首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epoxide hydrolases (EHs) are α/β-hydrolase fold superfamily enzymes that convert epoxides to 1,2-trans diols. In insects EHs play critical roles in the metabolism of toxic compounds and allelochemicals found in the diet and for the regulation of endogenous juvenile hormones (JHs). In this study we obtained a full-length cDNA, hvmeh1, from the generalist feeder Heliothis virescens that encoded a highly active EH, Hv-mEH1. Of the 10 different EH substrates that were tested, Hv-mEH1 showed the highest specific activity (1180 nmol min?1 mg?1) for a 1,2-disubstituted epoxide-containing fluorescent substrate. This specific activity was more than 25- and 3900-fold higher than that for the general EH substrates cis-stilbene oxide and trans-stilbene oxide, respectively. Although phylogenetic analysis placed Hv-mEH1 in a clade with some lepidopteran JH metabolizing EHs (JHEHs), JH III was a relatively poor substrate for Hv-mEH1. Hv-mEH1 showed a unique substrate selectivity profile for the substrates tested in comparison to those of MsJHEH, a well-characterized JHEH from Manduca sexta, and hmEH, a human microsomal EH. Hv-mEH1 also showed unique enzyme inhibition profiles to JH-like urea, JH-like secondary amide, JH-like primary amide, and non-JH-like primary amide compounds in comparison to MsJHEH and hmEH. Although Hv-mEH1 is capable of metabolizing JH III, our findings suggest that this enzymatic activity does not play a significant role in the metabolism of JH in the caterpillar. The ability of Hv-mEH1 to rapidly hydrolyze 1,2-disubstituted epoxides suggests that it may play roles in the metabolism of fatty acid epoxides such as those that are commonly found in the diet of Heliothis.  相似文献   

2.
A number of epoxides, including cis- and trans-stilbene oxides, were assayed as substrates for epoxide hydrolases (EHs) by gas-liquid chromatography. Radiolabeled stilbene oxides were prepared by sodium borotritide reduction of desyl chloride followed by ring closure with base treatment. Rapid radiometric assays for EHs were performed by differential partitioning of the epoxide into dodecane, while the product diol remained in the aqueous phase. Glutathione (GSH) transferase was similarly assayed by partitioning the epoxide and diol, if formed metabolically, into 1-hexanol, while the GSH conjugate was retained in the aqueous phase. The cytosolic EH rapidly hydrates the trans isomer while the cis is very poorly hydrated. In contrast, the cis is a better substrate for the microsomal EH than the trans. GSH transferase utilized both epoxides as substrates, but conjugation is faster with the cis isomer. Cytosolic EH activity is high in mouse but very low in rat and guinea pig. Microsomal EH activity, in contrast, is highest in guinea pig, intermediate in rat, and the lowest in mouse. GSH transferase activity, which is high in all three species, can be inhibited by chalcone, with an I50 of 3.1 × 10?5m. These assays facilitate the rapid evaluation and direct comparison of epoxide-metabolizing systems in cell homogenates used in short-term mutagenicity assays, cell or organ culture, and possibly in vivo.  相似文献   

3.
Inulin is a linear carbohydrate polymer of fructose subunits (2‐60) with terminal glucose units, produced as carbon storage in selected plants. It cannot directly be taken up by most microorganisms due to its large size, unless prior hydrolysis through inulinase enzymes occurs. The hydrolyzed inulin can be taken up by microbes and/or recovered and used industrially for the production of high fructose syrup, inulo‐oligosaccharides, biofuel, and nutraceuticals. Cell‐free enzymatic hydrolysis would be desirable for industrial applications, hence the recombinant expression, purification and characterization of an Aspergillus niger derived exo‐inulinase was investigated in this study. The eukaroyototic exo‐inulinase of Aspergillus niger 12 has been expressed, for the first time, in an E. coli strain [Rosetta‐gami B (DE3)]. The molecular weight of recombinant exo‐inulinase was estimated to be ~81 kDa. The values of Km and Vmax of the recombinant exo‐inulinase toward inulin were 5.3 ± 1.1 mM and 402.1 ± 53.1 µmol min?1 mg?1 protein, respectively. Towards sucrose the corresponding values were 12.20 ± 1.6 mM and 902.8 ± 40.2 µmol min?1 mg?1 protein towards sucrose. The S/I ratio was 2.24 ± 0.7, which is in the range of native inulinase. The optimum temperature and pH of the recombinant exo‐inulinase towards inulin was 55°C and 5.0, while they were 50°C and 5.5 towards sucrose. The recombinant exo‐inulinase activity towards inulin was enhanced by Cu2+ and reduced by Fe2+, while its activity towards sucrose was enhanced by Co2+ and reduced by Zn2+. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:629–637, 2016  相似文献   

4.

