首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Triton X-100 extracts of purified rat brain synaptosomes exhibited marked phosphorylation of an endogenous Mr 87,000 polypeptide following chromatography on DEAE-cellulose. The protein kinase catalyzing this reaction was insensitive to cyclic AMP, Ca2+, calmodulin, and phorbol esters. However, phosphatidylinositol 4-phosphate (PIP) proved to be a potent inhibitor of the Mr 87,000 polypeptide phosphorylation at submicromolar concentrations, whereas phosphatidylinositol, phosphatidylserine, and phosphatidylglycerol were less potent inhibitors. Unsaturated fatty acids could also mimic the effects of PIP at levels above 4 micrograms/ml. The inhibitory effect of PIP largely reflected a profound increase in the apparent Km for Mg2+ such that increasing Mg2+ levels could partially offset the action of PIP. The PIP-sensitive protein kinase was enriched in hypotonic lysates of synaptosomes from which it was partially purified by DEAE-cellulose, hydroxylapatite, and gel permeation chromatography. This purification separated the enzyme from its Mr 87,000 substrate; however, the presence of this polypeptide in heat-inactivated alkali extracts of rat brain provided an exogenous source of substrate which could be used to assay enzyme activity. The relevance of these data to a possible role for PIP and Mg2+ in cellular signaling is discussed.  相似文献   

2.
Dystrophin was purified by immunoaffinity chromatography from detergent-solubilized Torpedo electric organ postsynaptic membranes using monoclonal antibodies. A major doublet of proteins at Mr 58,000 and minor proteins at Mr 87,000, Mr 45,000, and Mr 30,000 reproducibly copurified with dystrophin. The Mr 58,000 and Mr 87,000 proteins were identical to previously described peripheral membrane proteins (Mr 58,000 protein and 87,000 protein) whose muscle homologs are associated with the sarcolemma (Froehner, S. C., Murnane, A. A., Tobler, M., Peng, H. B., and Sealock, R. (1987) J. Cell Biol. 104, 1633-1646; Carr, C., Fischbach, G. D., and Cohen, J. B. (1989) J. Cell Biol. 109, 1753-1764). The copurification of dystrophin and Mr 58,000 protein was shown to be specific, since dystrophin was also captured with a monoclonal antibody against the Mr 58,000 protein but not by several control antibodies. The Mr 87,000 protein was a major component (along with the Mr 58,000 protein) in material purified on anti-58,000 columns, suggesting that the Mr 58,000 protein forms a distinct complex with the Mr 87,000 protein, as well as with dystrophin. Immunofluorescence staining of skeletal and cardiac muscle from the dystrophin-minus mdx mouse with the anti-58,000 antibody was confined to the sarcolemma as in normal muscle but was much reduced in intensity, even though immunoblotting demonstrated that the contents of Mr 58,000 protein in normal and mdx muscle were comparable. Thus, the Mr 58,000 protein appears to associate inefficiently with the sarcolemmal membrane in the absence of dystrophin. This deficiency may contribute to the membrane abnormalities that lead to muscle necrosis in dystrophic muscle.  相似文献   

3.
Estradiol-17 beta (E2) predetermined protein phosphorylation systems have been identified recently in midpregnant rat corpus luteum. Major type protein kinase activities in these systems were explored here using as probes protein kinase inhibitors. Luteal nuclear, mitochondrial, microsomal and cytosolic fractions were obtained from rats hysterectomized and hypophysectomized on day 12 of pregnancy and then treated for 72 h with E2. In vitro phosphate transfer from [gamma-32P]ATP was monitored by SDS-PAGE followed by autoradiography. Polymyxin B (PMB), 1-200 microM, a PKC inhibitor, completely blocked, in a dose dependent manner, the Ca2+ phospholipid (PL) stimulated radiolabeling of nuclear fraction Mr 79,000 substrate(s) as expected. Similarly, the calmodulin (CaM) antagonist compound 48/80, 1-20 micrograms/ml, inhibited the Ca2+/CaM-dependent phosphorylation of the microsomal fraction Mr 60,000 and Mr 56,000 proteins. The Ca2+ PL-enhanced labeling of mitochondrial fraction Mr 76,000 substrate(s) was only partially susceptible to inhibition by PMB or compound 48/80. Studies of microsomal fraction phosphoprotein bands not stimulated by added cofactors indicated that the radiolabeling of Mr 75,000 protein(s) was partially blocked by compound 48/80 but not by PMB. Phosphate transfer to Mr 41,000 protein(s) was inhibited by the cAMP-dependent kinase protein inhibitor (PKI), while the phosphorylation of Mr 31,000 protein(s) was refractory to all inhibitors employed here. Surprisingly, regardless of hormonal pretreatment, PMB and compound 48/80 activated in every subcellular fraction the cofactor independent appearance of at least one phosphoprotein band, between Mr 87,000-99,000. This novel observation should be instrumental in understanding the actions of these compounds towards living cells.  相似文献   

