首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unusually among the mammals, humans lack an outer layer of protective fur or hair. We propose the hypothesis that humans evolved hairlessness to reduce parasite loads, especially ectoparasites that may carry disease. We suggest that hairlessness is maintained by these naturally selected benefits and by sexual selection operating on both sexes. Hairlessness is made possible in humans owing to their unique abilities to regulate their environment via fire, shelter and clothing. Clothes and shelters allow a more flexible response to the external environment than a permanent layer of fur and can be changed or cleaned if infested with parasites. Naked molerats, another hairless and non-aquatic mammal species, also inhabit environments in which ectoparasite transmission is expected to be high, but in which temperatures are closely regulated. Our hypothesis explains features of human hairlessness-such as the marked sex difference in body hair, and its retention in the pubic regions-that are not explained by other theories.  相似文献   

2.
Life-history theory posits a fundamental trade-off between number and size of offspring that structures the variability in parental investment across and within species. We investigate this 'quantity-quality' trade-off across primates and present evidence that a similar trade-off is also found across natural-fertility human societies. Restating the classic Smith-Fretwell model in terms of allometric scaling of resource supply and offspring investment predicts an inverse scaling relation between birth rate and offspring size and a (-1/4) power scaling between birth rate and body size. We show that these theoretically predicted relationships, in particular the inverse scaling between number and size of offspring, tend to hold across increasingly finer scales of analyses (i.e. from mammals to primates to apes to humans). The advantage of this approach is that the quantity-quality trade-off in humans is placed into a general framework of parental investment that follows directly from first principles of energetic allocation.  相似文献   

3.
Researchers have described apparently self-medicative behaviors for a variety of nonhuman species including birds and primates. Wild chimpanzees, bonobos, and gorillas have been observed to swallow rough leaves without chewing, a behavior proposed to be self-medicative and to aid control of intestinal parasites. Researchers have hypothesized that the presence of hairs on the leaf surface elicits the behavior. We investigated the acquisition and the underlying mechanisms of leaf swallowing. We provided 42 captive great apes (24 chimpanzees, six bonobos, six gorillas, and six orangutans) with both rough-surfaced and hairless plants. None of the subjects had previously been observed to engage in leaf swallowing behavior and were therefore assumed naïve. Two chimpanzees and one bonobo swallowed rough-surfaced leaves spontaneously without chewing them. In a social setup six more chimpanzees acquired the behavior. None of the gorillas or orangutans showed leaf swallowing. Because this behavior occurred in naïve individuals, we conclude that it is part of the behavioral repertoire of chimpanzees and bonobos. Social learning is thus not strictly required for the acquisition of leaf swallowing, but it may still facilitate its expression. The fact that apes always chewed leaves of hairless control plants before swallowing, i.e., normal feeding behavior, indicates that the surface structure of leaves is indeed a determinant for initiating leaf swallowing in apes where it occurs.  相似文献   

4.
Allometric analyses of hair densities in 23 anthropoid primate taxa reveal that increasingly massive primates have systematically fewer hairs per equal unit of body surface. Considering the absence of effective sweating in monkeys and apes, the negative allometry of relative hair density may represent an architectural adaptation to thermal constraints imposed by the decreasing ratios of surface area to volume in progressively massive primates. Judging by estimates of body volume, denudation of the earliest hominids should have progressed to a considerable extent prior to their shift from a forest to a grassland habitat during the Pliocene. We propose that, lacking a reflective coat of hair, the exploitation of eccrine sweating emerged as the primary mechanism for adaptation to the increased heat loads of man's new environment and permitted further reduction of the remnant coat to its present vestigial condition.  相似文献   

