological agents. In this paper, we have employed two-dimensional gel electrophoresis to evaluate changes in specific polypeptides that are induced when cells lose proliferative capacity associated with the terminal event in differentiation. Using silver staining procedures for analysis of electrophoretograms, we detected only seven major polypeptide differences between nonterminally differentiated and terminally differentiated cells. Six polypeptides were expressed only in preparations of terminally differentiated cells; these included two polypeptides identified in cytosolic fractions and four polypeptides identified in nuclear fractions. One polypeptide was also found to be selectively expressed only in nuclear fractions of nonterminally differentiated cells. Based on these observations we conclude that the loss of proliferative potential that occurs during the terminal event in mesenchymal stem cell differentiation is associated with changes in the composition of a limited number of specific polypeptides. We suggest that one or more of these polypeptides may be important in the regulation of cellular proliferation.  相似文献   

16.
This study used the mRNA differential display technique to identify differentially expressed genes during the process of adipogenesis in the preadipocyte cell line, 3T3‐L1. 3T3‐L1 cells were treated with dexamethasone, isobutyl‐1‐methylxanthine, and insulin to induce differentiation into mature adipocytes. Cells were collected at three time‐points during differentiation: Day 0 (d0), or nondifferentiated; Day 3 (d3), during differentiation; and Day 10 (d10), >90% of the cells had differentiated into mature adipocytes. Initial studies yielded 18 potentially differentially regulated cDNA candidates (8 down‐regulated and 10 up‐regulated). Reverse Northern and Northern blots confirmed differential expression of six of the candidates. Four of the candidates up‐regulated on d3 and d10 were identified by sequence analysis to be lipoprotein lipase, a well‐known marker of adipocyte differentiation. A fifth candidate that was expressed in d0, but not d3 or d10, was identified as DRM/gremlin, a bone morphogenetic protein antagonist. Finally, a sixth candidate that was increased at d3 and d10 was identified as the peripheral benzodiazepine receptor, which has been implicated in proliferation, differentiation, and cholesterol transport in cells. This study is the first to show that peripheral benzodiazepine receptor and DRM/gremlin are expressed in preadipocyte cell lines and that they are differentially regulated during adipogenesis.  相似文献   

17.
18.
Regulatory T cells (Tregs) are specialized CD4+ T lymphocytes helping defend against autoimmunity and inflammation. Although age is associated with increased inflammation and autoimmunity, few reports address age effects of immune regulation or auto‐aggressive T cells. We show here that young and aged naïve CD4+ T cells are equivalently auto‐aggressive in vivo in T cell‐driven autoimmune colitis. Young and aged CD4+ Tregs equally suppressed age‐matched T cell proliferation in vitro and controlled clinical and pathologic T cell‐driven autoimmune colitis, suggesting equivalent regulatory function. However, whereas young and aged CD4+ Tregs suppressed interferon (IFN)‐γ+ T cells equivalently in this model, aged CD4+ Tregs unexpectedly failed to restrain interleukin (IL)‐17+ T cells. Nonetheless, young and aged CD4+ Tregs equally restrained IL‐17+ T cells in vivo during acute inflammation, suggesting a chronic inflammation‐related defect in aged CD4+ Tregs. In support, aged Tregs expressed reduced STAT3 activation, a defect associated with poor IL‐17‐producing T cell restraint. Aged naïve mice had markedly increased programmed death (PD)‐1+ T cells, but these exhibited no significant auto‐aggressive or regulatory functions in T cell‐driven colitis. Young CD8+ CD122? T cells induce autoimmune bone marrow failure, but we show that aged CD8+ CD122? T cells do not. These data demonstrate no apparent age‐related increase in auto‐aggressive T cell behavior, but disclose previously unrecognized functional defects in aged CD4+ Tregs during chronic inflammation. IL‐17 can be inflammatory and contributes to certain autoimmune disorders. Reduced aged Treg function during chronic inflammation and reduced IL‐17 restraint could contribute to age‐related inflammation or autoimmunity.  相似文献   

19.
Obesity, a major health problem worldwide, is a complex multifactorial chronic disease that increases the risk for insulin resistance, type 2 diabetes, coronary heart disease, and hypertension. In this study, we assessed methods to isolate hypaphorine, a potent drug candidate for obesity and insulin resistance. Semi‐preparative reversed‐phase liquid chromatography (semi‐preparative RPLC) was established as a method to separate three compounds, adenosine, l ‐tryptophan, and hypaphorine, from the crude extracts of Caragana korshinskii Kom . Due to its specific chemical structure, the effect of hypaphorine on differentiation and dexamethasone (DXM) induced insulin resistance of 3T3‐L1 cells was investigated. The structures of the three compounds were confirmed by UV, 1H‐NMR, and 13C‐NMR analysis and compared with published data. The activity results indicated that hypaphorine prevented the differentiation of 3T3‐L1 preadipocytes into adipocytes by down‐regulating hormone‐stimulated protein expression of peroxisome proliferator activated receptor γ (PPARγ) and CCAAT/enhancer binding protein (C/EBPα), and their downstream targets, sterol regulatory element binding protein 1 c (SREBP1c) and fatty acid synthase (FAS). Hypaphorine also alleviated DXM‐induced insulin resistance in differentiated 3T3‐L1 adipocytes via increasing the phosphorylation level of Akt2, a key protein in the insulin signaling pathway. Taken together, we suggest that the method can be applied to large‐scale extraction and large‐quantity preparation of hypaphorine for treatment of obesity and insulin resistance.  相似文献   

20.
Mechanically induced biological responses in bone cells involve a complex biophysical process. Although various mechanosensors have been identified, the precise mechanotransduction pathway remains poorly understood. PIEZO1 is a newly discovered mechanically activated ion channel in bone cells. This study aimed to explore the involvement of PIEZO1 in mechanical loading (fluid shear stress)‐induced signaling cascades that control osteogenesis. The results showed that fluid shear stress increased PIEZO1 expression in MC3T3‐E1 cells. The fluid shear stress elicited the key osteoblastic gene Runx‐2 expression; however, PIEZO1 silencing using small interference RNA blocked these effects. The AKT/GSK‐3β/β‐catenin pathway was activated in this process. PIEZO1 silencing impaired mechanically induced activation of the AKT/GSK‐3β/β‐catenin pathway. Therefore, the results demonstrated that MC3T3‐E1 osteoblasts required PIEZO1 to adapt to the external mechanical fluid shear stress, thereby inducing osteoblastic Runx‐2 gene expression, partly through the AKT/GSK‐3β/β‐catenin pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号