首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Lactobacillus plantarum was grown in complex media containing glucose and yeast extract. The maximum growth yield based on yeast extract consumption was 0.5 g dwt g-1. Growth yield YATP 15–17 g dwt mol ATP-1 was almost constant in the glucose limited A-stat experiment whereas in the yeast extract limited culture it increased with dilution rate. The maximum specific growth rate observed, 0.5 h-1, was similar for both A-stat and batch cultures. Specific oxygen consumption, QO2, reached the value of 1.8 mmol O2 h-1 g dwt-1. It was shown that Val, Ile, Leu, Tyr and Phe, were consumed mainly as free amino acids, while Asp, Pro, Lys and Arg were derived from peptides. Significantly more Asp, Ser, Glu, Val, Ile, Leu and Phe were consumed than needed to build up cell protein whereas some Pro, Gly, Ala and Lys was synthesized. A network of metabolic reactions in L. plantarum was proposed on the basis of the experimental data.  相似文献   

2.
The growth of the anaerobic acetogenic bacterium Acetobacterium woodii DSM 1030 was investigated in fructose-limited chemostat cultures. A defined medium was developed which contained fructose, mineral salts, cysteine · HCl and Ca pantothenate (1 mg · 1–1) supplied in a vitamin supplement. Growth at high dilution rates was dependent on the presence of CO2 in the gas phase. The max was found to be 0.16 h–1 and the fructose maintenance requirement was 0.1 to 0.13 mmol fructose · (g dry wt)–1 · h–1. A growth yield of 61 g dry wt · (mol fructose)–1, corrected for the cell maintenance requirement and for incorporation of fructose carbon into cell biomass, was determined from the fructose consumption. A corresponding growth yield of 69 g dry wt · (mol fructose)–1 was calculated from the acetate production assuming that fructose fermentation was homoacetogenic. A YATP of 12.2 to 13.8 g dry wt · (mol ATP)–1 was calculated from these growth yields using a value of 5 mol ATP · (mol fructose)–1 as an estimate of the amount of ATP synthesised from fructose fermentation. The addition of yeast extract (0.5 g · 1–1) to the medium did not influence the max or cell yield. After prolonged growth under fructose-limited conditions the requirement of the culture for CO2 in the gas phase was reduced.Abbreviations YE yeast extract - IC inorganic carbon - D fermenter dilution rate : h–1 - MX maintenance requirement for X: mmol X · (g dry wt)–1 · h–1 - X may be fructose (Fruct), fructose consumed in energy metabolism (Fruct [E]), acetate (Ac) - ATP CO2, NH inf4 sup+ or Pi - qX specific rate of utilisation or consumption of X: mmol X · (g dry wt)–1 · h–1 - V fermenter volume: litre - rC · Cell, fermenter cell carbon production: mmol C · h–1 - YX yield of cells on X: g dry wt · (mol X)–1 - Y infx supmax the yield corrected for cell maintenance: g dry wt · (mol X)–1 - SATP stoichiometry of ATP synthesis from fructose: mol ATP · (mol frucose)–1 - x cell concentration: g dry wt · 1–1 - specific growth rate : h–1 - max maximum specific growth rate: h–1  相似文献   

3.
Glucose-limited, continuous cultures (dilution rate 0.1 h-1) of Streptococcus bovis JB1 fermented glucose at a rate of 3.9 mol mg protein-1 h-1 and produced acctate, formate and ethanol. Based on a maximum ATP yield of 32 cells/mol ATP (Stouthamer 1973) and 3 ATP/glucose, the theoretical glucose consumption for growth would have been 2.1 mol mg protein-1 h-1. Because the maintenance energy requirement was 1.7 mol/mg protein/h (Russell and Baldwin 1979), virtually all of the glucose consumption could be explained by growth and maintenance and the YATP was 30. Glucose-limited, continuous cultures produced heat at a rate of 0.29 mW/mg protein, and this value was similar to the enthalpy change of the fermentation (0.32 mW/mg protein). Batch cultures (specific growth rate 2.0 h-1) fermented glucose at a rate of 81 mol mg protein-1 h-1, and produced only lactate. The heat production was in close agreement with the theoretical enthalpy change (1.72 versus 1.70 mW/mg protein), but only 80% of the glucose consumption could be accounted by growth and maintenance. The YATP of the batch cultures was 25. Nitrogen-limited, glucose-excess, non-growing cultures fermented glucose at a rate of 6.9 mol mg protein-1 h-1, and virtually all of the enthalpy for this homolactic fermentation could be accounted as heat (0.17 mW/mg protein). The nitrogenlimited cultures had a membrane potential of 150 mV, and nearly all of the heat production could be explained by a futile cycle of protons through the cell membrane (watts = amperes x voltage where H+/ATP was 3). The membrane voltage of the nitrogen-limited cells was higher than the glucose-limited continuous cultures (150 versus 80 mV), and this difference in voltage explained why nitrogen-limited cultures consumed glucose faster than the maintenance rate. Batch cultures had a membrane potential of 100 mV, and this voltage could not account for increased glucose consumption (more than growth plus maintenance). It appears that another mechanism causes the increased heat production and lower growth efficiency of batch cultures.  相似文献   