Objectives

To enhance activity of cis-epoxysuccinate hydrolase from Klebsiella sp. BK-58 for converting cis-epoxysuccinate to tartrate.

Results

By semi-saturation mutagenesis, all the mutants of the six important conserved residues almost completely lost activity. Then random mutation by error-prone PCR and high throughput screening were further performed to screen higher activity enzyme. We obtained a positive mutant F10D after screening 6000 mutations. Saturation mutagenesis on residues Phe10 showed that most of mutants exhibited higher activity than the wild-type, and the highest mutant was F10Q with activity of 812 U mg?1 (k cat /K m , 9.8 ± 0.1 mM?1 s?1), which was 230 % higher than that of wild-type enzyme 355 U mg?1 (k cat /K m , 5.3 ± 0.1 mM?1 s?1). However, the thermostability of the mutant F10Q slightly decreased.

Conclusions

The catalytic activity of a cis-epoxysuccinate hydrolase was efficient improved by a single mutation F10Q and Phe10 might play an important role in the catalysis.
  相似文献   

5.
Aims: To characterize of a thermostable recombinant α‐l ‐arabinofuranosidase from Caldicellulosiruptor saccharolyticus for the hydrolysis of arabino‐oligosaccharides to l ‐arabinose. Methods and Results: A recombinant α‐l ‐arabinofuranosidase from C. saccharolyticus was purified by heat treatment and Hi‐Trap anion exchange chromatography with a specific activity of 28·2 U mg?1. The native enzyme was a 58‐kDa octamer with a molecular mass of 460 kDa, as measured by gel filtration. The catalytic residues and consensus sequences of the glycoside hydrolase 51 family of α‐l ‐arabinofuranosidases were completely conserved in α‐l ‐arabinofuranosidase from C. saccharolyticus. The maximum enzyme activity was observed at pH 5·5 and 80°C with a half‐life of 49 h at 75°C. Among aryl‐glycoside substrates, the enzyme displayed activity only for p‐nitrophenyl‐α‐l ‐arabinofuranoside [maximum kcat/Km of 220 m(mol l?1)?1 s?1] and p‐nitrophenyl‐α‐l ‐arabinopyranoside. This substrate specificity differs from those of other α‐l ‐arabinofuranosidases. In a 1 mmol l?1 solution of each sugar, arabino‐oligosaccharides with 2–5 monomer units were completely hydrolysed to l ‐arabinose within 13 h in the presence of 30 U ml?1 of enzyme at 75°C. Conclusions: The novel substrate specificity and hydrolytic properties for arabino‐oligosaccharides of α‐l ‐arabinofuranosidase from C. saccharolyticus demonstrate the potential in the commercial production of l ‐arabinose in concert with endoarabinanase and/or xylanase. Significance and Impact of the Study: The findings of this work contribute to the knowledge of hydrolytic properties for arabino‐oligosaccharides performed by thermostable α‐l ‐arabinofuranosidase.  相似文献   

6.
Adult zebrafish Danio rerio were exposed to an electric shock of 3 V and 1A for 5 s delivered by field backpack electrofishing gear, to induce a taxis followed by a narcosis. The effect of such electric shock was investigated on both the individual performances (swimming capacities and costs of transport) and at cellular and mitochondrial levels (oxygen consumption and oxidative balance). The observed survival rate was very high (96·8%) independent of swimming speed (up to 10 body length s?1). The results showed no effect of the treatment on the metabolism and cost of transport of the fish. Nor did the electroshock trigger any changes on muscular oxidative balance and bioenergetics even if red muscle fibres were more oxidative than white muscle. Phosphorylating respiration rates rose between (mean 1 s.e. ) 11·16 ± 1·36 pmol O2 s?1 mg?1 and 15·63 ± 1·60 pmol O2 s?1 mg?1 for red muscle fibres whereas phosphorylating respiration rates only reached 8·73 ± 1·27 pmol O2 s?1 mg?1 in white muscle. Such an absence of detectable physiological consequences after electro‐induced narcosis both at organismal and cellular scales indicate that this capture method has no apparent negative post‐shock performance under the conditions of this study.  相似文献   

