首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Physiological regions of yam tubers were morphologically defined in different specie into ‘Head’, ‘Middle’ and ‘Tail’, while the limits of these regions were studied using phosphorylase activity. Variation in enzyme activity, pH and protein concentration was found in different regions of the tubers. Old yam tubers had significantly higher activities of saccharide degrading enzymes, hexokinase, phosphorylase, glucose-6-phosphate dehydrogenase, phosphofructokinase and pyruvate kinase, than the new tubers. However, activity of phosphofructokinase in newD. rotundata was higher than that of old tuber. The high activity of phosphorylase in different regions of all the yam tubers examined indicates a very important role of this enzyme in starch degradation inDioscorea species. The measured pH and protein concentration were also higher in old yam tubers. Except for phosphorylase, these enzymes had alkaline pH optima.  相似文献   

2.
α-Glucan phosphorylase was extracted fromDioscorea rotundata tubers and purified 55 fold with specific activity of 360 nmol min-1 mg-1 protein and a yield of 41.5 %. By electrophoresis of purified enzyme on polyacrylamide gel a single band of phosphorylase activity appeared. The enzyme showed normal Michaelis-Menten kinetics and was activated by AMP. ATP, ADP, ADP-glucose, calcium and magnesium inhibited the enzyme. It is active in the presence and absence of primer. No effects were observed on the addition of glycolytic intermediates or amino acids. Using gel filtration molecular mass of the enzyme determined is 188 000 and the extract seems to contain one form. Properties of the enzyme indicate that phosphorylase from white yam tuber functions primarily as a starch degrading enzyme. The possible role of the enzyme during yam tuber storage is dicussed.  相似文献   

3.
Lactate dehydrogenase from yellow yam tuber (Dioscorea cayenensis Lam.) was isolated and purified using various chromatographic methods and electrophoresis. Only one form of the enzyme obtained, which obeyed Michaelis-Menten kinetics, was activated by Mg2+ and Ca2+ and inhibited by nucleotides and PEP. AMP, which activated the enzyme in the direction of pyruvate reduction, inhibited it in the direction of lactate oxidation. The enzyme is specific for pyruvate L-lactate and uses only NADH and NAD+ as the electron carriers. Polyacrylamide gel electrophoresis showed single band of lactate dehydrogenase activity. The average molecular mass obtained for the enzyme was 160 ± 1.2 kDa, while SDS gel electrophoresis indicated a dimer for the enzyme protein. The enzyme is very stable when frozen but its activity was hardly detectable when the tubers were stored in a well aerated place.  相似文献   

4.
In a comparison of the polyphenol oxidase activity of various species of yam tubers the greatest enzyme activity was found in D. bulbifera. The enzyme was purified from acetone powder extracts of this plant. Ammonium sulphate fractionation, followed by ion exchange chromatography and gel filtration gave 22-fold purification. The final product gave a single band on polyacrylamide disc gel electrophoresis. The purified enzyme showed activity towards catechol, pyrogallol and dl-β-3,4-dihydroxyphenylalanine (dl-DOPA) and had a MW 115000 ± 2000. It was characterized by response to various inhibitors. β-Mercaptoethanol, dithioerythritol, l-cysteine, sodium metabisulphite and KCN inhibited strongly.  相似文献   

5.
The effects of reducing sucrose level on tuber formation (% of cultures with microtubers), development (length and fresh weight of microtubers) and sprouting in yam Dioscorea cayenensis–D. rotundata complex in vitro were investigated. Only 29% of the explants showed tuber formation after 3 weeks in the presence of 1% sucrose in contrast to 100% with 3%. After 120 days of culture, the length and the weight of the tubers obtained in the presence of 1% sucrose were less than with 3% sucrose. Addition of sorbitol to keep osmolarity at the same level did not restore normal rate of tuber formation. Similar results were obtained with the use of reduced fructose or glucose level. Microtuber sprouting was also affected by sucrose level incorporated into the tuberisation medium. Tubers obtained on reduced sucrose level sprouted later and the increase of osmolarity with sorbitol did not restore normal sprouting. The bigger tubers obtained on high sucrose media could contain more carbohydrate reserves that could partially explain a higher sprouting rate. These results can be used for optimising in vitro conditions for mass production of microtubers in yam and especially in Dioscorea cayenensis–D. rotundata complex, a very important species in West Africa. They specially showed the importance of tuberisation conditions on precocity of tuberisation, on tuber length and weight and on their further sprouting.  相似文献   

