首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Studies on the folding kinetics of the Notch ankyrin domain have demonstrated that the major refolding phase is slow, the minor refolding phase is limited by the isomerization of prolyl peptide bonds, and that unfolding is multiexponential. Here, we explore the relationship between prolyl isomerization and folding heterogeneity using a combination of experiment and simulation. Proline residues were replaced with alanine, both singly and in various combinations. These destabilizing substitutions combine to eliminate the minor refolding phase, although unfolding heterogeneity persists even when all seven proline residues are replaced. To test whether prolyl isomerization influences the major refolding phase, we modeled folding and prolyl isomerization as a system of sequential reactions. Simulations that use rate constants of the major folding phase of the Notch ankyrin domain to represent intrinsic folding indicate that even with seven prolyl isomerization reactions, only two significant phases should be observed, and that the fast observed phase provides a good approximation of the intrinsic folding in the absence of prolyl isomerization. These results indicate that the major refolding phase of the Notch ankyrin domain reflects an intrinsically slow folding transition, rather than coupling of fast folding events with slow prolyl isomerization steps. This is consistent with the observation that the single observed refolding phase of a construct in which all proline residues are replaced remains slow. Finally, the simulation fails to produce a second unfolding phase at high urea concentrations, indicating that prolyl isomerization does not play a role in the three-state mechanism that leads to this heterogeneity.  相似文献   

2.
M E Zweifel  D Barrick 《Biochemistry》2001,40(48):14357-14367
To define the boundaries of the Drosophila Notch ankyrin domain, examine the effects of repeat number on the folding of this domain, and examine the degree to which the modular architecture of ankyrin repeat proteins results in modular stability, we have investigated the thermodynamics of unfolding of polypeptides corresponding to different segments of the ankyrin repeats of Drosophila Notch. We find that a polypeptide containing the six previously identified ankyrin repeats unfolds cooperatively, but is of modest stability. However, inclusion of a putative seventh, C-terminal ankyrin sequence doubles the stability of the Notch ankyrin domain (a 1000-fold increase in the folding equilibrium constant), indicating that the seventh ankyrin repeat is an important part of the Notch ankyrin domain, and demonstrating long-range interactions among ankyrin repeats. This putative seven-repeat polypeptide also shows increases in enthalpy, denaturant dependence (m-value), and heat capacity of unfolding (DeltaC(p)()) of around 50% each, suggesting that deletion of the seventh repeat results in partial unfolding of the sixth ankyrin repeat, consistent with spectroscopic and hydrodynamic data reported in the preceding paper [Zweifel, M. E., and Barrick, D. (2001) Biochemistry 40, 14344-14356]. A polypeptide consisting of only the five N-terminal repeats has stability similar to the six-repeat construct, demonstrating that stability is distributed asymmetrically along the ankyrin domain. These data are consistent with highly cooperative two-state folding of these ankyrin polypeptides, despite their modular architecture.  相似文献   

3.
To search for folding intermediates, we have examined the folding and unfolding kinetics of wild-type barnase and four representative mutants under a wide range of conditions that span two-state and multi-state kinetics. The choice of mutants and conditions provided in-built controls for artifacts that might distort the interpretation of kinetics, such as the non-linearity of kinetic and equilibrium data with concentration of denaturant. We measured unfolding rate constants over a complete range of denaturant concentration by using by 1H/2H-exchange kinetics under conditions that favour folding, conventional stopped-flow methods at higher denaturant concentrations and continuous flow. Under conditions that favour multi-state kinetics, plots of the rate constants for unfolding against denaturant concentration fitted quantitatively to the equation for three-state kinetics, with a sigmoid component for a change of rate determining step, as did the refolding kinetics. The position of the transition state on the reaction pathway, as measured by solvent exposure (the Tanford beta value) also moved with denaturant concentration, fitting quantitatively to the same equations with a change of rate determining step. The sigmoid behaviour disappeared under conditions that favoured two-state kinetics. Those data combined with direct structural observations and simulation support a minimal reaction pathway for the folding of barnase that involves two detectable folding intermediates. The first intermediate, I(1), is the denatured state under physiological conditions, D(Phys), which has native-like topology, is lower in energy than the random-flight denatured state U and is suggested by molecular dynamics simulation of unfolding to be on-pathway. The second intermediate, I(2), is high energy, and is proven by the change in rate determining step in the unfolding kinetics to be on-pathway. The change in rate determining step in unfolding with structure or environment reflects the change in partitioning of this intermediate to products or starting materials.  相似文献   

