首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interdimer processing mechanism of procaspase-8 activation   总被引:12,自引:0,他引:12  
Chang DW  Xing Z  Capacio VL  Peter ME  Yang X 《The EMBO journal》2003,22(16):4132-4142
The execution of apoptosis depends on the hierarchical activation of caspases. The initiator procaspases become autoproteolytically activated through a less understood process that is triggered by oligomerization. Procaspase-8, an initiator caspase recruited to death receptors, is activated through two cleavage events that proceed in a defined order to generate the large and small subunits of the mature protease. Here we show that dimerization of procaspase-8 produces enzymatically competent precursors through the stable homophilic interaction of the procaspase-8 protease domain. These dimers are also more susceptible to processing than individual procaspase-8 molecules, which leads to their cross-cleavage. The order of the two interdimer cleavage events is maintained by a sequential accessibility mechanism: the separation of the large and small subunits renders the region between the large subunit and prodomain susceptible to further cleavage. In addition, the activation process involves an alteration in the enzymatic properties of caspase-8; while procaspase-8 molecules specifically process one another, mature caspases only cleave effector caspases. These results reveal the key steps leading to the activation of procaspase-8 by oligomerization.  相似文献   

2.
To date, eight neurodegenerative disorders, including Huntington's disease and dentatorubral-pallidoluysian atrophy, have been identified to be caused by expansion of a CAG repeat coding for a polyglutamine (polyQ) stretch. It is, however, unclear how polyQ expansion mediates neuronal cell death observed in these disorders. Here, we have established a tetracycline-regulated expression system producing 19 and 56 repeats of glutamine fused with green fluorescent protein. Induced expression of the 56 polyQ, but not of the 19 polyQ stretch caused marked nuclear aggregation and apoptotic morphological changes of the nucleus. In vitro enzyme assays and Western blotting showed that polyQ56 expression sequentially activated initiator and effector caspases, such as caspase-8 or -9, and caspase-3, respectively. Furthermore, using cell-permeable fluorogenic substrate, the activation of caspase-3-like proteases was demonstrated in intact cells with aggregated polyQ. This is the first direct evidence that the expression of extended polyQ activates caspases and together with the previous findings that some of the products of genes responsible for CAG repeat diseases are substrates of caspase-3 indicates an important role of caspases in the pathogenesis of these diseases.  相似文献   

3.
Apoptosome: a platform for the activation of initiator caspases   总被引:1,自引:0,他引:1  
Apoptosome refers to the adaptor protein complex that mediates the activation of an initiator caspase at the onset of apoptosis. In mammalian cells, caspase-9, caspase-8, and caspase-2 rely on the apoptotic protease-activating factor 1 (Apaf-1)-apoptosome, death-inducing signaling complex (DISC), and PIDDosome, respectively, for activation. In Drosophila, activation of the caspase-9 homolog Dronc requires assembly of an apoptosome comprised of Dark/Hac-1/Dapaf-1. In Caenorhabditis elegans, activation of the caspase CED-3 is facilitated by the CED-4-apoptosome. Recent biochemical and structural investigation revealed significant insights into the assembly and function of the various apoptosomes. Nonetheless, conclusive mechanisms by which the initiator caspases are activated by the apoptosomes remain elusive. Several models have been proposed to explain the activation process. The induced proximity model summarizes the general process of initiator caspase activation. The proximity-driven dimerization model describes how initiator caspases respond to induced proximity and offers an explanation for their activation. Regardless of how initiator caspases are activated, enhanced activity must be correlated with altered active site conformation. The induced conformation model posits that the activated conformation for the active site of a given initiator caspase is attained through direct interaction with the apoptosome or through homo-oligomerization facilitated by the apoptosome.  相似文献   

4.
Regulated cell death and survival play important roles in neural development. Extracellular signals are presumed to regulate seven apparent caspases to determine the final structure of the nervous system. In the eye, the EGF receptor, Notch, and intact primary pigment and cone cells have been implicated in survival or death signals. An antibody raised against a peptide from human caspase 3 was used to investigate how extracellular signals controlled spatial patterning of cell death. The antibody crossreacted specifically with dying Drosophila cells and labelled the activated effector caspase Drice. It was found that the initiator caspase Dronc and the proapoptotic gene head involution defective were important for activation in vivo. Dronc may play roles in dying cells in addition to activating downstream effector caspases. Epistasis experiments ordered EGF receptor, Notch, and primary pigment and cone cells into a single pathway that affected caspase activity in pupal retina through hid and Inhibitor of Apoptosis Proteins. None of these extracellular signals appeared to act by initiating caspase activation independently of hid. Taken together, these findings indicate that in eye development spatial regulation of cell death and survival is integrated through a single intracellular pathway.  相似文献   