4.
Lactobacillus rhamnosus is a heterolactic acid bacterium, which can be used to produce flavour compounds like diacetyl and acetoin. Various startegies have been applied to improve the growth rate and diacetyl yield. The use of multiple substrates affected growth as well as the yield of diacetyl. Growth on a medium containing glucose demonstrated a diauxic growth profile, with the second phase of growth being on the product, lactic acid. L. rhamnosus also grew on a medium containing citrate. Growth on medium containing glucose+citrate demonstrated simultaneous utilization of carbon sources. L. rhamnosus did not grow in a medium containing acetate and also did not co-metabolize it with glucose. Maximum specific growth rate ( max) was found to increase in the case of simultaneous utilization of glucose+citrate (0.38 h–1) as compared to glucose as the sole carbon source (0.28 h–1). The yields of diacetyl were also found to increase for glucose + pyruvate and glucose + citrate (0.10 and 0.05 g g–1 of glucose, respectively) as compared to glucose alone (0.01 g g–1 of glucose). The productivity of diacetyl on medium containing glucose and citrate was double that of a medium containing only citrate, although the yields were comparable.  相似文献   

5.
We have studied the energetics of glucose uptake in Salmonella typhimurium. Strain PP418 transprots glucose via the phosphoenolpyruvate: glucose phosphotransferase system, while strain PP1705 lacks this system and can only use the galactose permease for glucose uptake. These two strains were cultured anaerobically in glucose-limited chemostats. Both strains produced ethanol and acetate in equimolar amounts but a significant difference was observed in the molar growth yield on glucose (Y Glc). It is suggested that this difference is due to a difference in the energetics of the glucose uptake systems in the two strains.Assuming an equal Y ATP for both strains, we could calculate that uptake of 1 mole of glucose via the galactose permease consumes the equivalent of 0.5 mole of ATP. With the additional assumption that one proton is transported in symport with one glucose molecule, these results imply a stoichiometry of two protons per ATP hydrolysed.Abbreviations PTS Phosphoenolpyruvate: carbohydrate phosphotransferase system - D dilution rate (h-1 - DW dry weight - GalP galactose permease - EtOH ethanol - HAc acetate - Lact lactate - Suc succinate - HFo formate - Glc Glucose - Y Glc, Y ATP yield of cells per glucose or ATP - q specific production rate  相似文献   

6.
In chemostat cultures of Klebsiella pneumoniae (K. aerogenes) NCTC 418 we measured the concentrations of glucose and ammonium and we varied the ratio of the (limiting) concentrations of glucose and ammonium in the feed medium. By doing this at different dilution rates we found a range where growth rate varies with either concentration in the culture when the other concentration in the culture is held constant. This proves that within this range, dual-substrate controlled growth occurs. Dual substrate-controlled growth was accompanied by yield coefficients for glucose and for ammonium that were intermediate between the yield coefficients obtained for single glucose or single ammonium limitation. We quantified the control by either substrate in terms of the flux control coefficient with respect to that substrate, where flux refers to growth rate. Dualsubstrate controlled growth is reflected by the finding that both flux control coefficients exceed zero, simultaneously. In the transition of glucose to ammonium limitation, the control gradually shifts from glucose to ammonium.Abbreviations Symbol Units Meaning s Steady-state concentration of substrate in the culture - Sr M Concentration of substrate in reservoir medium - Y gDWmol-1 Yield - D h-1 Dilution rate - h–1 Specific growth rate - max h–1 Maximal growth rate - C 2 Control coefficient, of s on - J h-1 Rate or flux - JATP mmolgDW-1h-1 ATP synthesis rate - a Anabolism - c Catabolism - l Leak  相似文献   