4.
The folding pathway of the third domain of PDZ from the synaptic protein PSD-95 was characterized using kinetic and equilibrium methods by monitoring the fluorescence signal from a Trp residue that is incorporated at a near-surface position. Kinetic folding of this domain showed multiple exponential phases, whereas unfolding showed a single exponential phase. The slow kinetic phases were attributed to isomerization of proline residues, since there are five proline residues in this domain. We found that the logarithms of the rate constants for the fast phase of folding and unfolding are linearly dependent on the concentrations of denaturant. The unfolding free energy derived from these rate constants at zero denaturant was close to the value measured using the equilibrium method, suggesting the absence of detectable sub-millisecond folding intermediates. However, native-state hydrogen exchange experiments detected a partially unfolded intermediate under native conditions. It was further confirmed by a protein engineering study. These data suggest that a hidden intermediate exists after the rate-limiting step in the folding of the third domain of PDZ.  相似文献   

5.
The Saccharomyces cerevisiae non-Mendelian factor [URE3] propagates by a prion-like mechanism, involving aggregation of the chromosomally encoded protein Ure2. The N-terminal prion domain (PrD) of Ure2 is required for prion activity in vivo and amyloid formation in vitro. However, the molecular mechanism of the prion-like activity remains obscure. Here we measure the kinetics of folding of Ure2 and two N-terminal variants that lack all or part of the PrD. The kinetic folding behaviour of the three proteins is identical, indicating that the PrD does not change the stability, rates of folding or folding pathway of Ure2. Both unfolding and refolding kinetics are multiphasic. An intermediate is populated during unfolding at high denaturant concentrations resulting in the appearance of an unfolding burst phase and "roll-over" in the denaturant dependence of the unfolding rate constants. During refolding the appearance of a burst phase indicates formation of an intermediate during the dead-time of stopped-flow mixing. A further fast phase shows second-order kinetics, indicating formation of a dimeric intermediate. Regain of native-like fluorescence displays a distinct lag due to population of this on-pathway dimeric intermediate. Double-jump experiments indicate that isomerisation of Pro166, which is cis in the native state, occurs late in refolding after regain of native-like fluorescence. During protein refolding there is kinetic partitioning between productive folding via the dimeric intermediate and a non-productive side reaction via an aggregation prone monomeric intermediate. In the light of this and other studies, schemes for folding, aggregation and prion formation are proposed.  相似文献   

6.
Sasahara K  Demura M  Nitta K 《Proteins》2002,49(4):472-482
The equilibrium and kinetic folding of hen egg-white lysozyme was studied by means of circular dichroism spectra in the far- and near-ultraviolet (UV) regions at 25 degrees C under the acidic pH conditions. In equilibrium condition at pH 2.2, hen lysozyme shows a single cooperative transition in the GdnCl-induced unfolding experiment. However, in the GdnCl-induced unfolding process at lower pH 0.9, a distinct intermediate state with molten globule characteristics was observed. The time-dependent unfolding and refolding of the protein were induced by concentration jumps of the denaturant and measured by using stopped-flow circular dichroism at pH 2.2. Immediately after the dilution of denaturant, the kinetics of refolding shows evidence of a major unresolved far-UV CD change during the dead time (<10 ms) of the stopped-flow experiment (burst phase). The observed refolding and unfolding curves were both fitted well to a single-exponential function, and the rate constants obtained in the far- and near-UV regions coincided with each other. The dependence on denaturant concentration of amplitudes of burst phase and both rate constants was modeled quantitatively by a sequential three-state mechanism, U<-->I<-->N, in which the burst-phase intermediate (I) in rapid equilibrium with the unfolded state (U) precedes the rate-determining formation of the native state (N). The role of folding intermediate state of hen lysozyme was discussed.  相似文献   

7.
We describe the guanidinium hydrochloride induced folding kinetics of the four-helix-bundle protein Rop wild-type (wt) under equilibrium conditions at three temperatures. The choice of appropriate denaturant conditions inside the transition range permitted, in combination with equilibrium transition curves, the determination of both unfolding and refolding rate constants. The ratio of the rate constants at zero denaturant concentration provided equilibrium constants and standard free energy changes that are in good agreement with values obtained in previous differential scanning calorimetry studies. The DeltaG0D values for 19, 25 and 40 degrees C calculated from the present kinetic studies are, respectively, 66.8, 70.8 and 57.2 kJ.mol-1. The unfolding reactions are extremely slow under these conditions. Equilibrium was reached only after 18, 12 and 6 days at 19, 25 and 40 degrees C. These results demonstrate that for Rop wt high stability correlates with slow folding kinetics.  相似文献   