6.
A soluble viscous protein was purified from yam (Dioscorea opposita Thunb.) tuber mucilage tororo by chromatographic steps, and its functional properties were estimated. The purified dioscorin having the molecular weight of about 200 kDa exhibited high scavenging activities against hydroxyl radicals (IC50 = 195.1 microg/ml) and superoxide anion radicals (IC50 = 92.7 microg/ml). Moreover, it showed extremely high angiotensin I-converting enzyme inhibitory activity (IC50 = 41.1 microg/ml). The results suggested that yam D. opposita tuber has a wide spectrum of strong antioxidative and antihypertensive activities and it could be utilized as a source of natural antioxidant.  相似文献   

7.
Pyridine nucleotide specificity of barley nitrate reductase   总被引:6,自引:4,他引:2       下载免费PDF全文
Dailey FA  Kuo T  Warner RL 《Plant physiology》1982,69(5):1196-1199
NADPH nitrate reductase activity in higher plants has been attributed to the presence of NAD(P)H bispecific nitrate reductases and to the presence of phosphatases capable of hydrolyzing NADPH to NADH. To determine which of these conditions exist in barley (Hordeum vulgare L. cv. Steptoe), we characterized the NADH and NADPH nitrate reductase activities in crude and affinity-chromatography-purified enzyme preparations. The pH optima were 7.5 for NADH and 6 to 6.5 for the NADPH nitrate reductase activities. The ratio of NADPH to NADH nitrate reductase activities was much greater in crude extracts than it was in a purified enzyme preparation. However, this difference was eliminated when the NADPH assays were conducted in the presence of lactate dehydrogenase and pyruvate to eliminate NADH competitively. The addition of lactate dehydrogenase and pyruvate to NADPH nitrate reductase assay media eliminated 80 to 95% of the NADPH nitrate reductase activity in crude extracts. These results suggest that a substantial portion of the NADPH nitrate reductase activity in barley crude extracts results from enzyme(s) capable of converting NADPH to NADH. This conversion may be due to a phosphatase, since phosphate and fluoride inhibited NADPH nitrate reductase activity to a greater extent than the NADH activity. The NADPH activity of the purified nitrate reductase appears to be an inherent property of the barley enzyme, because it was not affected by lactate dehydrogenase and pyruvate. Furthermore, inorganic phosphate did not accumulate in the assay media, indicating that NADPH was not converted to NADH. The wild type barley nitrate reductase is a NADH-specific enzyme with a slight capacity to use NADPH.  相似文献   

8.
Budde RJ  Randall DD 《Plant physiology》1988,88(4):1026-1030
The requirements for reactivation (dephosphorylation) of the pea (Pisum sativum L.) leaf mitochondrial pyruvate dehydrogenase complex (PDC) were studied in terms of magnesium and ATP effects with intact and permeabilized mitochondria. The requirement for high concentrations of magnesium for reactivation previously reported with partially purified PDC is shown to affect inactivation rather than reactivation. The observed rate of inactivation catalyzed by pyruvate dehydrogenase (PDH) kinase is always greater than the reactivation rate catalyzed by PDH-P phosphatase. Thus, reactivation would only occur if ATP becomes limiting. However, pyruvate which is a potent inhibitor of inactivation in the presence of thiamine pyrophosphate, results in increased PDC activity. Analysis of the dynamics of the phosphorylation-dephosphorylation cycle indicated that the covalent modification was under steady state control. The steady state activity of PDC was increased by addition of pyruvate. PDH kinase activity increased threefold during storage of mitochondria suggesting that there may be an unknown level of regulation exerted on the enzyme complex.  相似文献   