7.
The specific growth rate () of a respiration-deficient mutant of Saccharomyces cerevisiae growing under defined experimental conditions in batch culture (mineral medium plus glucose and vitamins at 25°C) varied from experiment to experiment over a wide range (0.10–0.24 h-1) and showed a normal distribution. Neither the age of the culture, the history of the inoculum, nor experimental error accounted wholy for the variability of . The variation was positively correlated with the specific rate of glucose transfer and negatively with the specific rate of production of non-fermentative CO2. The yield decreased with implying higher maintenance requirements in batch culture (4.7 mmoles g-1 h-1) than in continuous culture (0.8 mmoles g-1 h-1). It was concluded that the strain is capable of establishing any one of several steady states of growth under the same experimental conditions, each steady state displaying some buildin inertia with respect to change. The variations of the specific rates of glucose transfer and non-fermentative CO2 production, and of the yield appeared to be consequences rather than causes of the variation of . The ultimate causes of the variation of remained unidentified.Part of a doctoral thesis submitted by J. Martinez-Peinado to the University of Navarra Spain  相似文献   

8.
The kinetics of the release of chitinolytic activity (endochitinase EC 3.2.1.14, \-N-acetyglucosaminidase EC 3.2.1.30) by a yeast cell wall lytic Arthrobacter species was studied. The organism was cultivated on yeast cell wall, mycelium of Trichoderma reesei, colloidal chitin, N-acetylglucosamine, glucosamine and mixtures with acetate. With the exception of yeast cell wall, these substrates were used as the sole source of carbon and nitrogen. The growth on colloidal chitin (0.5%) proceeded at a maximum specific growth rate (umax) of 0.23 h–1 and yielded 2700 mU1–1 chitinase. Yeast cell wall and mycelium of T. reesei supported more rapid growth (max = 0.30 h–1 and 0.25 h–1 respectively) but yielded reduced chitinase activity (565 mUl–1 and 700 mUl–1). The growth rate on glucosamine (max = 0.24 h–1) was reduced when this was mixed with acetate (max = 0.12 h–1), whereas the enzyme yield was increased from 720 mUl–1 to 960 mUl–1. The same effect on growth rate was observed with glucose and equimolar mixtures of glucose and acetate, indicating a strong impact of the organic acid on carbohydrate transport or metabolism. The growth of adapted cells on N-acetylglucosamine was comparable to that observed on an equimolar mixture of glucosamine and acetate, indicating that N-acetylglucosamine is rapidly hydrolysed by adapted cells.  相似文献   

9.
Molar growth yields for anaerobic growth of Aerobacter aerogenes in complex medium were much higher than for growth in minimal medium. In batch cultures the molar growth yield for glucose varied from 44 to 50 and Y ATP from 17.1 to 18.8. For glucose-limited chemostat cultures a value of 17.5 g/mole was found for Y ATP max and a value of 2.3 mmoles ATP/g dry weight h for the maintenance coeficient. Growth dependent pH changes were used to control the addition of fresh medium, containing excess of glucose to a continuous culture. The specific growth rate and the population density were dependent on the pH difference between the inflowing medium and the culture. At a value of 1.44 h-1 the molar growth yield for glucose was about 70 and Y ATP about 28.5. An-equation is presented, which gives the relation between theoretical and experimental Y ATP max values.  相似文献   