7.
The Caulobacter crescentus (NA1000) xynB5 gene (CCNA_03149) encodes a predicted β-glucosidase-β-xylosidase enzyme that was amplified by polymerase chain reaction; the product was cloned into the blunt ends of the pJet1.2 plasmid. Analysis of the protein sequence indicated the presence of conserved glycosyl hydrolase 3 (GH3), β-glucosidase-related glycosidase (BglX) and fibronectin type III-like domains. After verifying its identity by DNA sequencing, the xynB5 gene was linked to an amino-terminal His-tag using the pTrcHisA vector. A recombinant protein (95 kDa) was successfully overexpressed from the xynB5 gene in E. coli Top 10 and purified using pre-packed nickel-Sepharose columns. The purified protein (BglX-V-Ara) demonstrated multifunctional activities in the presence of different substrates for β-glucosidase (pNPG: p-nitrophenyl-β-D-glucoside) β-xylosidase (pNPX: p-nitrophenyl-β-D-xyloside) and α-arabinosidase (pNPA: p-nitrophenyl-α-L-arabinosidase). BglX-V-Ara presented an optimal pH of 6 for all substrates and optimal temperature of 50 °C for β-glucosidase and α-l-arabinosidase and 60 °C for β-xylosidase. BglX-V-Ara predominantly presented β-glucosidase activity, with the highest affinity for its substrate and catalytic efficiency (Km 0.24 ± 0.0005 mM, Vmax 0.041 ± 0.002 µmol min?1 mg?1 and Kcat/Km 0.27 mM?1 s?1), followed by β-xylosidase (Km 0.64 ± 0.032 mM, Vmax 0.055 ± 0.002 µmol min?1 mg?1 and Kcat/Km 0.14 mM?1s?1) and finally α-l-arabinosidase (Km 1.45 ± 0.05 mM, Vmax 0.091 ± 0.0004 µmol min?1 mg?1 and Kcat/Km 0.1 mM?1 s?1). To date, this is the first report to demonstrate the characterization of a GH3-BglX family member in C. crescentus that may have applications in biotechnological processes (i.e., the simultaneous saccharification process) because the multifunctional enzyme could play an important role in bacterial hemicellulose degradation.  相似文献   

8.
A series of aryl- and alkyl-substituted cyclopropyl oxiranes were synthesized as potential suicide inhibitors of mouse liver epoxide hydrolase (EH). The inhibitory potency of each compound and its corresponding alkene precursor was determined with mouse liver EHs using [3H]-cis-stilbene oxide as substrate for microsomal EH (mEH) and for glutathione-S-transferase, and using [3H]-trans-stilbene oxide for cytosolic EH (cEH). The cyclopropyl oxiranes all showed low (26-60% at 5 X 10(-4) M) inhibition of glutathione transferase and moderate inhibition (I50 = 5 X 10(-4) to 6 X 10(-6) M) for cEH and mEH. cis-Phenylcyclopropyl oxirane had an I50 for mEH near that for a commonly used inhibitor, 1,1,1-trichloropropene oxide. Inhibition appeared competitive and reversible, and the cyclopropyl oxiranes appeared to function as alternate substrates. Absence of irreversible inhibition is evidence against a strongly electrophilic epoxide-opening mechanism involving a cyclopropyl carbinyl-homoallyl cation rearrangement. Instead, a concerted mechanism is favored, in which electrophilic opening and hydroxide attack occur in a concerted fashion.  相似文献   

9.
保幼激素的代谢   总被引:4,自引:0,他引:4  
李胜  蒋容静  曹梅讯 《昆虫学报》2004,47(3):389-393
保幼激素的代谢由保幼激素酯酶、保幼激素环氧水解酶和保幼激素二醇激酶等共同催化完成。在这些代谢酶的作用下,保幼激素代谢成保幼激素酸、保幼激素二醇、保幼激素酸二醇和保幼激素二醇磷酸。作者总结了保幼激素代谢的研究方法;按实验室和昆虫种类为线索,归纳和概括了每一种保幼激素代谢酶的研究进程;对保幼激素酯酶和保幼激素环氧水解酶作了序列分析;最后对保幼激素的代谢研究进行了展望。  相似文献   