5.
Ripe fruit eating shapes the behavior of most of the apes. Gorillas (Gorilla gorilla) and chimpanzees (Pan troglodytes) are very different sizes and, consequently, have been traditionally viewed as ecologically distinct, but few studies have explored the behavioral and physiological foundations of their diets. Debate continues on the extent that large-bodied gorillas may be less selective and more opportunistic fruit eaters than chimpanzees. Taste responses have been predicted to relate to body size and digestive strategies. This study employs laboratory research on taste perception and discrimination among captive zoo-housed chimpanzees and relates it to previous work on gorillas to better characterize diets and niche separation among these apes. During the captive trials, differences were recorded in consumption patterns of water and varying concentrations of dilute aqueous fructose (sweet) and tannic acid solutions (astringent), compounds commonly found in wild foods. The chimpanzees exhibited similar preference thresholds for fructose (50 mM) to other primates studied. They exhibited slightly lower inhibition thresholds for tannic acid solutions than gorillas, but higher than smaller primates studied to date. These preliminary findings suggest that tannin tolerance may well be mediated by body size, though possible species differences in salivary proteins or other sensory differences remain to be explored. This research furthers our efforts to understand the roles of body size and physiological adaptations in shaping diet and niche separation of chimpanzees and gorillas.  相似文献   

6.
SYNOPSIS What distinguishes man from all other primates is hisarchaic hair cover Nearly all the details that make his skinunique aie traceable to this single fact In vatious degrees,allnonhuman primates have a good pelage,which is characterizedby some morphological and physiological similarities but oftendiffers even between closely relatedspecies It can be thickor thin,short or long woolly or shaggy, dense oi sparse, andit assumes many varied colors All primates have dermitoglyphicson their faction surfaces they are also present on the volarsurface of the tail of some New World monkeys ind on the knucklepads of chimpanzees and gonllas The epidermis is uniformly thinand has little undersculpture Every species of primate has epideimaland dermal melinocytes which are often relatively distinct fromall otheis Eccrine sweat glmds are found on the fnction surfacesof all species, but onlv the tiue piehensile tailed New Worldmonkeys andOld World monkeys and apes have them also in thehairy skin Although chimpanzees and gorillas have more ercunethan apocrine glands in their bodies, in neither do the sweatglands respond to heat stimulation as they do in man All primateshavenumerous apocrine glands in the hany skin, but only man,the chimpanzee, and gorilla have an axillaiy organ The OideiPrimates is large and heteiogeneous most species have some commoncutaneous featuies but the details in each are so distinct asto preclude generalizations  相似文献   

7.
Whether or not nonhuman primates exhibit population-level handedness remains a topic of considerable scientific debate. Here, we examined handedness for coordinated bimanual actions in a sample of 777 great apes including chimpanzees, bonobos, gorillas, and orangutans. We found population-level right-handedness in chimpanzees, bonobos and gorillas, but left-handedness in orangutans. Directional biases in handedness were consistent across independent samples of apes within each genus. We suggest that, contrary to previous claims, population-level handedness is evident in great apes but differs among species as a result of ecological adaptations associated with posture and locomotion. We further suggest that historical views of nonhuman primate handedness have been too anthropocentric, and we advocate for a larger evolutionary framework for the consideration of handedness and other aspects of hemispheric specialization among primates.  相似文献   

8.
Spondyloarthropathy is a painful arthritic affliction of humans that also occurs in wild mammals. Important questions remain concerning the underlying causes of spondyloarthropathy in mammals, particularly regarding whether it is infectious in origin or driven by genetic predisposition and environmental stressors. Moreover, spondyloarthropathy has negative effects on host fitness, leading to potential conservation concerns if it impacts threatened species. Using a comparative data set on the prevalence of joint disease in 34 primate species and 100 carnivore species, we tested predictions involving the epidemiological correlates of spondyloarthropathy in wild mammals. Analyses revealed that 5.6% of primates and 3.6% of carnivores exhibited signs of spondyloarthropathy, with maximum incidence as high as 22% in great apes and 27% in bears. We tested whether prevalence of spondyloarthropathy increases with population density and group size, greater contact with soil, a slower host life history, increased ranging, dietary factors and body mass. We found general support for an effect of body mass, with larger bodied primates and carnivores exhibiting a higher prevalence of spondyloarthropathy. In addition, more threatened species experienced higher rates of spondyloarthropathy, with this association influenced by body mass and phylogeny. The effect of body mass could reflect that larger animals are exposed to more pathogens through greater consumption of resources, or that joints of larger bodied mammals experience greater biomechanical stresses, resulting in inflammation and activation of local joint infections.  相似文献   