10.
Summary As the macromolecular composition of microorganisms varies during their life cycle it was asked whether, and to what extent such changes exert any influence on substrate consumption, i.e. growth yield and carbon conversion efficiency, respectively. This question was dealt with in a theoretical study by use of the Y APT max -concept. The growth substrates considered were methanol, acetate and glucose; the latter was assumed to be assimilated via both the glycolytic and the oxidative hexosemonophosphate pathway. Five fictitious biomasses were used which were altered in their proportion of polysaccharides, proteins, lipids, RNA and DNA. As a result, only small variations in the individual biomass formulae were obtained. On the basis of the energy balances for the syntheses of all cell constituents it was found that variations in the macromolecular composition of microbial biomass have only a slight effect on carbon conversion efficiency, amounting to maximally 3%. From the material balances it could be calculated that the upper, solely metabolism-determined limit of carbon conversion efficiency is 85% for substrates assimilated glycolytically via phosphoglycerate; for gluconeogenetic substrates, the upper limit was 75%. These limits are essentially determined by carbon loss on the way to amino acid syntheses.Abbreviations Ac acetate - CCE carbon conversion efficiency (%) - EMP Embden-Meyerhof-Parnas (glycolytic) pathway - Gluc glucose - HMP oxidative hexosemonophosphate pathway - m e maintenance coefficient (mmol g-1 h-1) - MeOH methanol - PGA phosphoglycerate, Y, growth yield (g dry weight per g substrate) - Y ATP growth yield (g dry weight per mole ATP) - specific growth rate (h-1)  相似文献   

11.
A family of 10 competing, unstructured models has been developed to model cell growth, substrate consumption, and product formation of the pyruvate producing strain Escherichia coli YYC202 ldhA::Kan strain used in fed-batch processes. The strain is completely blocked in its ability to convert pyruvate into acetyl-CoA or acetate (using glucose as the carbon source) resulting in an acetate auxotrophy during growth in glucose minimal medium. Parameter estimation was carried out using data from fed-batch fermentation performed at constant glucose feed rates of qVG=10 mL h–1. Acetate was fed according to the previously developed feeding strategy. While the model identification was realized by least-square fit, the model discrimination was based on the model selection criterion (MSC). The validation of model parameters was performed applying data from two different fed-batch experiments with glucose feed rate qVG=20 and 30 mL h–1, respectively. Consequently, the most suitable model was identified that reflected the pyruvate and biomass curves adequately by considering a pyruvate inhibited growth (Jerusalimsky approach) and pyruvate inhibited product formation (described by modified Luedeking–Piret/Levenspiel term).List of symbols cA acetate concentration (g L–1) - cA,0 acetate concentration in the feed (g L–1) - cG glucose concentration (g L–1) - cG,0 glucose concentration in the feed (g L–1) - cP pyruvate concentration (g L–1) - cP,max critical pyruvate concentration above which reaction cannot proceed (g L–1) - cX biomass concentration (g L–1) - KI inhibition constant for pyruvate production (g L–1) - KIA inhibition constant for biomass growth on acetate (g L–1) - KP saturation constant for pyruvate production (g L–1) - KP inhibition constant of Jerusalimsky (g L–1) - KSA Monod growth constant for acetate (g L–1) - KSG Monod growth constant for glucose (g L–1) - mA maintenance coefficient for growth on acetate (g g–1 h–1) - mG maintenance coefficient for growth on glucose (g g–1 h–1) - n constant of extended Monod kinetics (Levenspiel) (–) - qV volumetric flow rate (L h–1) - qVA volumetric flow rate of acetate (L h–1) - qVG volumetric flow rate of glucose (L h–1) - rA specific rate of acetate consumption (g g–1 h–1) - rG specific rate of glucose consumption (g g–1 h–1) - rP specific rate of pyruvate production (g g–1 h–1) - rP,max maximum specific rate of pyruvate production (g g–1 h–1) - t time (h) - V reaction (broth) volume (L) - YP/G yield coefficient pyruvate from glucose (g g–1) - YX/A yield coefficient biomass from acetate (g g–1) - YX/A,max maximum yield coefficient biomass from acetate (g g–1) - YX/G yield coefficient biomass from glucose (g g–1) - YX/G,max maximum yield coefficient biomass from glucose (g g–1) - growth associated product formation coefficient (g g–1) - non-growth associated product formation coefficient (g g–1 h–1) - specific growth rate (h–1) - max maximum specific growth rate (h–1)  相似文献   