9.
A protein kinase which phosphorylates pyruvate kinase (PK) in vitro was purified and characterized from the foot muscle of the anoxia-tolerant gastropod mollusc Busycon canaliculatum. Purification involved four steps: poly(ethylene glycol) fractionation, affinity chromatography on Blue agarose, ion-exchange chromatography on phosphocellulose and preparative isoelectric focusing (pI = 5.5). The activity was monitored by following changes in pyruvate kinase I50 values for L-alanine which have previously been linked to changes in the degree of enzyme phosphorylation. The correlation between enzyme phosphorylation and changes in the L-alanine inhibition constant was also directly demonstrated in the present paper by radioactively labelling PK with [tau-32P]ATP. The final purified protein kinase solution gave a single band on SDS-gel electrophoresis with a molecular weight of 37,000 +/- 2000. Kinetic analysis of the purified protein kinase (PK-kinase) showed a pH optimum of 7.0, an absolute requirement for magnesium ions (Km = 1.29 mM), a relatively high affinity for MgATP (Km = 57 microM), and inhibition by increasing salt concentrations (I50 = 55 mM KCl). The protein kinase activity was not affected by either spermine, heparin, cAMP, cGMP or concentrations of CaCl2 less than 10 mM. The enzyme did not phosphorylate either phosphofructokinase or glycogen phosphorylase, two enzymes that are also phosphorylated during anoxia in whelks. The purified enzyme is different from the catalytic subunit of cAMP-dependent protein kinase as shown by the inability of cAMP to stimulate the protein kinase at all stages of the preparation; cAMP did not activate either crude enzyme, the 7% poly(ethylene glycol) supernatant, or any of the column eluant peak fractions when measured by changes in pyruvate kinase kinetic parameters.  相似文献   

10.
1. The ;initial activity' of the pyruvate dehydrogenase enzyme complex in whole tissue or mitochondrial extracts of lactating rat mammary glands was greatly decreased by 24 or 48h starvation of the rats. Injection of insulin and glucose into starved rats 60min before removal of the glands abolished this difference in ;initial activities'. 2. The ;total activity' of the enzyme complex in such extracts was revealed by incubation in the presence of free Mg(2+) and Ca(2+) ions (more than 10 and 0.1mm respectively) and a crude preparation of pig heart pyruvate dehydrogenase phosphatase. Starvation did not alter this ;total activity'. It is assumed that the decline in ;initial activity' of the enzyme complex derived from the glands of starved animals was due to increased phosphorylation of its alpha-subunit by intrinsic pyruvate dehydrogenase kinase. 3. Starvation led to an increase in intrinsic pyruvate dehydrogenase kinase activity in both whole tissue and mitochondrial extracts. Injection of insulin into starved animals 30min before removal of the lactating mammary glands abolished the increase in pyruvate dehydrogenase kinase activity in whole-tissue extracts. 4. Pyruvate (1mm) prevented ATP-induced inactivation of the enzyme complex in mitochondrial extracts from glands of fed animals. In similar extracts from starved animals pyruvate was ineffective. 5. Starvation led to a decline in activity of pyruvate dehydrogenase phosphatase in mitochondrial extracts, but not in whole-tissue extracts. 6. These changes in activity of the intrinsic kinase and phosphatase of the pyruvate dehydrogenase complex of lactating rat mammary gland are not explicable by current theories of regulation of the complex.  相似文献   

