首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Because cadmium might interact with proteins and, thus, exert toxicity in organisms, it is vital to understand the molecular mechanism of the interaction between cadmium and biologically relevant proteins as well as the structural and functional changes in these proteins. In this study, the interaction between α‐chymotrypsin (α‐ChT) and cadmium chloride (CdCl2) was investigated by performing enzyme activity determinations, multispectroscopic measurements, isothermal titration calorimetry, and molecular docking studies. It was demonstrated that CdCl 2 binds to α‐ChT mainly via electrostatic forces with (21.0 ± 0.982) binding sites, leading to the increase of α‐helix and the decrease of β‐sheet. The interaction between CdCl 2 and α‐ChT loosened the protein skeleton and increased the molecular volume of α‐ChT. CdCl 2 first binds to the interface of α‐ChT and then interacts with the key residues His 57 or Asp 102 or both in the active sites, leading to the activity inhibition of α‐ChT under the exposure of high CdCl 2 concentrations.  相似文献   

2.
α‐Crystallin is a member of small heat shock proteins and is believed to play an exceptional role in the stability of eye lens proteins. The disruption or denaturation of the protein arrangement or solubility of the crystallin proteins can lead to vision problems including cataract. In the present study, we have examined the effect of chemical denaturants urea and guanidine hydrochloride (GdnHCl) on α‐crystallin aggregation, with special emphasis on protein conformational changes, unfolding, and amyloid fibril formation. GdnHCl (4 M) induced a 16 nm red shift in the intrinsic fluorescence of α‐crystallin, compared with 4 nm shift by 8 M urea suggesting a major change in α‐crystallin structure. Circular dichroism analysis showed marked increase in the ellipticity of α‐crystallin at 216 nm, suggesting gain in β‐sheet structure in the presence of GdnHCl (0.5–1 M) followed by unfolding at higher concentration (2–6 M). However, only minor changes in the secondary structure of α‐crystallin were observed in the presence of urea. Moreover, 8‐anilinonaphthalene‐1‐sulfonic acid fluorescence measurement in the presence of GdnHCl and urea showed changes in the hydrophobicity of α‐crystallin. Amyloid studies using thioflavin T fluorescence and congo red absorbance showed that GdnHCl induced amyloid formation in α‐crystallin, whereas urea induced aggregation in this protein. Electron microscopy studies further confirmed amyloid formation of α‐crystallin in the presence of GdnHCl, whereas only aggregate‐like structures were observed in α‐crystallin treated with urea. Our results suggest that α‐crystallin is susceptible to unfolding in the presence of chaotropic agents like urea and GdnHCl. The destabilized protein has increased likelihood to fibrillate. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
α‐Chymotrypsin was immobilized in activated agarose support and the stability of the biocatalyst was assessed in three polar organic solvents, namely, ethanol, diglyme, and acetonitrile. Ethanol was the solvent in which the stability of the enzyme was higher and was then selected to perform the synthesis of the kyotorphin derivative benzoyl‐tyrosine argininamide, evaluating enzyme reactivation after synthesis. Substrates for reaction were benzoyl tyrosine ethyl ester and argininamide, the reaction being performed under kinetic control. High conversion yield (85%) was obtained and the immobilized enzyme was successfully used in sequential batch reactor operation with enzyme reactivation after three batches. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:54–59, 2016  相似文献   

4.
We investigated water/organic solvent sorption and residual enzyme activity to simultaneously monitor preferential solvation/hydration of protein macromolecules in the entire range of water content at 25°C. We applied this approach to estimate protein destabilization/stabilization due to the preferential interactions of bovine pancreatic α‐chymotrypsin with water‐acetone (moderate‐strength H‐bond acceptor) and water‐DMSO (strong H‐bond acceptor) mixtures. There are three concentration regimes for the dried α‐chymotrypsin. α‐Chymotrypsin is preferentially hydrated at high water content. The residual enzyme activity values are close to 100%. At intermediate water content, the dehydrated α‐chymotrypsin has a higher affinity for acetone/DMSO than for water. Residual enzyme activity is minimal in this concentration range. The acetone/DMSO molecules are preferentially excluded from the protein surface at the lowest water content, resulting in preferential hydration. The residual catalytic activity in the water‐poor acetone is ~80%, compared with that observed after incubation in pure water. This effect is very small for the water‐poor DMSO. Two different schemes are operative for the hydrated enzyme. At high and intermediate water content, α‐chymotrypsin exhibits preferential hydration. However, at intermediate water content, in contrast to the dried enzyme, the initially hydrated α‐chymotrypsin possesses increased preferential hydration parameters. At low water content, no residual enzyme activity was observed. Preferential binding of DMSO/acetone to α‐chymotrypsin was detected. Our data clearly demonstrate that the hydrogen bond accepting ability of organic solvents and the protein hydration level constitute key factors in determining the stability of protein–water–organic solvent systems.  相似文献   