12.
Summary The influence of temperature on the growth of the theromophilic Bacillus caldotenax was investigated using chemostat techniques and a chemically defined minimal medium. All determined growth constants, that is maximal specific growth rate, yield and maintenance, were temperature dependent. It was striking that the very large maintenance requirement was about 10 times higher than for mesophilic cells under equivalent conditions. A death rate, which was very substantial at optimal and supraoptimal growth temperatures, was estimated by comparing the maintenance for substrate and oxygen. There was no indication for a thermoadaptation as postulated by Haberstich and Zuber (1974).Symbols D Dilution rate (h–1) - Dc=max Critical dilution rate (h–1) - E Temperature characteristic (J mol–1) - k Organism constant - kd Death rate coefficient (h–1) - km Maintenance substrate coefficient estimated from MO (h–1) - MO Maintenance respiration, mmol O2 per g dry biomass and h (mmol g–1h–1) - MO Maintenance respiration, taking kd into account - mS Maintenance substrate coefficient, g glucose per g dry biomass and h (h–1) - OD Optical density at 546 nm - QO2 Specific O2-uptake rate (mmol g–1h–1) - Q O2 V Specific O2-uptake rate for viable portion of biomass (mmol g–1 h–1) - QS Specific glucose uptake rate (h–1) - Q S V Specific glucose uptake rate for viable portion of biomass (h–1) - R Gas constant 8.28 J mol–1K–1 - S Substrate concentration in reactor (g l–1) - SO Influent substrate concentration (g l–1) - Tmax Maximal growth temperature (°C) - Tmin Minimal growth temperature (°C) - X Dry biomass (g l–1) - XtOt=X Dry biomass containing dead and viable cells - Xv Viable portion of biomass - Y O m Potential yield for O2 corrected for maintenance respiration (g mol–1) - Y S m Potential yield for substrate corrected for maintenance requirement, g biomass per g glucose (–) - Specific growth rate (h–1) - max Maximal specific growth rate (h–1)  相似文献   

13.
Summary In anaerobic wastewater treatment the separation of fermentative and methanogenic bacteria is aimed at an increased performance of the total digestion process. It is known that the attainable growth rate of the acidogenic population in continuous culture decreases at increasing influent concentrations of glucose. To account for this phenomenon, a new kinetic model was developed that combines substrate and product inhibition. In the present research product inhibition was investigated quantitatively in a continuous culture fermenting 50 mmol/l glucose. Extra acetate and butyrate were added up to 200 mmol/l at different pH values, and it turned out that only free butyric acid inhibited growth. The lower attainable growth rates of cultures producing comparable amounts of butyrate when fed with concentrated influents, strongly indicated substrate inhibition. Evidence is presented that transitions to low-conversion steady states predicted by the kinetic model, play a role and decrease the stability of the culture.Nomenclature D dilution rate, h-1 - Datt highest D using certain experimental procedure h-1 - Ki substrate inhibition constant, mol·m-3 - Kp product inhibition constant mol·m-3 - Ks substrate saturation constant, mol·m-3 - P concentration inhibitory product mol·m-3 - S substrate concentration, mol·m-3 - So influent substrate concentration, mol·m-3 - S max c substrate concentration at max c , mol·m-3 - S max h substrate concentration at max h , mol·m-3 - specific growth rate, h-1 - experimental realization of at Datt, h-1 - max maximum specific growth rate, h-1 - max c maximum attainable specific growth rate according to combined substrate/product inhibition model, h-1 - h 0 specific growth rate at S0 according to Haldane kinetics, h-1 - max c maximum attainable specific growth rate according to Haldane kinetics, h-1 - Yp yield inhibitory product, mol·mol-1 - Yx yield biomass, kg dry weight·kg-1 - bio biomass - EtOH ethanol - gluc glucose - HAc acetate - HBt butyrate - HCap caproate - HFo formate - HPr propionate - HVal valerate - prod produced - lact lactate  相似文献   