4.
The structure of the membrane-bound and Triton X-100-solubilized female rat liver prolactin receptor has been studied by affinity cross-linking/sodium dodecyl sulfate-polyacrylamide gel electrophoresis, gel filtration, and sucrose/H2O and sucrose/D2O density gradient centrifugation. Hydrodynamic characterization revealed that the 125I-human growth hormone receptor-detergent complex represents a molecular species with a Stokes radius of 61 A, a sedimentation coefficient of 5.0 s, and a calculated molecular weight of 158,000. The molecular weight of the receptor was calculated to be 92,000. Three lactogenic hormone-binding species with Mr values of 87,000, 40,000, and 35,000, respectively, were repeatedly found when detergent-solubilized preparations were analyzed using an affinity cross-linking technique. Estrogen treatment of female rats increased the intensity of these bands. Occasionally, an Mr 165,000 hormone-binding species was also found. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis studies (first dimension, nonreducing; second dimension, reducing) demonstrated that disulfide- and nondisulfide-linked hormone-binding species with Mr values of 40,000 and 35,000 are contained within the Mr 87,000 species. It is concluded that the Triton X-100-solubilized female rat liver prolactin receptor has a molecular weight of about 90,000. This molecular species contains Mr 40,000 and Mr 35,000 hormone-binding subunits. It cannot be determined whether these subunits are combined with each other or with as yet undetected subunit(s) to make up the Mr 90,000 species, or whether each one of these subunits is a proteolytic fragment of the Mr 90,000 species.  相似文献   

5.
Membrane protein phosphorylation may be a general regulatory mechanism mediating the response of cells to exogenous metabolic and physical signals. We have determined that the membrane-bound acetylcholine receptor is the major substrate phosphorylated in situ by a nearby membrane protein kinase. Moreover, these same membranes also contain phosphoprotein phosphatase activity which dephosphorylates the membrane-bound receptor. These findings suggest that reversible phosphorylation of the actylcholine receptor may be critical for receptor function at the synapse. Therefore, it is necessary to define the properties of the enzymes which mediate this phosphorylation-dephosphorylation mechanism. In this report we describe the properties of the first component of this system, the membrane-bound protein kinase in receptor-enriched membranes from the electric organ of Torpedo californica. Only ATP is effective as a phosphate donor for this cyclic AMP-independent membrane kinase; GTP does not support phosphorylation of the receptor. Both casein and histone can also be phosphorylated by the membrane protein kinase, but casein is a better substrate. Although phosphorylation of the receptor appears to be regulated by cholinergic ligands and K+, casein phosphorylation is not specifically affected by these agents. Moreover, while phosphorylation of the acetylcholine receptor is maximal in receptor=enriched membranes, casein phosphorylation is similar in all membrane fractions prepared from the electric organ. Taken together, these findings suggest that the membrane protein kinase activity in receptor-enriched membranes is similar to most other membrane kinases. Therefore, the unique characteristics of membrane-bound acetylcholine receptor phosphorylation appear to be determined by the receptor and its availability as a substrate for the membrane kinase.  相似文献   