8.
Bollen YJ  Sánchez IE  van Mierlo CP 《Biochemistry》2004,43(32):10475-10489
The folding kinetics of the 179-residue Azotobacter vinelandii apoflavodoxin, which has an alpha-beta parallel topology, have been followed by stopped-flow experiments monitored by fluorescence intensity and anisotropy. Single-jump and interrupted refolding experiments show that the refolding kinetics involve four processes yielding native molecules. Interrupted unfolding experiments show that the two slowest folding processes are due to Xaa-Pro peptide bond isomerization in unfolded apoflavodoxin. The denaturant dependence of the folding kinetics is complex. Under strongly unfolding conditions (>2.5 M GuHCl), single exponential kinetics are observed. The slope of the chevron plot changes between 3 and 5 M denaturant, and no additional unfolding process is observed. This reveals the presence of two consecutive transition states on a linear pathway that surround a high-energy on-pathway intermediate. Under refolding conditions, two processes are observed for the folding of apoflavodoxin molecules with native Xaa-Pro peptide bond conformations, which implies the population of an intermediate. The slowest of these two processes becomes faster with increasing denaturant concentration, meaning that an unfolding step is rate-limiting for folding of the majority of apoflavodoxin molecules. It is shown that the intermediate that populates during refolding is off-pathway. The experimental data obtained on apoflavodoxin folding are consistent with the linear folding mechanism I(off) <==> U <==> I(on) <== > N, the off-pathway intermediate being the molten globule one that also populates during equilibrium denaturation of apoflavodoxin. The presence of such on-pathway and off-pathway intermediates in the folding kinetics of alpha-beta parallel proteins is apparently governed by protein topology.  相似文献   

9.
N52I iso-2 cytochrome c is a variant of yeast iso-2 cytochrome c in which asparagine substitutes for isoleucine 52 in an alpha helical segment composed of residues 49-56. The N52I substitution results in a significant increase in both stability and cooperativity of equilibrium unfolding, and acts as a "global suppressor" of destabilizing mutations. The equilibrium m-value for denaturant-induced unfolding of N52I iso-2 increases by 30%, a surprisingly large amount for a single residue substitution. The folding/unfolding kinetics for N52I iso-2 have been measured by stopped-flow mixing and by manual mixing, and are compared to the kinetics of folding/unfolding of wild-type protein, iso-2 cytochrome c. The results show that the observable folding rate and the guanidine hydrochloride dependence of the folding rate are the same for iso-2 and N52I iso-2, despite the greater thermodynamic stability of N52I iso-2. Thus, there is no linear free-energy relationship between mutation-induced changes in stability and observable refolding rates. However, for N52I iso-2 the unfolding rate is slower and the guanidine hydrochloride dependence of the unfolding rate is smaller than for iso-2. The differences in the denaturant dependence of the unfolding rates suggest that the N52I substitution decreases the change in the solvent accessible hydrophobic surface between the native state and the transition state. Two aspects of the results are inconsistent with a two-state folding/unfolding mechanism and imply the presence of folding intermediates: (1) observable refolding rate constants calculated from the two-state mechanism by combining equilibrium data and unfolding rate measurements deviate from the observed refolding rate constants; (2) kinetically unresolved signal changes ("burst phase") are observed for both N52I iso-2 and iso-2 refolding. The "burst phase" amplitude is larger for N52I iso-2 than for iso-2, suggesting that the intermediates formed during the "burst phase" are stabilized by the N52I substitution.  相似文献   