9.
Understanding how individual identity is processed from faces remains a complex problem. Contrast reversal, showing faces in photographic negative, impairs face recognition in humans and demonstrates the importance of surface-based information (shading and pigmentation) in face recognition. We tested the importance of contrast information for face encoding in chimpanzees and rhesus monkeys using a computerized face-matching task. Results showed that contrast reversal (positive to negative) selectively impaired face processing in these two species, although the impairment was greater for chimpanzees. Unlike chimpanzees, however, monkeys performed just as well matching negative to positive faces, suggesting that they retained some ability to extract identity information from negative faces. A control task showed that chimpanzees, but not rhesus monkeys, performed significantly better matching face parts compared with whole faces after a contrast reversal, suggesting that contrast reversal acts selectively on face processing, rather than general visual-processing mechanisms. These results confirm the importance of surface-based cues for face processing in chimpanzees and humans, while the results were less salient for rhesus monkeys. These findings make a significant contribution to understanding the evolution of cognitive specializations for face processing among primates, and suggest potential differences between monkeys and apes.  相似文献   

10.
Estimates of body mass often represent the founding assumption on which biomechanical and macroevolutionary hypotheses are based. Recently, a scaling equation was applied to a newly discovered titanosaurian sauropod dinosaur (Dreadnoughtus), yielding a 59 300 kg body mass estimate for this animal. Herein, we use a modelling approach to examine the plausibility of this mass estimate for Dreadnoughtus. We find that 59 300 kg for Dreadnoughtus is highly implausible and demonstrate that masses above 40 000 kg require high body densities and expansions of soft tissue volume outside the skeleton several times greater than found in living quadrupedal mammals. Similar results from a small sample of other archosaurs suggests that lower-end mass estimates derived from scaling equations are most plausible for Dreadnoughtus, based on existing volumetric and density data from extant animals. Although volumetric models appear to more tightly constrain dinosaur body mass, there remains a clear need to further support these models with more exhaustive data from living animals. The relative and absolute discrepancies in mass predictions between volumetric models and scaling equations also indicate a need to systematically compare predictions across a wide size and taxonomic range to better inform studies of dinosaur body size.  相似文献   

11.
The study of comparative energetics offers a valuable way to identify broad ecological principles and assess the functional significance of energetic adaptations during the course of evolution. Yet, the quantification of energetic status for nonhuman primates under natural conditions remains one of the most challenging aspects of comparative energetics research. Here, we report on the development of a noninvasive field method for measuring energetic status in great apes, humans, and possibly other nonhuman primates. Specifically, we have explored measurement of a urinary metabolite of insulin (C-peptide) as a physiological marker of energetic condition in chimpanzees and orangutans. We performed three validation studies and successfully measured C-peptide in urine samples from captive chimpanzees, wild chimpanzees, and wild orangutans. Urinary C-peptide measures gave indications of being a reliable signal of energetic status in both species. For chimpanzees and orangutans in the wild, baseline urinary C-peptide levels were higher during periods of fruit abundance than periods of low fruit availability. Urinary C-peptide levels were also higher for well-fed captive chimpanzees compared with wild chimpanzees. Although sample size was small, top-ranking male chimpanzees showed higher C-peptide levels in the wild than low-ranking males only during the period of fruit abundance. These preliminary results indicate that further development of the urinary C-peptide method could expand opportunities to quantify energetic condition for great apes in the wild and generate new data for comparative research. We highlight specific applications for studying great ape reproduction as well as the nutritional ecology of human foragers.  相似文献   