6.
A specific growth hormone (GH) binding protein of Mr approx. 100000 has been demonstrated in the cytosolic fraction (200000g supernatant) of pregnant-rabbit liver by gel filtration techniques. This binding species was detectable by a standard charcoal separation procedure but not by the widely used poly(ethylene glycol) precipitation method. The GH binding protein had similar binding characteristics to those of classical membrane-bound GH receptors. The kinetics of association and dissociation, binding affinity (2.56 X 10(9)1/mol) and hormonal specificity have been established. There appears to be equal or greater amounts of GH binding protein in the cytosol than in the membrane fraction. The presence of the GH binding protein in rabbit liver cytosol was substantiated by its selective purification on a GH-Affigel 15 affinity column. This technique has resulted in a 200-300-fold purification with no substantial change in binding affinity. The ability of a concanavalin A-Sepharose affinity column to also bind the cytosolic binding protein indicates that, like the membrane-bound GH receptor, it is a glycoprotein. This is the first report of a cytosolic binding protein for GH and raises important questions regarding its potential physiological role in the mechanism of action of GH.  相似文献   

7.
Here we describe the identification of a gamma-carboxyglutamic acid-containing protein in human spermatozoa. After thermal decarboxylation the protein is a good substrate for vitamin K-dependent carboxylase from various origins. A quick purification procedure for the decarboxylated protein is presented and in a preliminary characterization we have established its Mr (28 000-30 000) and its amino acid composition.  相似文献   

8.
Purification and properties of the phosphorylated form of guanylate cyclase   总被引:4,自引:0,他引:4  
Guanylate cyclase is dephosphorylated in response to the interaction of egg peptides with a spermatozoan surface receptor (Suzuki, N., Shimomura, H., Radany, E. W., Ramarao, C. S., Ward, G. E., Bentley, J. K., and Garbers, D. L. (1984) J. Biol. Chem. 259, 14874-14879). Here, the phosphorylated form of guanylate cyclase was purified to apparent homogeneity from detergent-solubilized spermatozoan membranes by the use of GTP-agarose, DEAE-Sephacel, and concanavalin A-Sepharose chromatography. To prevent dephosphorylation of the enzyme during purification, glycerol (35%) was required in all buffers. Following purification, a single protein-staining band of Mr 160,000 was obtained on sodium dodecyl sulfate-polyacrylamide gels. The final specific activity of the purified enzyme was 83 mumol of cyclic GMP formed/min/mg of protein at 30 degrees C, an activity 5-fold higher than that observed with the purified, dephosphorylated form of guanylate cyclase. A preparation containing protein phosphatase from spermatozoa, or highly purified alkaline phosphatase (from Escherichia coli), catalyzed the dephosphorylation of the enzyme; this resulted in a subsequent decrease in guanylate cyclase activity and a shift in the Mr from 160,000 to 150,000. The phosphate content of the high Mr form of the enzyme was 14.6 mol/mol protein whereas the phosphate content of the low Mr form was 1.6 mol/mol protein. All phosphate was localized on serine residues. The Mr 160,000 form of guanylate cyclase demonstrated positive cooperative kinetics with respect to MnGTP while the Mr 150,000 form displayed linear, Michaelis-Menten type kinetics. The phosphorylation state of the membrane form of guanylate cyclase, therefore, appears to dictate not only the absolute activity of the enzyme but also the degree of cooperative interaction between catalytic or GTP-binding sites.  相似文献   