5.
Inflammatory cytokines are closely related to pigmentary changes. In this study, the effects of IFN‐γ on melanogenesis were investigated. IFN‐γ inhibits basal and α‐MSH‐induced melanogenesis in B16 melanoma cells and normal human melanocytes. MITF mRNA and protein expressions were significantly inhibited in response to IFN‐γ. IFN‐γ inhibited CREB binding to the MITF promoter but did not affect CREB phosphorylation. Instead, IFN‐γ inhibited the association of CBP and CREB through the increased association between CREB binding protein (CBP) and STAT1. These findings suggest that IFN‐γ inhibits both basal and α‐MSH‐induced melanogenesis by inhibiting MITF expression. The inhibitory action of IFN‐γ in α‐MSH‐induced melanogenesis is likely to be associated with the sequestration of CBP via the association between CBP and STAT1. These data suggest that IFN‐γ plays a role in controlling inflammation‐ or UV‐induced pigmentary changes.  相似文献   

6.
7.
5α‐Androst‐16‐en‐3α‐ol (α‐androstenol) is an important contributor to human axilla sweat odor. It is assumed that α‐andostenol is excreted from the apocrine glands via a H2O‐soluble conjugate, and this precursor was formally characterized in this study for the first time in human sweat. The possible H2O‐soluble precursors, sulfate and glucuronide derivatives, were synthesized as analytical standards, i.e., α‐androstenol, β‐androstenol sulfates, 5α‐androsta‐5,16‐dien‐3β‐ol (β‐androstadienol) sulfate, α‐androstenol β‐glucuronide, α‐androstenol α‐glucuronide, β‐androstadienol β‐glucuronide, and α‐androstenol β‐glucuronide furanose. The occurrence of α‐androstenol β‐glucuronide was established by ultra performance liquid chromatography (UPLC)/MS (heated electrospray ionization (HESI)) in negative‐ion mode in pooled human sweat, containing eccrine and apocrine secretions and collected from 25 female and 24 male underarms. Its concentration was of 79 ng/ml in female secretions and 241 ng/ml in male secretions. The release of α‐androstenol was observed after incubation of the sterile human sweat or α‐androstenol β‐glucuronide with a commercial glucuronidase enzyme, the urine‐isolated bacteria Streptococcus agalactiae, and the skin bacteria Staphylococcus warneri DSM 20316, Staphylococcus haemolyticus DSM 20263, and Propionibacterium acnes ATCC 6919, reported to have β‐glucuronidase activities. We demonstrated that if α‐ and β‐androstenols and androstadienol sulfates were present in human sweat, their concentrations would be too low to be considered as potential precursors of malodors; therefore, the H2O‐soluble precursor of α‐androstenol in apocrine secretion should be a β‐glucuronide.  相似文献   

8.
A single chiral cyclic α,α‐disubstituted amino acid, (3S,4S)‐1‐amino‐(3,4‐dimethoxy)cyclopentanecarboxylic acid [(S,S)‐Ac5cdOM], was placed at the N‐terminal or C‐terminal positions of achiral α‐aminoisobutyric acid (Aib) peptide segments. The IR and 1H NMR spectra indicated that the dominant conformations of two peptides Cbz‐[(S,S)‐Ac5cdOM]‐(Aib)4‐OEt ( 1) and Cbz‐(Aib)4‐[(S,S)‐Ac5cdOM]‐OMe (2) in solution were helical structures. X‐ray crystallographic analysis of 1 and 2 revealed that a left‐handed (M) 310‐helical structure was present in 1 and that a right‐handed (P) 310‐helical structure was present in 2 in their crystalline states. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
10.
The adaptation of nine species of mites that infest stored products for starch utilization was tested by (1) enzymatic analysis using feces and whole mite extracts, (2) biotests, and (3) inhibition experiments. Acarus siro, Aleuroglyphus ovatus, and Tyroborus lini were associated with the starch‐type substrates and maltose, with higher enzymatic activities observed in whole mite extracts. Lepidoglyphus destructor was associated with the same substrates but had higher activities in feces. Dermatophagoides farinae, Chortoglyphus arcuatus, and Caloglyphus redickorzevi were associated with sucrose. Tyrophagus putrescentiae and Carpoglyphus lactis had low or intermediate enzymatic activity on the tested substrates. Biotests on starch additive diets showed accelerated growth of species associated with the starch‐type substrates. The inhibitor acarbose suppressed starch hydrolysis and growth of the mites. We suggest that the species with higher starch hydrolytic activity in feces were more tolerant to acarbose, and α‐amylase and α‐glucosidase of synanthropic mites are suitable targets for inhibitor‐based strategies of mite control. © 2009 Wiley Periodicals, Inc.  相似文献   