10.
Repeat proteins are constructed from a linear array of modular units, giving rise to an overall topology lacking long-range interactions. This suggests that stabilizing repeat modules based on consensus information might be added to a repeat protein domain, allowing it to be extended without altering its overall topology. Here we add consensus modules the ankyrin repeat domain from the Drosophila Notch receptor to investigate the structural tolerance to these modules, the relative thermodynamic stability of these hybrid proteins, and how alterations in the energy landscape influence folding kinetics. Insertions of consensus modules between repeats five and six of the Notch ankyrin domain have little effect on the far and near-UV CD spectra, indicating that neither secondary nor tertiary structure is dramatically altered. Furthermore, stable structure is maintained at increased denaturant concentrations in the polypeptides containing the consensus repeats, indicating that the consensus modules are capable of stabilizing much of the domain. However, insertion of the consensus repeats appears to disrupt cooperativity, producing a two-stage (three-state) unfolding transition in which the C-terminal repeats unfold at moderate urea concentrations. Removing the C-terminal repeats (Notch ankyrin repeats six and seven) restores equilibrium two-state folding and demonstrates that the high stability of the consensus repeats is propagated into the N-terminal, naturally occurring Notch ankyrin repeats. This stability increase greatly increases the folding rate, and suggests that the transition state ensemble may be repositioned in the chimeric consensus-stabilized proteins in response to local stability.  相似文献   

11.
The reversible unfolding and refolding kinetics of alpha-lactalbumin induced by concentration jump of guanidine hydrochloride were measured at pH 7.0 and 25 degrees C using tryptophan absorption at 292 nm, with varying concentrations of the denaturant and free Ca2+. The refolding reaction of alpha-lactalbumin from the fully unfolded (D) state occurs through the two stages: (1) instantaneous formation of a compact intermediate (the A state) that has a native-like secondary structure; (2) tight packing of the preformed secondary structure segments to lead finally to the native structure, this stage being the rate-determining step of the reaction and associated with acquisition of the specific structure necessary for strong Ca2+ binding. Under strongly native conditions, the observed kinetics of refolding is also complicated by the presence of a slow-folding species (10%) in the unfolded state. Considering these facts, the microscopic rate constants in folding and unfolding directions have been evaluated from the observed kinetics and from the equilibrium constants of the transitions among the native (N), A and D states. Close linear relationships have been found in the plots of the activation free energies, obtained from the microscopic rate constants, against the denaturant concentration. They are similar to the linear relationship between the free energy of unfolding and the denaturant concentration. It was demonstrated that the slope of the plots should be approximately proportional to a change in accessible surface area of the protein during the respective activation process, and that only a third of the difference in accessible surface area between A and N is buried in the critical activated state of folding. However, the selective effect of Ca2+ binding on the folding rate constant has been observed also, demonstrating that the specific Ca2+-binding substructure in the N state is already organized in the activated state. Thus, only a part of the protein molecule involving the Ca2+-binding region is organized in the activated state, with the other part of the molecule being left less organized, suggesting that the second stage of folding may be a sequential growing process of organized assemblage of the performed secondary structure segments.  相似文献   

12.
The folding pathway of human FKBP12, a 12 kDa FK506-binding protein (immunophilin), has been characterised. Unfolding and refolding rate constants have been determined over a wide range of denaturant concentrations and data are shown to fit to a two-state model of folding in which only the denatured and native states are significantly populated, even in the absence of denaturant. This simple model for folding, in which no intermediate states are significantly populated, is further supported from stopped-flow circular dichroism experiments in which no fast "burst" phases are observed. FKBP12, with 107 residues, is the largest protein to date which folds with simple two-state kinetics in water (kF=4 s(-1)at 25 degrees C). The topological crossing of two loops in FKBP12, a structural element suggested to cause kinetic traps during folding, seems to have little effect on the folding pathway.The transition state for folding has been characterised by a series of experiments on wild-type FKBP12. Information on the thermodynamic nature of, the solvent accessibility of, and secondary structure in, the transition state was obtained from experiments measuring the unfolding and refolding rate constants as a function of temperature, denaturant concentration and trifluoroethanol concentration. In addition, unfolding and refolding studies in the presence of ligand provided information on the structure of the ligand-binding pocket in the transition state. The data suggest a compact transition state relative to the unfolded state with some 70 % of the surface area buried. The ligand-binding site, which is formed mainly by two loops, is largely unstructured in the transition state. The trifluoroethanol experiments suggest that the alpha-helix may be formed in the transition state. These results are compared with results from protein engineering studies and molecular dynamics simulations (see the accompanying paper).  相似文献   