10.
A triple-point mutated fish microsomal epoxide hydrolase (mEH) gene from Mugil cephalus was expressed in Escherichia coli in the presence of various chaperones to prevent protein aggregations. The enantioselective hydrolytic activity was more than doubled by co-expressing the EH mutant gene with pGro7 plasmid. The highly active EH mutant with a his-tag was immobilized onto magnetic silica assembled with NiO nanoparticles. The immobilized mEH mutant was re-used more than 10 times with less than 10% activity loss. (S)-Styrene oxide with 98% enantiopurity was repeatedly obtained with over 50% of the theoretical yield by the magnetically separable high-performance mEH mutant.  相似文献   

11.
A microorganism with the ability to catalyze the resolution of racemic phenyloxirane was isolated and identified as Aspergillus niger SQ-6. Chiral capillary electrophoresis was successfully applied to separate both phenyloxirane and phenylethanediol. The epoxide hydrolase (EH) involved in this resolution process was (R)-stereospecific and constitutively expressed. When whole cells were used during the biotransformation process, the optimum temperature and pH for stereospecific vicinal diol production were 35°C and 7.0, respectively. After a 24-h conversion, the enantiomer excess of (R)-phenylethanediol produced was found to be >99%, with a conversion rate of 56%. In fed-batch fermentations at 30°C for 44 h, glycerol (20 g L−1) and corn steep liquor (CSL) (30 g L−1) were chosen as the best initial carbon and nitrogen sources, and EH production was markedly improved by pulsed feeding of sucrose (2 g L−1 h−1) and continuous feeding of CSL (1 g L−1 h−1) at a fermentation time of 28 h. After optimization, the maximum dry cell weight achieved was 24.5±0.8 g L−1; maximum EH production was 351.2±13.1 U L−1 with a specific activity of 14.3±0.5 U g−1. Partially purified EH exhibited a temperature optimum at 37°C and pH optimum at 7.5 in 0.1 M phosphate buffer. This study presents the first evidence for the existence of a predicted epoxide racemase, which might be important in the synthesis of epoxide intermediates.  相似文献   

12.
It is demonstrated that cyanobacteria (both azotrophic and non‐azotrophic) contain heme b oxidoreductases that can convert chlorite to chloride and molecular oxygen (incorrectly denominated chlorite ‘dismutase’, Cld). Beside the water‐splitting manganese complex of photosystem II, this metalloenzyme is the second known enzyme that catalyses the formation of a covalent oxygen–oxygen bond. All cyanobacterial Clds have a truncated N‐terminus and are dimeric (i.e. clade 2) proteins. As model protein, Cld from Cyanothece sp. PCC7425 (CCld) was recombinantly produced in Escherichia coli and shown to efficiently degrade chlorite with an activity optimum at pH 5.0 [kcat 1144 ± 23.8 s?1, KM 162 ± 10.0 μM, catalytic efficiency (7.1 ± 0.6) × 106 M?1 s?1]. The resting ferric high‐spin axially symmetric heme enzyme has a standard reduction potential of the Fe(III)/Fe(II) couple of ?126 ± 1.9 mV at pH 7.0. Cyanide mediates the formation of a low‐spin complex with kon = (1.6 ± 0.1) × 105 M?1 s?1 and koff = 1.4 ± 2.9 s?1 (KD ~ 8.6 μM). Both, thermal and chemical unfolding follows a non‐two‐state unfolding pathway with the first transition being related to the release of the prosthetic group. The obtained data are discussed with respect to known structure–function relationships of Clds. We ask for the physiological substrate and putative function of these O2‐producing proteins in (nitrogen‐fixing) cyanobacteria.  相似文献   

13.
The light and heavy mitochondrial fractions of mouse liver have relatively high levels of epoxide hydrolase (EH) activity when monitored with trans-stilbene oxide as substrate. Using double diffusion analysis and immunoprecipitation experiments it was shown that EH activity in the mitochondrial fractions is immunologically similar to cytosolic EH, but immunologically dissimilar from microsomal EH. The EHs in the mitochondrial and cytosolic fractions also have a similar pI.  相似文献   

14.
Safety and regulatory issues favor increasing use of enantiopure compounds in pharmaceuticals. Enantiopure epoxides and diols are valuable intermediates in organic synthesis for the production of optically active pharmaceuticals. Enantiopure epoxide can be prepared using epoxide hydrolase (EH)-catalyzed asymmetric hydrolysis of its racemate. Enantioconvergent hydrolysis of racemic epoxides by EHs possessing complementary enantioselectivity and regioselectivity can lead to the formation of enantiopure vicinal diols with high yield. EHs are cofactor-independent and easy-to-use catalysts. EHs will attract much attention as commercial biocatalysts for the preparation of enantiopure epoxides and diols. In this paper, recent progress in molecular engineering of EHs is reviewed. Some examples and prospects of asymmetric and enantioconvergent hydrolysis reactions are discussed as supplements to molecular engineering to improve EH performance.  相似文献   