11.
A soluble Ca2+-dependent protein kinase (CDPK) was purified to homogeneity in potato (Solanum tuberosum L.) plants. Potato CDPK was strictly dependent on Ca2+ (one-half maximal activation 0.6 [mu]M) and phosphorylated a wide diversity of substrates, in which Syntide 2 was the best phosphate acceptor (Michaelis constant = 30 [mu]M). The kinase was inhibited by Ca2+-chelating agents, phenotiazine derivatives, and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (one-half maximal inhibition = 0.25 mM). Polyclonal antibodies directed against the regulatory region of the soybean CDPK recognized a 53-kD polypeptide. In an autophosphorylation assay, this same band was strongly labeled with [[gamma]-32P]ATP in the presence of Ca2+. CDPK activity was high in nontuberized plants, but increased 2.5-fold at the onset of tuber development and was reduced to one-half of its original activity when the tuber had completed formation. In the early stages of tuberization, Ca2+-dependent phosphorylation of endogenous targets (specific bands of 68, 51, and 46 kD) was observed. These polypeptides were not labeled in nontuberizing plants or in completely formed tubers, indicating that this phosphorylation is a stage-specific event. In addition, dephosphorylation of specific polypeptides was detected in tuberizing plants, suggesting the involvement of a phosphatase. Preincubation of crude extracts with phosphatase inhibitors rendered a 100% increase in CDPK activity.  相似文献   

12.
Glycogen phosphorylase from swine adipose tissue was purified nearly 700-fold using ethanol precipitation, DEAE-cellulose adsorption, AMP-agarose affinity chromatography, and agarose gel filtration. The purified enzyme migrated as one major and several minor components during polyacrylamide gel electrophoresis. Activity was associated with the major component and at least one of the minor components. The molecular weight of the disaggregated, reduced, and alkylated enzyme, estimated by polyacrylamide gel electrophoresis performed in the presence of sodium dodecyl sulfate, was 90,000. Stability of the purified enzyme was considerably increased in the presence of AMP. The isoelectric pH of the enzyme in crude homogenates was 6.3. The sedimentation coefficient of the purified enzyme (7.9 S) and that in crude homogenates (7.3 S) was determined by sucrose density gradient sedimentation. Optimal pH for activity was between pH 6.5 and 7.1. Apparent Km values for glycogen and inorganic phosphate were 0.9 mg/ml and 6.6 mM, respectively. The Ka for AMP was 0.21 mM. Enzyme activity was increased by K2SO4, KF, KCl, and MgCl2 and decreased by NaCl, Na2SO4, D-glucose, and ATP. Inhibition by glucose was noncompetitive with the activator AMP; inhibition by ATP was partially competitive with AMP. The purified enzyme was activated by incubation with skeletal muscle phosphorylase kinase. Enzyme in crude homogenates was activated by the addition of MgCl2 and ATP; activation was not blocked by addition of protein kinase inhibitor, suggesting that phosphorylase kinase in homogenates of swine adipose tissue is present largely in an activated form. Deactivation of phosphorylase a by phosphorylase phosphatase was studied using enzyme purified approximately 200-fold from swine adipose tissue by ethanol precipitation, DEAE-cellulose chromatography, and gel filtration. The Km of the adipose tissue phosphatase for skeletal muscle phosphorylase a was 6 muM. The purified swine adipose tissue phosphorylase, labeled with 32-P, was inactivated and dephosphorylated by the adipose tissue phosphatase. Dephosphorylation of both skeletal muscle and adipose tissue substrates was inhibited by AMP and glucose reversed this inhibition. Several lines of evidence suggest that AMP inhibition was due to an action on the substrate rather than on the enzyme. We have previously reported that the system for phosphorylase activation in rat fat cells differs in some important characteristics from that in skeletal muscle. However, both swine fat phosphorylase and phosphorylase phosphatase have major properties very similar to those described for the enzymes from skeletal muscle.  相似文献   

13.
That red muscle pyruvate kinase from anoxic Busycotypus canaliculatum (PK-anoxic) is a phosphoprotein was demonstrated by the anoxia-dependent, in vivo, covalent incorporation of injected [32P]orthophosphate into the enzyme molecule. Specificity in labelling of PK-anoxic was strongly suggested by: (a) coincidental elution of pyruvate kinase activity and radioactivity following chromatography of purified PK-anoxic on Sepharose CL-6B, and (b) comigration of the area containing [32P]phosphate and Coomassie-Blue-staining protein following SDS-polyacrylamide gel electrophoresis of homogenous PK-anoxic. The [32P]phosphate content of the enzyme was calculated to be 7.3 mol phosphate/mol enzyme (233 kDa, 180 units/mg protein). Evidence for the reversibility of this phosphorylation was provided by the consistent kinetic similarities between purified red muscle pyruvate kinase from aerobic animals (PK-aerobic) and homogenous, unlabelled, alkaline phosphatase treated PK-anoxic. Comparison of the electrophoretic mobilities of products derived from acid hydrolysis of purified 32P-labelled PK-anoxic with authentic substances suggest the presence of an O-phospho-L-threonine residue in the protein. That this residue plays a probable role in an interconversion mechanism was suggested by the lack of phosphate exchange of homogenous 32P-labelled PK-anoxic in the presence of all substrates. A possible role of protein phosphorylation as a mechanism for the overall control of molluscan anaerobic metabolism is suggested.  相似文献   