13.
Burns LL  Ropson IJ 《Proteins》2001,43(3):292-302
The folding mechanisms of cellular retinol binding protein II (CRBP II), cellular retinoic acid binding protein I (CRABP I), and cellular retinoic acid binding protein II (CRABP II) were examined. These beta-sheet proteins have very similar structures and higher sequence homologies than most proteins in this diverse family. They have similar stabilities and show completely reversible folding at equilibrium with urea as a denaturant. The unfolding kinetics of these proteins were monitored during folding and unfolding by circular dichroism (CD) and fluorescence. During unfolding, CRABP II showed no intermediates, CRABP I had an intermediate with nativelike secondary structure, and CRBP II had an intermediate that lacked secondary structure. The refolding kinetics of these proteins were more similar. Each protein showed a burst-phase change in intensity by both CD and fluorescence, followed by a single observed phase by both CD and fluorescence and one or two additional refolding phases by fluorescence. The fluorescence spectral properties of the intermediate states were similar and suggested a gradual increase in the amount of native tertiary structure present for each step in a sequential path. However, the rates of folding differed by as much as 3 orders of magnitude and were slower than those expected from the contact order and topology of these proteins. As such, proteins with the same final structure may not follow the same route to the native state.  相似文献   

14.
T Sugawara  K Kuwajima  S Sugai 《Biochemistry》1991,30(10):2698-2706
The urea-induced unfolding of staphylococcal nuclease A has been studied by circular dichroism both at equilibrium and by the kinetics of unfolding and refolding (pH 7.0 and 4.5 degrees C), as a function of Ca2+ and thymidine 3',5'-diphosphate (pdTp) concentration. The results are as follows. (1) The unfolding transition is shifted to higher concentrations of urea by Ca2+ and pdTp, and the presence of both ligands further stabilizes the protein. (2) In the first stage of kinetic refolding, the peptide ellipticity changes rapidly within the dead time of stopped-flow measurement (15 ms), indicating accumulation of a transient intermediate. This intermediate is remarkably less stable than those of other globular proteins previously studied. (3) Dependence of the folding and unfolding rate constants on urea concentration indicates that the critical activated state of folding ("transition state") has considerable structural organization. The transition state does not, however, have the capacity to bind Ca2+ and pdTp, as indicated by the effects of these ligands on the unfolding rate constant. (4) There are at least four different phases in the refolding kinetics in native conditions below 1 M urea. In the absence of pdTp, there are two phases in unfolding, while in the presence of pdTp the unfolding kinetics show a single phase. Some characteristics of the transient intermediate and of the transition state for folding are discussed.  相似文献   

15.
The 62 kDa protein firefly luciferase folds very rapidly upon translation on eukaryotic ribosomes. In contrast, the chaperone-mediated refolding of chemically denatured luciferase occurs with significantly slower kinetics. Here we investigate the structural basis for this difference in folding kinetics. We find that an N-terminal domain of luciferase (residues 1-190) folds co-translationally, followed by rapid formation of native protein upon release of the full-length polypeptide from the ribosome. In contrast sequential domain formation is not observed during in vitro refolding. Discrete unfolding steps, corresponding to domain unfolding, are however observed when the native protein is exposed to increasing concentrations of denaturant. Thus, the co-translational folding reaction bears more similarities to the unfolding reaction than to refolding from denaturant. We propose that co-translational domain formation avoids intramolecular misfolding and may be critical in the folding of multidomain proteins.  相似文献   

16.
The Notch ankyrin domain is a repeat protein whose folding has been characterized through equilibrium and kinetic measurements. In previous work, equilibrium folding free energies of truncated constructs were used to generate an experimentally determined folding energy landscape (Mello and Barrick, Proc Natl Acad Sci USA 2004;101:14102–14107). Here, this folding energy landscape is used to parameterize a kinetic model in which local transition probabilities between partly folded states are based on energy values from the landscape. The landscape‐based model correctly predicts highly diverse experimentally determined folding kinetics of the Notch ankyrin domain and sequence variants. These predictions include monophasic folding and biphasic unfolding, curvature in the unfolding limb of the chevron plot, population of a transient unfolding intermediate, relative folding rates of 19 variants spanning three orders of magnitude, and a change in the folding pathway that results from C‐terminal stabilization. These findings indicate that the folding pathway(s) of the Notch ankyrin domain are thermodynamically selected: the primary determinants of kinetic behavior can be simply deduced from the local stability of individual repeats.  相似文献   