5.
In the present study, we provide evidence that procaspase-3 is a novel target of proteinase 3 (PR3) but not of human neutrophil elastase (HNE). Human mast cell clone 1 (HMC1) and rat basophilic leukemia (RBL) mast cell lines were transfected with PR3 or the inactive mutated PR3 (PR3S203A) or HNE cDNA. In both RBL/PR3 and HMC1/PR3, a constitutive activity of caspase-3 was measured with DEVD substrate, due to the direct processing of procaspase-3 by PR3. No caspase-3 activation was observed in cells transfected with the inactive PR3 mutant or HNE. Despite the high caspase-3 activity in RBL/PR3, no apoptosis was detected as demonstrated by an absence of 1) phosphatidylserine externalization, 2) mitochondria cytochrome c release, 3) upstream caspase-8 or caspase-9 activation, or 4) DNA fragmentation. In vitro, purified PR3 cleaved procaspase-3 into an active 22-kDa fragment. In neutrophils, the 22-kDa caspase-3 activation fragment was present only in resting neutrophils but was absent after apoptosis. The 22 kDa fragment was specific of myeloid cells because it was absent from resting lymphocytes. This 22-kDa fragment was not present when neutrophils were treated with pefabloc, an inhibitor of serine proteinase. Like in HMC1/PR3, the 22-kDa caspase-3 fragment was restricted to the plasma membrane compartment. Double immunofluorescence labeling after streptolysin-O permeabilization further showed that PR3 and procaspase-3 could colocalize in an extragranular compartment. In conclusion, our results strongly suggest that compartmentalized PR3-induced caspase-3 activation might play specific functions in neutrophil survival.  相似文献   

6.
Activation of an initiator caspase is essential to the execution of apoptosis. The molecular mechanisms by which initiator caspases are activated remain poorly understood. Here we demonstrate that the autocatalytic cleavage of Dronc, an important initiator caspase in Drosophila, results in a drastic enhancement of its catalytic activity in vitro. The autocleaved Dronc forms a homodimer, whereas the uncleaved Dronc zymogen exists exclusively as a monomer. Thus the autocatalytic cleavage in Dronc induces its stable dimerization, which presumably allows the two adjacent monomers to mutually stabilize their active sites, leading to activation. Crystal structure of a prodomain-deleted Dronc zymogen, determined at 2.5 A resolution, reveals an unproductive conformation at the active site, which is consistent with the observation that the zymogen remains catalytically inactive. This study revealed insights into mechanism of Dronc activation, and in conjunction with other observations, suggests diverse mechanisms for the activation of initiator caspases.  相似文献   

7.
Activated GTPases of the Rho family regulate a spectrum of functionally diverse downstream effectors, initiating a network of signal transduction pathways by interaction and activation of effector proteins. Although effectors are defined as proteins that selectively bind the GTP-bound state of the small GTPases, there have been also several indications for a nucleotide-independent binding mode. By characterizing the molecular mechanism of RhoA interaction with its effectors, we have determined the equilibrium dissociation constants of several Rho-binding domains of three different effector proteins (Rhotekin, ROCKI/ROK beta/p160ROCK, PRK1/PKNalpha where ROK is RhoA-binding kinase) for both RhoA.GDP and RhoA.GTP using fluorescence spectroscopy. In addition, we have identified two novel Rho-interacting domains in ROCKI, which bind RhoA with high affinity but not Cdc42 or Rac1. Our results, together with recent structural data, support the notion of multiple effector-binding sites in RhoA and strongly indicate a cooperative binding mechanism for PRK1 and ROCKI that may be the molecular basis of Rho-mediated effector activation.  相似文献   