12.
An elongated clavicle is one of the distinct features of apes and humans. It plays an important role in providing mobility as well as stability for the shoulder joints. The relative length of the clavicle is an especially important factor in limiting the range of shoulder joint excursion. It is said that among primates, Asian apes, i.e., gibbons and orang-utans, have very long clavicles. At the same time, they also have a wide upper thoracic cage, which may diminish the effective length of the clavicle. To clarify the length of the clavicle in apes, from the standpoint of the functional anatomy of the shoulder girdle, we examined clavicular length in 15 anthropoid species exhibiting various positional behaviors. The results confirm that clavicle length in Asian apes is long, and chimpanzees have a short clavicle like that of Old and New World monkeys, when scaled to body mass. The clavicular length of chimpanzees, however, is intermediate between Old World monkeys and Asian apes when scaled against thoracic width. Therefore, living apes can be grouped together, albeit just barely, by possession of a relatively long clavicle for their thoracic cage size. Interestingly, New World monkeys tend to exhibit a longer clavicle than Old World monkeys of equivalent body mass or thoracic cage width. Although it is unclear whether the ancestral condition of clavicular length in anthropoids was similar to that of living Old or New World monkeys, an elongation of clavicle was an important step toward evolution of the modern body plan of hominoids.  相似文献   

13.
Current models of social organization assume that predation is one of the major forces that promotes group living in diurnal primates. As large body size renders some protection against predators, gregariousness of great apes and other large primate species is usually related to other parameters. The low frequency of observed cases of nonhuman predation on great apes seems to support this assumption. However, recent efforts to study potential predator species have increasingly accumulated direct and indirect evidence of predation by leopards (Panthera pardus) on chimpanzees and gorillas. The following report provides the first evidence of predation by a leopard on bonobos (Pan paniscus).  相似文献   

14.
The scaling of sixteen articular dimensions in the locomotor skeleton of hominoid primates is examined with special reference to a recently proposed model of geometric similarity. Seven species are included in the analysis (gorillas, common chimpanzees, bonobos, orang-utans, siamang, lar gibbons, and modern humans of European descent); all specimens are adult individuals of known body mass (N=87). No significant sexual dimorphism in the scaling of joint size was observed. Overal results are compatible with the biomechanical model predictions of isometry, and lend additional support to the suggestion that joint stresses are of the same order of magnitude in animals differing vastly in body size and locomotor adaptations. The hindlimb and lumbosacral joints of humans, however, are consistently much larger than expected for their body mass. Full-time bipedality obviously precludes the sharing of weight support and propulsion with the forelimbs, and this fundamental difference is accurately reflected in the relative joint size of humans.  相似文献   

15.
The different approaches to the definition of "tool-using" and "tool" are discussed. The definitions of tool-using are given, the hypotheses of the tool-using origin in phylogenesis of primates: emotional, social tradition, playing, accumulations' objects are adduced. The modern data on tool-using for catching ants and termites, for cracking palm-nuts by wild chimpanzees under natural inhabitation, population and sex differences in tool-using are given. A conclusion has been made that tool-using in apes is qualitatively new form of behaviour arising in phylogenesis of primates and demonstrating us prerequisity of tool-using of early hominids.  相似文献   

16.
Cytochrome c oxidase subunit II (COII), encoded by the mitochondrial genome, exhibits one of the most heterogeneous rates of amino acid replacement among placental mammals. Moreover, it has been demonstrated that cytochrome c oxidase has undergone a structural change in higher primates which has altered its physical interaction with cytochrome c. We collected a large data set of COII sequences from several orders of mammals with emphasis on primates, rodents, and artiodactyls. Using phylogenetic hypotheses based on data independent of the COII gene, we demonstrated that an increased number of amino acid replacements are concentrated among higher primates. Incorporating approximate divergence dates derived from the fossil record, we find that most of the change occurred independently along the New World monkey lineage and in a rapid burst before apes and Old World monkeys diverged. There is some evidence that Old World monkeys have undergone a faster rate of nonsynonymous substitution than have apes. Rates of substitution at four-fold degenerate sites in primates are relatively homogeneous, indicating that the rate heterogeneity is restricted to nondegenerate sites. Excluding the rate acceleration mentioned above, primates, rodents, and artiodactyls have remarkably similar nonsynonymous replacement rates. A different pattern is observed for transversions at four-fold degenerate sites, for which rodents exhibit a higher rate of replacement than do primates and artiodactyls. Finally, we hypothesize specific amino acid replacements which may account for much of the structural difference in cytochrome c oxidase between higher primates and other mammals.   相似文献   