17.
The multiphasic kinetics of the protein folding and unfolding processes are examined for a “cluster model” with only two thermodynamically stable macroscopic states, native (N) and denatured (D), which are essentially distributions of microscopic states. The simplest kinetic schemes consistent with the model are: N-(fast) → I-(slow) → D for unfolding and N ← (fast)-D2 ← (slow)-D1 for refolding. The fast phase during the unfolding process can be visualized as the redistribution of the native population N to I within its free energy valley. Then, this population crosses over the free energy barrier to the denatured state D in the slow phase. Therefore, the macrostate I is a kinetic intermediate which is not stable at equilibrium. For the refolding process, the initial equilibrium distribution of the denatured state D appears to be separated into D1 and D2 in the final condition because of the change in position of the free energy barrier. The fast refolding species D2 is due to the “leak” from the broadly distributed D state, while the rest is the slow refolding species D1, which must overpass the free energy barrier to reach N. At an early stage of the folding process the amino acid chain is considered to be composed of several locally ordered regions, which we call clusters, connected by random coil chain parts. Thus, the denatured state contains different sizes and distributions of clusters depending on the external condition. A later stage of the folding process is the association of smaller clusters. The native state is expressed by a maximum-size cluster with possible fluctuation sites reflecting this association. A general discussion is given of the correlation between the kinetics and thermodynamics of proteins from the overall shape of the free energy function. The cluster model provides a conceptual link between the folding kinetics and the structural patterns of globular proteins derived from the X-ray crystallographic data.  相似文献   

18.
19.
The kinetics of refolding of ribonuclease A have been measured at -15 degrees C by monitoring the intrinsic fluorescence and absorbance signals from the six tyrosine residues. For each probe multiphasic kinetics were observed. The burial of tyrosine residues, as determined by the change in absorbance at 286 nm, revealed four phases, whereas the kinetics of refolding monitored by fluorescence revealed only two phases. The rates of the transients detected by fluorescence were independent of pH. One of the faster transients detected by delta A286 involved a decrease in absorbance, which is consistent with solvent exposure, rather than burial, and suggests the possibility of an abortive partially folded intermediate in the earlier stages of folding. Double-jump unfolding assays were used to follow the buildup and decay of an intermediate in the refolding reaction at -15 degrees C. At both pH* 3.0 and pH* 6.0 the maximum concentration of the intermediate was 25-30% of the total protein. The existence of a second pathway of slow folding was inferred from the difference in rate of formation of native enzyme and breakdown of the observed intermediate, and by computer simulations. In addition, the unfolding assay demonstrated that 20% of the unfolded protein was converted to native at a much faster rate, consistent with observations in aqueous solution that 80% of unfolded ribonuclease A consists of slow-folding species. Kinetics and amplitude data from these and other refolding experiments with different probes were used to develop possible models for the pathway of refolding. The simplest system consistent with the results for the slow-refolding species involves two parallel pathways with multiple intermediates on each of them. Several independent lines of evidence indicate that about 30% of the unfolded state refolds by the minor pathway, in which the slowest observed phase is attributed to the isomerization of Pro-93. The major pathway involves 50% of the unfolded state; the reason why it refolds slowly is not apparent. A native-like intermediate is formed considerably more rapidly in the major slow-refolding pathway, compared to the minor pathway.  相似文献   

20.
The refolding and unfolding kinetics of the all-beta-sheet protein human basic fibroblast growth factor (hFGF-2) were studied by fluorescence spectroscopy. The kinetics of the unfolding transition are monophasic. The refolding reaction at high and low guanidinium chloride (GdmCl) concentrations is best described by mono- and biphasic folding, respectively. Refolding and unfolding of hFGF-2 (155 amino acids) is very slow compared with other non-disulfide-bonded monomeric proteins of similar size. For example, the rate constant for unfolding at 4.5 mol.liter(-1) GdmCl is 0.006 s(-1), and the refolding rate constants at 0.4 mol.liter(-1) GdmCl are 0.01 s(-1) and 0.0009 s(-1) (15 degrees C, pH 7.0). A characterization of the thermodynamic nature of the folding process using transition state theory revealed that the slow refolding is almost exclusively controlled by entropic factors, namely the strong loss of conformational freedom during refolding. The rate of the slow unfolding kinetics is mainly (and at low denaturant concentrations exclusively) controlled by the large positive change in enthalpy. hFGF-2 shows similar slow folding kinetics to that of its structural homolog interleukin-1beta. Since both proteins show very little sequence identity, it is suggested that their slow folding kinetics are determined by the complex beta-sheet arrangement of the native molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号