14.
Antibodies were raised against one cytoplasmic and two membrane-bound acid phosphatases purified from yam tubers (Dioscorea cayenensis rotundata). Experiments of immunoinactivation and immunoelectrophoresis revealed cross-immunological reactions between the cytoplasmic enzyme (acid phosphatase A) and one of two membrane-bound counterparts (acid phosphatase B) suggesting that these molecules share common antigenic determinants. The antibodies raised against the other membrane-bound enzyme (acid phosphatase C) only inhibited and precipitated this enzyme.  相似文献   

15.
The aim of this work was to investigate the effect of decreased cytosolic pyruvate kinase (PKc) on potato (Solanum tuberosum) tuber metabolism. Transgenic potato plants with strongly reduced levels of PKc were generated by RNA interference gene silencing under the control of a tuber-specific promoter. Metabolite profiling showed that decreased PKc activity led to a decrease in the levels of pyruvate and some other organic acids involved in the tricarboxylic acid cycle. Flux analysis showed that this was accompanied by changes in carbon partitioning, with carbon flux being diverted from glycolysis toward starch synthesis. However, this metabolic shift was relatively small and hence did not result in enhanced starch levels in the tubers. Although total respiration rates and the ATP to ADP ratio were largely unchanged, transgenic tubers showed a strong decrease in the levels of alternative oxidase (AOX) protein and a corresponding decrease in the capacity of the alternative pathway of respiration. External feeding of pyruvate to tuber tissue or isolated mitochondria resulted in activation of the AOX pathway, both in the wild type and the PKc transgenic lines, providing direct evidence for the regulation of AOX by changes in pyruvate levels. Overall, these results provide evidence for a crucial role of PKc in the regulation of pyruvate levels as well as the level of the AOX in heterotrophic plant tissue, and furthermore reveal that these parameters are interlinked in vivo.  相似文献   

16.
Potato tubers as a biofactory for recombinant antibodies   总被引:12,自引:0,他引:12  
Potato tubers have been successfully used for high-level production of a recombinant single-chain Fv (ScFv) antibody. Ubiquitous high-level expression was achieved under control of the CaMV 35S promoter through retention of the scFv protein in the endoplasmic reticulum. Recombinant antibodies accumulated up to 2% of total soluble tuber protein. After 1.5 years of tuber storage at 4 °C still half of the amount of scFv present in freshly harvested tubers was detectable. Its specific activity did not decrease during tuber storage. Recombinant protein could be efficiently purified from crude extracts by affinity chromatography.  相似文献   

17.
为探讨钙依赖性蛋白激酶(CDPK)在山药块茎淀粉及内源激素合成中的作用,该研究以‘毕克齐’和‘大和长芋’山药为试验材料,测定了块茎的淀粉、糖、内源激素含量等指标并进行相关性分析;采用RT-PCR技术克隆了钙依赖性蛋白激酶基因(CDPK20),并进行生物信息学分析,构建CDPK∶GFP融合载体,对CDPK蛋白进行亚细胞定位,实时荧光定量PCR对CDPK20在山药块茎不同发育时期的表达进行分析。结果表明:(1)CDPK20基因开放阅读框长为1 047 bp,共编码348个氨基酸。(2)CDPK20蛋白定位于细胞核和细胞膜。(3)CDPK20的表达量在块茎种植后的105~165 d呈现先升后降的趋势。(4)CDPK酶活性与淀粉含量呈极显著正相关,与可溶性总糖含量和还原糖呈显著负相关,与ABA呈极显著负相关,与ZR呈极显著正相关。研究表明,CDPK参与块茎中的淀粉和糖代谢及植物内源激素ABA、ZR的合成。  相似文献   