11.
Chiral sulfoxides/N‐oxides (R)‐ 1 and (R,R)‐ 2 are effective chiral promoters in the enantioselective allylation of α‐keto ester N‐benzoylhydrazone derivatives 3a , 3b , 3c , 3d , 3e , 3f , 3g to generate the corresponding N‐benzoylhydrazine derivatives 4a , 4b , 4c , 4d , 4e , 4f , 4g , with enantiomeric excesses as high as 98%. Representative hydrazine derivatives 4a , 4b were subsequently treated with SmI2, and the resulting amino esters 5a , 5b with LiOH to obtain quaternary α‐substituted α‐allyl α‐amino acids 6a , 6b , whose absolute configuration was assigned as (S), with fundament on chemical correlation and electronic circular dichroism (ECD) data. Chirality 25:529–540, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
α1‐Antitrypsin (α1‐AT) serves as an archetypal example for the serine proteinase inhibitor (serpin) protein family and has been used as a scaffold for protein engineering for >35 years. Techniques used to engineer α1‐AT include targeted mutagenesis, protein fusions, phage display, glycoengineering, and consensus protein design. The goals of engineering have also been diverse, ranging from understanding serpin structure–function relationships, to the design of more potent or more specific proteinase inhibitors with potential therapeutic relevance. Here we summarize the history of these protein engineering efforts, describing the techniques applied to engineer α1‐AT, specific mutants of interest, and providing an appended catalog of the >200 α1‐AT mutants published to date.  相似文献   

13.
The binding of the competitive inhibitor proflavin by bovine pancreatic α‐chymotrypsin in water‐tetrahydrofuran mixtures was studied in the entire range of thermodynamic water activities at 25°C. The data on the binding of proflavin were compared with the results on the storage stability of α‐chymotrypsin in water‐organic mixtures. An analysis of the concentration dependency of these characteristics demonstrated that, at low water activity values, the interprotein contacts in the enzyme formed during its drying largely govern its functional properties, while at high water activity, they are determined by the interaction of the enzyme with the organic solvent. The interplay of these two factors is responsible for the complex shape observed for the isotherm of binding of proflavin, with a maximum degree of binding being attained at medium water activity values.  相似文献   

14.
α‐Glycosidase is a catalytic enzyme and it destroys the complex carbohydrates into simple absorbable sugar units. The natural phenolic compounds were tested for their antidiabetic properties as α‐glycosidase and α‐amylase inhibitors. The phenolic compounds investigated in this study have been used as antidiabetic common medicines. This paper aimed to consider their capability to inhibit α‐amylase and α‐glycosidase, two significant enzymes defined in serum glucose adjustment. These examination recorded impressive inhibition profiles with IC50 values in the range of 137.36–737.23 nM against α‐amylase and 29.01–157.96 nM against α‐glycosidase.  相似文献   