14.
Summary The formation of acetic acid by the thermophilic nonsporeforming homoacetogenic bacterium Acetogenium kivui was studied under various conditions. In pH-controlled batch fermentation at pH 6.4 this bacterium was able to produce up to 625 mM of acetic acid from glucose within 50–60 h. The value of max obtained was about 0.17 h-1, the yield was about 2.55 mol of acetic acid per mol of glucose utilized. In continuous fermentation both substrate concentration and dilution rate (D) influenced the yield of acetate and the stationary concentration: a glucose concentration of 67 mM at D=0.09 h-1 resulted in 2.82 mol acetate/mol glucose and 190 mM acetate at a production rate of 17.1 mM/1 h. When the dilution rate was increased the production rate reached a maximal value of 43.2 mM/1 h at D=0.32 h-1. At a glucose concentration of 195 mM the dependence of yield upon dilution rate followed a similar pattern and an acetate concentration of 420 mM could be obtained. Enzymatic studies indicate that in A. kivui pyruvate ferredoxin-oxidoreductase and acetate kinase are inhibited at acetate concentrations higher than 800 mM. Based on these results a fed-batch fermentation was developed, which allowed to produce more than 700 mM acetic acid within 40–50 h.Dedicated to Prof. Dr. H. J. Rehm on the occasion of his 60th birthday  相似文献   

15.
Desulfovibrio vulgaris (Marburg) was grown on H2 plus sulfate and H2 plus thiosulfate as the sole energy sources and acetate plus CO2 as the sole carbon sources. Conditions are described under which the bacteria grew exponentially. Specific growth rates () and molar growth yields (Y) at different pH were determined. and Y were found to be strongly dependent on the pH. Highest growth rates and molar growth yields were observed for growth on H2 plus sulfate at pH 6.5 (=0.15h-1; Y SO 4 2- =8.3g·mol-1) and for growth on H2 plus thiosulfate at pH 6.8 (=0.21h-1; Y S 2O 3 2 =16.9g·mol-1).The growth yields were found to increase with increasing growth rates: plots of 1/Y versus 1/ were linear. Via extrapolation to infinite growth rates a Y SO4 2- /max of 12.2g·mol-1 and a YS2O 3 2- /max of 33.5g·mol-1 was obtained.The growth yield data are interpred to indicate that dissimilatory sulfate reduction to sulfide is associated with a net synthesis of 1 mol of ATP and that near to 3 mol of ATP are formed during dissimilatory sulfite reduction to sulfide.  相似文献   

16.
17.
Summary Some environmental affects on cell aggregation described in the literature are briefly summarized. By means of a biomass recirculation culture (Contact system), using the yeast Torulopsis glabrata, the aggregation behavior of cells in static and in dynamic test systems is described. Sedimentation times required to obtain 50 g · l–1 yeast dry matter in static systems were always higher than in dynamic ones.In addition to, influencing the biomass yield, the specific growth rate of the yeast also affected cell aggregation. The specific growth rate and therefore the aggregation could be regulated by the biomass recirculation rate as well as by the sedimenter volume.Abbreviations fo Overflow flow rate (l·h–1) - fR Recycle flow rate (l·h–1) - ft0t Total flow rate through the fermenter (l·h–1) - g Gram - h Hour - DR Fermenter dilution rate due to recycle (h–1) - DS Fermeter dilution rate due to substrate (h–1) - Dtot Total fermenter dilution rate (h–1) - l Liter - Specific growth rate (h–1) - PF Fermenter productivity (g·l–1·h–1) - PFS Overall productivity (g·l–1·h–1) - RpM Rates per minute - RS Residual sugar content in the effluent with respect to the substrate concentration (%) - Y Yield of biomass with respect to sugar concentration (%) - Sed 50 Sedimentation time to reach a YDM of 50 g·l–1 (min) - V Volume (l) - VF Fermenter volume (l) - VSed Sedimenter volume (l) - VVM Volumes per volume and minute - XF YDM in the fermenter (g·l–1) - XF YDM in the recycle (g·l–1) - XS Yeast dry matter due to substrate concentration (g·l–1) - YDM Yeast dry matter (g·l–1)  相似文献   