9.
The physico-chemical properties of phosphoprotein phosphatase (EC 1.3.1.16) from bovine spleen cell nuclei were investigated. The enzyme was shown to possess a wide substrate specificity and to catalyze dephosphorylation of phosphocasein, ATP, ADP and p-nitrophenylphosphate (pNPP). The Km values for ATP, ADP and pNPP are 0.44, 0.43 and 1.25 mM, respectively. The molecular weight of the enzyme as determined by gel filtration on Sephadex G-75 and electrophoresis in polyacrylamide gel of different concentrations is approximately 33 000. SDS-polyacrylamide gel electrophoresis revealed two protein bands with Mr 12 000 and 18 000. The enzyme molecule predominantly contains acidic amino acid residues, two free SH-groups and two disulphide bonds. Phosphoprotein phosphatase is a glycoprotein with the carbohydrate content of about 22%, and has an additional absorption maximum at 560 nm. The enzyme is competitively inhibited by ammonium molybdate (Ki = 0.37 microM) and non-competitively by sodium fluoride (Ki = 1.3 mM). Incubation of phosphoprotein phosphatase with 2 mM phenylmethylsulfonylfluoride (PMSF) for 25 hours resulted in a approximately 46% loss of the enzyme activity. Ammonium molybdate, sodium fluoride and PMSF reversibly inhibit the enzyme. Modification of aminoacid SH-groups, NH2-groups and histidine led to a decrease of the enzyme activity. Incubation of phosphoprotein phosphatase with [gamma-33P]ATP resulted in the incorporation of 0.33 mol of 33P per mol of the enzyme. The mechanism of the enzyme-catalyzed hydrolysis of the phosphoester bond is discussed.  相似文献   

10.
We previously identified the human Fas associated factor (FAF1) as one of the interacting partners of protein kinase CK2 beta subunit. Since FAF1 is a phosphoprotein we investigated whether it is a substrate for CK2. Here, we report the full length human FAF1 cDNA sequence, expression of FAF1 in Escherichia coli and purification and characterization of FAF1 as a substrate for CK2. FAF1 as well as an N-terminal 40 kDa degradation product serve as substrates for both the recombinant CK2 holoenzyme (km 100 microM) and the isolated catalytic alpha subunit (km 200 microM). Despite the high k(m) values, we obtained evidence that CK2 is the major cellular kinase responsible for FAF1 phosphorylation, using tissue extracts as kinase sources. By MALDI-MS we identified the two serine residues at positions 289 and 291 as the major in vitro CK2 phosphorylation sites. These data may help us elucidate the functions of FAF1 and the involvement of CK2 mediated phosphorylation in processes such as apoptotic signaling, ubiquitination, nuclear translocation and embryonic development.  相似文献   

11.
A method is described for separation of ionic detergent-solubilized proteins by ion-exchange chromatography. This method has been developed for purification of two phosphoproteins (Mr 19,000 and 30,000) from 32Pi-prelabeled, isoproterenol-stimulated rat parotid tissue and is based on the observation that, in the presence of urea and Nonidet-P40, ionic detergent-solubilized proteins can be adsorbed by ion exchangers according to their own charge. After adsorption, proteins were eluted with a stepwise gradient of NaCl in a urea-containing buffer. By the procedure described, the 30 kDa phosphoprotein was freed from other 32P-labeled substances; and it was identified as ribosomal protein S6 that was phosphorylated at some serine residues. The method is generally applicable and especially suited for preliminary purification of hydrophobic proteins subjected to analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

12.
In a previous publication (Narhi, L. O. and Fulco, A. J. (1986) J. Biol. Chem. 261, 7160-7169) we described the characterization of a soluble 119,000-dalton P-450 cytochrome (P-450BM-3) that was induced by barbiturates in Bacillus megaterium. This single polypeptide contained 1 mol each of FAD and FMN/mol of heme and, in the presence of NADPH and O2, catalyzed the oxygenation of long-chain fatty acids without the aid of any other protein. We have now utilized limited trypsin proteolysis in the presence of substrate to cleave P-450BM-3 into two polypeptides (domains) of about 66,000 and 55,000 daltons. The 66-kDa domain contains both FAD and FMN but no heme, reduces cytochrome c in the presence of NADPH, and is derived from the C-terminal portion of P-450BM-3. The 55-kDa domain is actually a mixture of three discrete peptides (T-I, T-II, and T-III) separable by high performance liquid chromatography. All three contain heme and show a P-450 absorption peak in the presence of CO and dithionite. The major component, T-I (Mr = 55 kDa), binds fatty acid substrate and has an N-terminal amino acid sequence identical to that of intact P-450BM-3, an indication that this domain constitutes the N-terminal portion of the 119-kDa protein. T-II (54 kDa) is the same as T-I except that it is missing the first nine N-terminal amino acids and does not bind substrate. T-III (Mr = 53.5 kDa) has lost the first 15 N-terminal residues and does not bind substrate. Since trypsin digestion of P-450BM-3 carried out in the absence of substrate yields T-II and T-III but no T-I, it appears that 1 or more residues of the first nine N-terminal amino acids of this protein are intimately involved in substrate binding. Although both the heme- and flavin-containing tryptic peptides retain their original half-reactions, fatty acid monooxygenase activity cannot be reconstituted after proteolysis, and the two domains, once separated, show no affinity for each other. In most respects, the reductase domain of P-450BM-3 more closely resembles the mammalian microsomal P-450 reductases than it does any known bacterial protein.  相似文献   