18.
Onyia, G. O. C. and Gahan, P. B. 1985. A quantitative cytochemicalstudy of glutamate and glucose-6-phosphate dehydrogenase activitiesduring chilling injury in tubers of Dioscorea rotundala Poir.—J.exp. Bot. 36: 1249–1256. The response of glucose-6-phosphate dehydrogenase and glutamatedehydrogenase activities in healthy Jamaican Dioscorea rotundalatubers and those chilled at 3 ?C for 1,2,3,4, and 7 d at 70%r.h. were assessed by quantitative cytochemical assays. Bothenzymes in chill-damaged tuber tissues showed a substantiallyhigher activity than did those of the healthy tubers. An early,sharp increase in the response of the NADP-tetrazolium reductasesystem of damaged tuber tissue was significantly higher (P =0.001) than that of healthy tubers or those chilled but ableto recover. This response may be used as an early marker ofchilling injury in the yam tuber. Key words: Dioscorea rotundata Poir, quantitative cytochemistry, yam tuber, glucose-6-phosphate, dehydrogenase, glutamate dehydrogenase, NADPitetrazolium reductase  相似文献   

19.
The efficacy of four biological control agents (BCAs): Trichoderma asperellum strain NGT158, T. longibrachiatum strain NGT167, Bacillus subtilis and Pseudomonas fluorescens for the management of post-harvest tuber rot among four yam species, Dioscorea rotundata, D. cayenensis, D. alata, and D. dumetorum was evaluated. Rotted yam tubers were collected across three agroecological zones in Nigeria to isolate six infecting fungal pathogens: Aspergillus niger, Lasiodiplodia theobromae, Rhizoctonia solani, Penicillium oxalicum, Fusarium oxysporum and Sclerotium rolfsii. The BCAs were isolated by serial dilution and rot inhibition of treated tubers was evaluated using destructive sampling method in vivo after six months of storage. Bacillus subtilis was generally most effective, especially when applied 24 h before the inoculation of test pathogens across the four yam species, with percent inhibition that ranged between 47.8 and 81.2%. However, the four BCAs showed good potential in the control of the fungal pathogens causing post-harvest yam rot.  相似文献   

20.
为了明确异淀粉酶基因(ISA 3)在山药淀粉代谢中的作用,该研究以‘毕克齐’和‘大和长芋’山药为试验材料,测定了块茎中淀粉及组分含量和异淀粉酶活性等;采用RT-PCR技术克隆了ISA 3,并进行生物学分析及山药块茎不同膨大期和不同组织间ISA 3基因的表达等。结果表明:(1)山药‘大和长芋’的直链淀粉、支链淀粉和总淀粉含量均显著高于‘毕克齐’,且两品种的淀粉含量随生长发育的变化均呈先升高后降低的趋势,并均于种植后120 d时达到最高,但‘毕克齐’的异淀粉酶(ISA)活性在整个膨大期均高于‘大和长芋’。(2)成功克隆获得山药ISA 3开放阅读框长1584 bp,编码527个氨基酸;ISA3为亲水性蛋白。(3)不同品种块茎在膨大时期的ISA 3基因表达趋势不同,‘毕克齐’中呈先显著上调随后下调,而在‘大和长芋’中表达总体下调,且在山药的叶、茎和块茎中均有表达,存在明显的组织特异性。(4)ISA活性与山药淀粉及支链淀粉含量呈显著和极显著正相关关系,但ISA活性与ISA 3的表达量呈负相关关系。研究表明,异淀粉酶参与了山药块茎中淀粉的合成,且主要对支链淀粉的合成起关键作用,ISA 3基因的表达可能对异淀粉酶活性和淀粉的合成起负调控作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号