18.
The solubilization and biodegradation of whole microbial cells by an aerobic thermophilic microbial population was investigated over a 72 h period. Various parameters were followed including total suspended solids reduction, changes in the dissolved organic carbon, protein and carbohydrate concentrations, and carboxylic acid production and utilisation. From the rates of removal of the various fractions a simple model for the biodegradation processes is proposed and verified with respect to acetic acid production and utilization, and total suspended solids removal. The process is initiated by enzymic degradation of the substrate microbe cell walls followed by growth on the released soluble substrates at low dissolved oxygen concentration with concommitant carboxylic acid production. Subsequent utilization of the unbranched, lower molecular weight carboxylic acids allows additional energy supply following exhaustion of the easily utilisable soluble substrate from microbial cell hydrolysis.List of Symbols Y Xp/Xs kg/kg yield process microbes on substrate yeast cells - Y Xp/Ac kg/kg yield process microbes on acetate - Y Ac/Ss kg/kg yield acetate produced by process microbes growing on substrate yeast cells - Y Ss/Xs kg/kg yield soluble substrate from lysis of yeast cells - Y Ss/Xp kg/kg yield soluble substrate from lysis of process microbes - Y P/Xs kg/kg yield particulates from lysis of yeast cells - Y P/Xp kg/kg yield particulates from lysis of process microbes - max (Ss) h–1 maximum specific growth rate constant for growth of process microbes on soluble substrate - max (Ac) h–1 maximum specific growth rate constant for growth of process microbes on acetate - Ks Ss kg/m3 saturation coefficient for growth of process microbes on soluble substrate - Ks Ac kg/m3 saturation coefficient for growth of process microbes on acetate - K d h–1 death/lysis rate constant for process microbes - K i kg/m3 inhibition constant for growth of process microbes on acetate - K L h–1 lysis rate constant for whole yeast cells - K h h–1 hydrolysis rate constant for particulate biomass  相似文献   

19.
Lee S  Kim J  Shin SG  Hwang S 《Biotechnology letters》2008,30(6):1011-1016
The biokinetics of glucose metabolism were evaluated in Aeromonas hydrophila during growth in an anaerobic biosystem. After approx 34 h growth, A. hydrophila metabolized 5,000 mg glucose l−1 into the end-products ethanol, acetate, succinate and formate. The maximum growth rate, μ m, half saturation coefficients, K s, microbial yield coefficient, Y, cell mass decay rate coefficient, k d, and substrate inhibition coefficient, K si were 0.25 ± 0.03 h−1, 118 ± 31 mg glucose l−1, 0.12 μg DNA mg glucose−1, 0.01 h−1, and 3,108 ± 1,152 mg glucose l−1, respectively. These data were used to predict the performance of a continuous growth system with an influent glucose concentration of 5,000 mg l−1. Results of the analysis suggest that A. hydrophila will metabolize glucose at greater than 95% efficiency when hydraulic retention times (HRTs) exceed 7 h, whereas the culture is at risk of washing out at an HRT of 6.7 h.  相似文献   

20.
A total cell recycling suspension perfusion reactor has been constructed for investigation of specific monoclonal antibody secretion rate of the 9.2.27 murine hybridoma under conditions of a very low growth rate. By rapidly recycling hybridoma cells using a thermostated tangential flow filter, 3.6 mg cell dry weight/cm3 could be maintained at growth rate of <0.05 max for over 250 h. Under these conditions, secretion of lactate, ammonia and l-alanine were directly related to the rate of l-glutamine supply. Monoclonal antibody accumulated in the reactor to levels in excess of 1400 g/ cm3. Surprisingly, as specific growth rate decreased, the specific immunoglobulin secretion rate remained constant, implying that monoclonal antibody synthesis could be uncoupled from growth.List of Symbols CMF cm3/(min · cm2) cross membrane flow rate - D h–1 dilution rate - DOT % air saturation dissolved oxygen tension - F R cm3/min perfusion rate - GlcPR mg/min glucose provision rate - GlnPR mg/min l-glutamine provision rate - N A mmoles O2/(dm3 · h) oxygen transfer rate - q ala mmoles/h l-alanine secretion rate - q MAB mg MAB · 10–8 viable cells –1 · day–1 specific MAB secretion rate by viable cells - ¯q MAB (dimensionless) ¯q MAB/¯q MAB MAX - ¯q NH 3 mmoles/h ammonia secretion rate - S R mg/cm3 limiting substrate concentration - h–1 specific growth rate - app h–1 apparent growth rate - ¯ (dimensionless) / MAX - VC cells/cm3 viable cell number  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号