13.
One of the cellular targets of the pp60src tyrosine kinase is a phosphoprotein with a Mr = 34,000 and an isoelectric point of approximately 7.5 (Radke, K., Gilmore, T., and Martin, G. S. (1980) Cell 21, 821-828; Erikson, E., and Erikson, R. L. (1980) Cell 21, 829-836). We report here the preparation of monoclonal antibodies to partially purified 34-kDa protein and to a heretofore unrecognized phosphoprotein that is not a pp60src target. Two antibodies were initially obtained that recognized phosphoproteins in the Mr = 34,000-39,000 range. One of these antibodies immunoprecipitated a 34,000-Da protein which, on the basis of its molecular mass, phosphorylation state, and isoelectric point, was determined to be the 34-kDa pp60src substrate. The second monoclonal antibody bound to a 38,000-Da nucleolar associated protein, which appeared not to be a target of the pp60src kinase and was found by tryptic analysis to be structurally unrelated to the 34-kDa protein. The monoclonal antibody to the 34-kDa protein coupled to Sepharose CL-4B was used to purify the pp60src substrate to homogeneity in milligram quantities. Both the purified 34-kDa protein and the monoclonal antibody are currently being used in studies aimed at elucidating the structure and function of this pp60src target.  相似文献   

14.
A phosphorylated glycoprotein was purified from the mixture of proteins extracted by demineralization of rat bone with 0.5 M EDTA in 4 M guanidinium chloride. A high level of purity for the preparation was indicated by a single band on sodium dodecyl sulfate (SDS)-gradient gel electrophoresis, sedimentation equilibrium ultracentrifugal data, and by automated Edman degradation results. The molecular weight of the phosphoprotein was shown to be about 44,000 by sedimentation equilibrium analyses in 4 M guanidinium chloride, even though an Mr of 75,000 was obtained by 5-15% SDS-polyacrylamide gel electrophoresis. Subsequent analysis by 15% SDS-polyacrylamide gel electrophoresis gave an Mr of 45,000. Analytical data showed that the protein contained 16.6% carbohydrate, possibly including 1 N-linked oligosaccharide and 5-6 O-linked oligosaccharides. The aspartic acid- and glutamic acid-rich protein contained about 300 amino acid residues including 1 phosphothreonine and 12 phosphoserine residues. Alkaline beta-elimination/NaBH4 reduction data showed that the phosphate obtained by complete acid hydrolysis prior to amino acid analysis was equivalent to the phosphate subject to alkaline beta-elimination. In this experiment, the losses of serine plus threonine exceeded the amount of phosphate liberated by 5-6 residues/protein. These serine and threonine residues probably represent O-linked oligosaccharides, since the protein contained about this number of N-acetyl-galactosamine residues. That the phosphoprotein is synthesized and secreted by osteoblast-like cells was shown with cultures of clonal rat osteosarcoma cells. After pulsing with 32PO4 the proteins secreted into the medium were precipitated with trichloroacetic acid and the radiolabeled proteins were immunoadsorbed. A protein migrating in the same position, on 5-15% SDS-polyacrylamide gel electrophoresis (i.e. with an Mr = 75,000) and on 15% gels (Mr = 45,000), as the phosphoprotein obtained from bone could be specifically immunoprecipitated.  相似文献   