17.
Skin from 36 hairless deer mice (Peromyscus maniculatus) homozygous for the recessive hr-2 mutation were analyzed for structural defects in hair and hair loss. Comparison of mutant to wild-type hairs demonstrated characteristic abnormalities in cellular organization, hair shape, length, and fragility. Matings between mutants homozygous for the hr-2 gene and for a second mutation producing hairlessness in deer mice, hr-1, showed that these two genes were nonallelic. Structural abnormalities in hairs associated with the expression of this gene suggest that its primary effect may be on the epidermis.  相似文献   

18.
Accelerated rate of gene gain and loss in primates   总被引:3,自引:0,他引:3       下载免费PDF全文
Hahn MW  Demuth JP  Han SG 《Genetics》2007,177(3):1941-1949
The molecular changes responsible for the evolution of modern humans have primarily been discussed in terms of individual nucleotide substitutions in regulatory or protein coding sequences. However, rates of nucleotide substitution are slowed in primates, and thus humans and chimpanzees are highly similar at the nucleotide level. We find that a third source of molecular evolution, gene gain and loss, is accelerated in primates relative to other mammals. Using a novel method that allows estimation of rate heterogeneity among lineages, we find that the rate of gene turnover in humans is more than 2.5 times faster than in other mammals and may be due to both mutational and selective forces. By reconciling the gene trees for all of the gene families included in the analysis, we are able to independently verify the numbers of inferred duplications. We also use two methods based on the genome assembly of rhesus macaque to further verify our results. Our analyses identify several gene families that have expanded or contracted more rapidly than is expected even after accounting for an overall rate acceleration in primates, including brain-related families that have more than doubled in size in humans. Many of the families showing large expansions also show evidence for positive selection on their nucleotide sequences, suggesting that selection has been important in shaping copy-number differences among mammals. These findings may help explain why humans and chimpanzees show high similarity between orthologous nucleotides yet great morphological and behavioral differences.  相似文献   

19.
Body composition is known to vary dramatically among mammals, even in closely related species, yet this issue has never been systematically investigated. Here, we examine differences in muscle mass scaling among mammals, and explore how primate body composition compares to that of nonprimate mammals. We use a literature-based sample of eutherian and metatherian mammals, and combine this with new dissection-based data on muscularity in a variety of strepsirrhine primates and the haplorhine, Tarsius syrichta. Our results indicate an isometric scaling relationship between total muscle mass and total body mass across mammals. However, we documented substantial variation in muscularity in mammals (21-61% of total body mass), which can be seen both within and between taxonomic groups. We also found that primates are under-muscled when compared to other mammals. This difference in body composition may in part reflect the functional consequences of arboreality, as arboreal species have significantly lower levels of muscularity than terrestrial species.  相似文献   

20.
Finding food resources and maintaining a balanced diet are major concerns for all animals. A compromise between neophobia and neophilia is hypothesised to enable animals to enlarge their diet while limiting the risk of poisoning. However, little is known about how primates respond to novel food items and whether their use is socially transmitted. By comparing how four different species of great apes respond to novel food items, we investigated how differences in physiology (digestive tract size and microbial content), habitats (predictability of food availability), and social systems (group size and composition) affect their response toward novelty. We presented two familiar foods, one novel fruit, four novel aromatic plants from herbal medicine, and kaolin to captive chimpanzees (Pan troglodytes), western gorillas (Gorilla gorilla), Bornean orangutans (Pongo pygmaeus) and Sumatran orangutans (Pongo abelii). We recorded smelling, approach-taste delays, ingestion, interindividual observations, and food transfers with continuous sampling. We found that behaviors differed between the apes: chimpanzees were the most cautious species and observed their conspecifics handling the items more frequently than the other apes. Close observations and food transfers were extremely rare in gorillas in comparison to orangutans and chimpanzees. We suggest that a low neophobia level reflects an adaptive response to digestive physiological features in gorillas and to unpredictable food availability in orangutans. Social interactions appeared to be predominant in chimpanzees and in both orangutan species to overcome food neophobia. They reflect higher social tolerance and more opportunities for social learning and cultural transmission in a feeding context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号