15.
Leukotriene A4 hydrolase (LTA4H––EC 3.3.2.6) is a bifunctional zinc metalloenzyme, which processes LTA4 through an epoxide hydrolase activity and is also able to trim one amino acid at a time from N-terminal peptidic substrates via its aminopeptidase activity. In this report, we have utilized a library of 130 individual proteinogenic and unnatural amino acid fluorogenic substrates to determine the aminopeptidase specificity of this enzyme. We have found that the best proteinogenic amino acid recognized by LTA4H is arginine. However, we have also observed several unnatural amino acids, which were significantly better in terms of cleavage rate (k cat/K m values). Among them, the benzyl ester of aspartic acid exhibited a k cat/K m value that was more than two orders of magnitude higher (1.75 × 105 M?1 s?1) as compared to l-Arg (1.5 × 103 M?1 s?1). This information can be used for design of potent inhibitors of this enzyme, but may also suggest yet undiscovered functions or specificities of LTA4H.  相似文献   

16.
Two native epoxide hydrolases (EHs) were previously discovered from mung bean powder (Vigna radiata), both of which can catalyze the enantioconvergent hydrolysis of p-nitrostyrene oxide (pNSO). In this study, the encoding gene of VrEH1 was successfully cloned from the cDNA of V. radiata by RT-PCR and rapid amplification of cDNA ends (RACE) technologies. High homologies were found to two putative EHs originated from Glycine max (80 %) and Medicago truncatula (79 %). The vreh1 gene constructed in pET28a(+) vector was then heterologously overexpressed in Escherichia coli BL21(DE3), and the encoded protein was purified to homogeneity by nickel affinity chromatography. It was shown that VrEH1 has an optimum activity at 45 °C and is very thermostable with an inactivation energy of 468 kJ mol-1. The enzyme has no apparent requirement of metal ions for activity, and its activity was strongly inhibited by 1 mM of Ni2+, Cu2+, Fe2+, or Co2+. By adding 0.1 % Triton X-100, the enzyme activity could be significantly increased up to 340 %. VrEH1 shows an unusual ability of enantioconvergent catalysis for the hydrolysis of racemic pNSO, affording (R)-p-nitrophenyl glycol (pNPG). It displays opposite regioselectivity toward (S)-pNSO (83 % to Cα) in contrast to (R)-pNSO (87 % to Cβ). The K M and k cat of VrEH1 were determined to be 1.4 mM and 0.42 s-1 for (R)-pNSO and 5.5 mM and 6.2 s-1 for (S)-pNSO. This thermostable recombinant VrEH1 with enantioconvergency is considered to be a promising biocatalyst for the highly productive preparation of enantiopure vicinal diols and also a good model for understanding the mechanism of EH stereoselectivity.  相似文献   

17.
Aims: The purification and biochemical properties of the 1,4‐β‐xylosidase of an oenological yeast were investigated. Methods and Results: An ethanol‐tolerant 1,4‐β‐xylosidase was purified from cultures of a strain of Pichia membranifaciens grown on xylan at 28°C. The enzyme was purified by sequential chromatography on DEAE cellulose and Sephadex G‐100. The relative molecular mass of the enzyme was determined to be 50 kDa by SDS‐PAGE. The activity of 1,4‐β‐xylosidase was optimum at pH 6·0 and at 35°C. The activity had a Km of 0·48 ± 0·06 mmol l?1 and a Vmax of 7·4 ± 0·1 μmol min?1 mg?1 protein for p‐nitrophenyl‐β‐d ‐xylopyranoside. Conclusions: The enzyme characteristics (pH and thermal stability, low inhibition rate by glucose and ethanol tolerance) make this enzyme a good candidate to be used in enzymatic production of xylose and improvement of hemicellulose saccharification for production of bioethanol. Significance and Impact of the Study: This study may be useful for assessing the ability of the 1,4‐β‐xylosidase from P. membranifaciens to be used in the bioethanol production process.  相似文献   