15.
16.
β‐dystroglycan (β‐DG) is a widely expressed transmembrane protein that plays important roles in connecting the extracellular matrix to the cytoskeleton, and thereby contributing to plasma membrane integrity and signal transduction. We previously observed nuclear localization of β‐DG in cultured cell lines, implying the existence of a nuclear targeting mechanism that directs it to the nucleus instead of the plasma membrane. In this study, we delineate the nuclear import pathway of β‐DG, characterizing a functional nuclear localization signal (NLS) in the β‐DG cytoplasmic domain, within amino acids 776–782. The NLS either alone or in the context of the whole β‐DG protein was able to target the heterologous GFP protein to the nucleus, with site‐directed mutagenesis indicating that amino acids R779 and K780 are critical for NLS functionality. The nuclear transport molecules Importin (Imp)α and Impβ bound with high affinity to the NLS of β‐DG and were found to be essential for NLS‐dependent nuclear import in an in vitro reconstituted nuclear transport assay; cotransfection experiments confirmed the dependence on Ran for nuclear accumulation. Intriguingly, experiments suggested that tyrosine phosphorylation of β‐DG may result in cytoplasmic retention, with Y892 playing a key role. β‐DG thus follows a conventional Impα/β‐dependent nuclear import pathway, with important implications for its potential function in the nucleus. J. Cell. Biochem. 110: 706–717, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Cyclooxygenase‐2 (COX‐2) has been recently identified to be involved in the pathogenesis of Alzheimer's disease (AD). Yet, the role of an important COX‐2 metabolic product, prostaglandin (PG) I2, in the pathogenesis of AD remains unknown. Using human‐ and mouse‐derived neuronal cells as well as amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice as model systems, we elucidated the mechanism of anterior pharynx‐defective (APH)‐1α and pharynx‐defective‐1β induction. In particular, we found that PGI2 production increased during the course of AD development. Then, PGI2 accumulation in neuronal cells activates PKA/CREB and JNK/c‐Jun signaling pathways by phosphorylation, which results in APH‐1α/1β expression. As PGI2 is an important metabolic by‐product of COX‐2, its suppression by NS398 treatment decreases the expression of APH‐1α/1β in neuronal cells and APP/PS1 mice. More importantly, β‐amyloid protein (Aβ) oligomers in the cerebrospinal fluid (CSF) of APP/PS1 mice are critical for stimulating the expression of APH‐1α/1β, which was blocked by NS398 incubation. Finally, the induction of APH‐1α/1β was confirmed in the brains of patients with AD. Thus, these findings not only provide novel insights into the mechanism of PGI2‐induced AD progression but also are instrumental for improving clinical therapies to combat AD.  相似文献   

18.
Lewy bodies, mainly composed of α‐synuclein (αS), are pathological hallmarks of Parkinson's disease and dementia with Lewy bodies. Epidemiological studies showed that green tea consumption or habitual intake of phenolic compounds reduced Parkinson's disease risk. We previously reported that phenolic compounds inhibited αS fibrillation and destabilized preformed αS fibrils. Cumulative evidence suggests that low‐order αS oligomers are neurotoxic and critical species in the pathogenesis of α‐synucleinopathies. To develop disease modifying therapies for α‐synucleinopathies, we examined effects of phenolic compounds (myricetin (Myr), curcumin, rosmarinic acid (RA), nordihydroguaiaretic acid, and ferulic acid) on αS oligomerization. Using methods such as photo‐induced cross‐linking of unmodified proteins, circular dichroism spectroscopy, the electron microscope, and the atomic force microscope, we showed that Myr and RA inhibited αS oligomerization and secondary structure conversion. The nuclear magnetic resonance analysis revealed that Myr directly bound to the N‐terminal region of αS, whereas direct binding of RA to monomeric αS was not detected. Electrophysiological assays for long‐term potentiation in mouse hippocampal slices revealed that Myr and RA ameliorated αS synaptic toxicity by inhibition of αS oligomerization. These results suggest that Myr and RA prevent the αS aggregation process, reducing the neurotoxicity of αS oligomers.

  相似文献   


19.
The leaffooted bug, Leptoglossus zonatus (Hemiptera: Coreidae) is an emerging pest of several crops around the World and up to now very little is known of its digestive system. In this article, glycoside hydrolase (carbohydrase) activities in the adult midgut cells and in the luminal contents of L. zonatus adult females were studied. The results showed the distribution of digestive carbohydrases in adults of this heteropteran species in the different intestinal compartments. Determination of the spatial distribution of α‐glucosidase activity in L. zonatus midgut showed only one major molecular form, which was not equally distributed between soluble and membrane‐bound isoforms, being more abundant as a membrane‐bound enzyme. The majority of digestive carbohydrases were found in the soluble fractions. Activities against starch, maltose and the synthetic substrate NPαGlu were found to show the highest levels of activity, followed by enzymes active against galactosyl oligosaccharides. Based on ion‐exchange chromatography elution profiles and banding patterns in mildly denaturing electrophoresis, both midgut α‐amylases and α‐galactosidases showed at least two isoforms. The data suggested that the majority of carbohydrases involved in initial digestion were present in the midgut lumen, whereas final digestion of starch and of galactosyl oligosaccharides takes place partially within the lumen and partially at the cell surface. The complex of carbohydrases here described was qualitatively appropriate for the digestion of free oligosaccharides and oligomaltodextrins released by α‐amylases acting on maize seed starch granules.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号