15.
A wide variety of rodent and human tumor cells secrete antigenically related phosphoproteins with molecular weights (Mr) of approximately 58,000 (hamster), 62,000 (rat, mouse), 67,000 (human) (Senger, D.R. and Perruzzi, C.A. (1985) Cancer Res. 45, 5818-5823). Expression of these phosphoproteins is transformation-related; tumor cells produce at least 10-fold or more of this protein as compared to their normal or untransformed counterparts. N-terminal and internal sequences derived from the rat tumor-secreted phosphoprotein indicate that it is identical to rat osteopontin, a bone protein with an Arg-Gly-Asp cell-binding sequence (Oldberg, A., Franzen, A. and Heinegard, D. (1986) Proc. Natl. Acad. Sci. USA 83, 8819-8823). Antibody raised to the Mr 62,000 rat tumor-secreted phosphoprotein was found to bind Mr 75,000 and Mr 35,000 components of human milk, indicating that milk contains antigenically related proteins. The Mr 75,000 protein, which is present in human milk at concentrations ranging from 3 to 10 micrograms/ml, has been purified to homogeneity. The Mr 35,000 component is apparently derived from the Mr 75,000 protein by proteolytic cleavage, and this cleavage also occurs in vitro in the presence of thrombin. N-terminal and internal amino acid sequences were derived from the Mr 75,000 milk protein and found to be similar (12/21 residues) to N-terminal and internal sequences derived from the rat tumor-secreted phosphoprotein and osteopontin. Moreover, sequence derived from the N-terminus of the human milk protein is identical to that of human bone sialoprotein I (the likely human homolog of rat osteopontin) (Fisher, L.W., Hawkins, G.R., Tuross, N. and Termine, J.D. (1987) J. Biol. Chem. 262, 9702-9708).  相似文献   

16.
1. 32P-Labeled proteins from the superior cervical ganglion of the rat were separated by two-dimensional gel electrophoresis and visualized by autoradiography. 2. The most heavily labeled phosphoprotein in the ganglion had a relative molecular weight of 83,000 and a pI of 4.5. Phosphorylation of this protein was increased by phorbol 12,13-dibutyrate, an activator of the Ca2+/phospholipid-dependent protein kinase, protein kinase C. This protein appears to be similar or identical to a specific protein kinase C substrate that has been described in other tissues (Blackshear, P. J., et al., J. Biol. Chem. 261:1459-1469, 1986). 3. Phosphorylation of this protein was also increased by treatment of the ganglion with phospholipase C (Bacillus cereus) but was not increased by 8-bromo-cyclic AMP or by nicotinic agonists. Vasopressin increased the hydrolysis of inositol-containing phospholipids in the ganglion and also increased the labeling of the 83,000 Mr protein. Thus, vasopressin appears to activate protein kinase C in the ganglion. 4. Muscarine, which also increased phospholipid metabolism in the ganglion, did not increase the phosphorylation of the 83,000 Mr protein. Muscarine and vasopressin stimulate phospholipid metabolism in different structures within the ganglion (Horwitz, J., et al., J. Pharmacol. Exp. Ther. 237:312-317, 1986). Muscarine may increase phospholipid metabolism in structures that do not contain significant amounts of the 83,000 Mr protein.  相似文献   

17.
Ca2+-sensitive protein kinases are thought to play a pivotal role in Ca2+-mediated neuronal communication. We describe here the cloning, purification, and characterization of a major Ca2+/calmodulin-dependent, brain-specific protein kinase which is particularly enriched in cerebellar granule cells. The enzyme is comprised of Mr 65,000 and 67,000 polypeptides which copurify to homogeneity and phosphorylate synapsin I. The protein kinase is coded for by two poly(A+) RNAs of 2.0 and 3.5 kilobases which probably derive from a single gene. Two cDNA inserts, one of 198 base pairs and one of 1225 base pairs, contain a total of 677 base pairs of the protein coding sequence which includes sequences homologous to other calmodulin-dependent protein kinases including part of the calmodulin-binding domain. The surprising presence of extended sequences which are enriched in glutamate residues may influence the subcellular distribution of this kinase. Immunohistochemical localization with an affinity-purified antibody reveals that whereas the enzyme is expressed in several neuronal subpopulations, it is exceptionally enriched in the granule cells of the cerebellum. The relevance of the biochemical, molecular, and histologic properties of this enzyme is discussed in the context of neuronal Ca2+ signaling.  相似文献   