18.
An antimicrobial oxidative‐ and SDS‐stable fibrinolytic alkaline protease designated as KSK‐II was produced by Lactobacillus plantarum KSK‐II isolated from kishk, a traditional Egyptian food. Maximum enzyme productivity was obtained in medium containing 1% lactose and 0.5% soybean flour as carbon and nitrogen sources, respectively. Purification of enzyme increased its specific activity to 1,140‐fold with a recovery of 33% and molecular weight of 43.6 kDa. Enzyme activity was totally lost in the presence of ethylenediaminetetraacetic acid and was restored after addition of Fe2+ suggesting that KSK‐II is a metalloprotease and Fe2+ acts as cofactor. Enzyme hydrolyzed not only the natural proteins but also synthetic substrates, particularly Suc‐Ala‐Ala‐Pro‐Phe‐pNA. KSK‐II can hydrolyze the Lys‐X easier than Arg‐X; thus, it was considered as a subtilisin‐family protease. Its apparent Km, Vmax, and Kcat were 0.41 mM, 6.4 µmol mg?1 min?1, and 28.0 s?1, respectively. KSK‐II is industrially important from the perspectives of its maximal activity at 50°C (stable up to 70°C), ability to function at alkaline pH (10.0), stability at broad pH ranges (7.5–12.0) in addition to its stability toward SDS, H2O2, organic solvents, and detergents. We emphasize for the first time the potential of fibrinolytic activity for alkaline proteases used in detergents especially in blood destaining. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:316–324, 2015  相似文献   

19.
The nearly 50,000 known Nudix proteins have a diverse array of functions, of which the most extensively studied is the catalyzed hydrolysis of aberrant nucleotide triphosphates. The functions of 171 Nudix proteins have been characterized to some degree, although physiological relevance of the assayed activities has not always been conclusively demonstrated. We investigated substrate specificity for eight structurally characterized Nudix proteins, whose functions were unknown. These proteins were screened for hydrolase activity against a 74‐compound library of known Nudix enzyme substrates. We found substrates for four enzymes with kcat/Km values >10,000 M?1 s?1: Q92EH0_LISIN of Listeria innocua serovar 6a against ADP‐ribose, Q5LBB1_BACFN of Bacillus fragilis against 5‐Me‐CTP, and Q0TTC5_CLOP1 and Q0TS82_CLOP1 of Clostridium perfringens against 8‐oxo‐dATP and 3'‐dGTP, respectively. To ascertain whether these identified substrates were physiologically relevant, we surveyed all reported Nudix hydrolytic activities against NTPs. Twenty‐two Nudix enzymes are reported to have activity against canonical NTPs. With a single exception, we find that the reported kcat/Km values exhibited against these canonical substrates are well under 105 M?1 s?1. By contrast, several Nudix enzymes show much larger kcat/Km values (in the range of 105 to >107 M?1 s?1) against noncanonical NTPs. We therefore conclude that hydrolytic activities exhibited by these enzymes against canonical NTPs are not likely their physiological function, but rather the result of unavoidable collateral damage occasioned by the enzymes' inability to distinguish completely between similar substrate structures. Proteins 2016; 84:1810–1822. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.  相似文献   

20.
Chitinase from the thermophilic mould Myceliopthora thermophila BJA (MtChit) is an acid tolerant, thermostable and organic solvent stable biocatalyst which does not require any metal ions for its activity. To produce high enzyme titres, reduce fermentation time and overcome the need for induction, this enzyme has been heterologously expressed under GAP promoter in the GRAS yeast, Pichia pastoris. The production medium supplemented with the permeabilizing agent Tween‐20 supported two‐fold higher rMtChit production (5.5 × 103 U L?1). The consensus sequences S(132)xG(133)G(134) and D(168)xxD(171)xD(173)xE(175) in the enzyme have been found to represent the substrate binding and catalytic sites, respectively. The rMtChit, purified to homogeneity by a two‐step purification strategy, is a monomeric glycoprotein of ~48 kDa, which is optimally active at 55°C and pH 5.0. The enzyme is thermostable with t1/2 values of 113 and 48 min at 65 and 75°C, respectively. Kinetic parameters Km, Vmax, kcat, and kcat/Km of the enzyme are 4.655 mg mL?1, 34.246 nmol mg?1 s?1, 3.425 × 106 min?1, and 1.36 × 10?6 mg mL?1 min?1, respectively. rMtChit is an unique exochitinase, since its action on chitin liberates N‐acetylglucosamine NAG. The enzyme inhibits the growth of phytopathogenic fungi like Fusarium oxysporum and Curvularia lunata, therefore, this finds application as biofungicide at high temperatures during summer in tropics. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:70–80, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号