18.
We report the purification from bovine brain and describe some of the properties of a 19-kDa protein, p19, which we have previously shown to undergo hormone-dependent, cAMP-mediated phosphorylation in several peptide hormone-producing tumor cells. The procedure for purifying p19 to apparent homogeneity utilized ammonium sulfate fractionation, sequential chromatography on DEAE-cellulose and phenyl-Sepharose, followed by fast protein liquid chromatography using a Mono Q and, finally, a C8 reverse-phase column. The yield was 0.3-0.5 mg of p19/kg of brain. The molecular weight (Mr = 19,000) and frictional ratio (f/f0 = 1.87) of p19, which were derived from its Stokes radius (33 A) and sedimentation constant (s20,w = 1.4), suggest that the native form of p19 is an asymmetrically shaped monomer. We provide evidence to suggest that p19 is isolated as a mixture of molecular forms consisting of an unphosphorylated form and of three phosphoforms indicative of multisite phosphorylation. These forms cosedimented on sucrose density gradients and coeluted on gel filtration, hydrophobic chromatography, and reverse-phase fast protein liquid chromatography. They were resolved from each other by anion-exchange chromatography. The unphosphorylated form (pI 6.2) was phosphorylated by catalytic subunit of cAMP-dependent protein kinase to a stoichiometry of 0.5 mol of P/mol of p19, thereby giving rise to the three phosphoforms (pI 5.8, pI 5.6, and pI 5.2, respectively). We conclude that p19 is a novel cAMP-dependent protein kinase substrate protein that is present in brain and in peptide hormone-producing tumor cells. Its function remains to be identified.  相似文献   

19.
Streptococcus faecalis ATCC 9790 possesses six membrane-bound, penicillin-binding proteins. That numbered 6 (Mr 43000) is the most abundant one and is the DD-carboxypeptidase studied previously. The enzyme has been solubilized and purified to the stage where one single protein band can be detected by gel electrophoresis. The purification procedure does not alter the properties that the enzyme exhibits when it is membrane-bound. The DD-carboxypeptidase itself may be a killing target for penicillin in S. faecalis.  相似文献   

20.
An active tryptic fragment of membrane-bound hydrogenase isoenzyme 2 from anaerobically grown Escherichia coli has been purified. The soluble enzyme derivative was released from the membrane fraction by trypsin cleavage. The purification procedure involved ion-exchange, hydroxyapatite and gel permeation chromatography. The enzyme derivative was purified 100-fold from the membrane fraction and the specific activity of the final preparation was 320 mumol benzyl viologen reduced min-1 mg protein-1 (H2:benzyl viologen oxidoreductase). The native enzyme derivative had an Mr of 180,000 and was composed of equimolar amounts of polypeptides of Mr 61,000 and 30,000. It possessed 12.5 mol Fe, 12.8 mol acid-labile S2- and 3.1 mol Ni/180,000 g enzyme. Antibodies were raised to the purified preparation which cross-reacted with hydrogenase isoenzyme 2 but not with isoenzyme 1 in detergent-dispersed preparations. Western immunoblot analysis revealed that isoenzyme 2 which had not been exposed to trypsin contained cross-reacting polypeptides of Mr 61,000 and 35,000. Trypsin treatment of the membrane-bound enzyme to form the soluble derivative of isoenzyme 2, therefore, cleaves a polypeptide of Mr 35,000 to produce the 30,000-Mr fragment. Trypsin treatment of the detergent-dispersed isoenzyme 2 produces the same fragmentation of the enzyme. Neither of the subunits of the enzyme revealed any immunological identity with those of hydrogenase isoenzyme 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号