8.
Activation of primary human T cells by anti-CD3 and interleukin-2 resulted in partial processing of procaspase-3 in activated nonapoptotic (Delta Psi(m)high) CD8(+) T cells but not in CD4(+) T cells. Apical caspases-8 and -9 were not activated, and Bid was not processed to truncated Bid. Boc-D.fmk, a broad spectrum caspase inhibitor, did not prevent this process, whereas GF.dmk, a selective inhibitor of dipeptidyl peptidase I, was effective. Dipeptidyl peptidase I is required for the activation of granule-associated serine proteases. It is enriched in the cytolytic granules of cytotoxic lymphocytes, where it promotes the proteolytic activation of progranzymes A and B. Inhibition of granzyme B (GrB)-like serine proteases by Z-AAD.cmk prevented partial processing of procapase-3, whereas inhibition of GrA activity by D-FPR.cmk had no effect. Specific inhibitors of other lysosomal proteases such as cathepsins B, L, and D did not interfere in this event. Patients with Chediak-Higashi syndrome or with perforin deficiency also displayed partial processing of procaspase-3, excluding the involvement of granule exocytosis for the delivery of the serine protease in cause. The p20/p12 processing pattern of procaspase-3 in our model points to GrB, the sole serine protease with caspase activity. Small amounts of GrB were indeed exported from cytolytic granules to the cytosol of a significant fraction of GrB-positive cells.  相似文献   

9.
Proteolytic activation of initiator procaspases is a crucial step in the cellular commitment to apoptosis. Alternative models have been postulated for the activation mechanism, namely the oligomerization or induced proximity model and the allosteric regulation model. While the former holds that procaspases become activated upon proper oligomerization by an adaptor protein, the latter states that the adaptor is an allosteric regulator for procaspases. The allosteric regulation model has been applied for the activation of procaspase-9 by apoptotic protease-activating factor (Apaf-1) in an oligomeric complex known as the apoptosome. Using approaches that allow for controlled oligomerization, we show here that aggregation of multiple procaspase-9 molecules can induce their activation independent of the apoptosome. Oligomerization-induced procaspase-9 activation, both within the apoptosome and in artificial systems, requires stable homophilic association of the protease domains, raising the possibility that the function of Apaf-1 is not only to oligomerize procaspase-9 but also to maintain the interaction of the caspase-9 protease domain after processing. In addition, we provide biochemical evidence that other apoptosis initiator caspases (caspase-2 and -10) as well as a procaspase involved in inflammation (murine caspase-11) are also activated by oligomerization. Thus, oligomerization of precursor molecules appears to be a general mechanism for the activation of both apoptosis initiator and inflammatory procaspases.  相似文献   

10.
Caspases are a family of cysteinyl proteases that control programmed cell death and maintain homeostasis in multicellular organisms. The caspase family is an excellent model to study protein evolution because all caspases are produced as zymogens (procaspases [PCPs]) that must be activated to gain full activity; the protein structures are conserved through hundreds of millions of years of evolution; and some allosteric features arose with the early ancestor, whereas others are more recent evolutionary events. The apoptotic caspases evolved from a common ancestor (CA) into two distinct subfamilies: monomers (initiator caspases) or dimers (effector caspases). Differences in activation mechanisms of the two subfamilies, and their oligomeric forms, play a central role in the regulation of apoptosis. Here, we examine changes in the folding landscape by characterizing human effector caspases and their CA. The results show that the effector caspases unfold by a minimum three-state equilibrium model at pH 7.5, where the native dimer is in equilibrium with a partially folded monomeric (PCP-7, CA) or dimeric (PCP-6) intermediate. In comparison, the unfolding pathway of PCP-3 contains both oligomeric forms of the intermediate. Overall, the data show that the folding landscape was first established with the CA and was retained for >650 million years. Partially folded monomeric or dimeric intermediates in the ancestral ensemble provide mechanisms for evolutionary changes that affect stability of extant caspases. The conserved folding landscape allows for the fine-tuning of enzyme stability in a species-dependent manner while retaining the overall caspase–hemoglobinase fold.  相似文献   

11.
Formation of the CD95 (APO-1/Fas) death inducing signaling complex (DISC) plays a central role in CD95 signaling. Previously, CD95 DISC composition was analyzed by two-dimensional gel electrophoresis and four major cytotoxicity-associated proteins (CAP1-4) were found. CAP1 and CAP2 were defined to be unmodified and phosphorylated FADD, respectively. CAP4 was identified as procaspase-8a. CAP3, however, has remained elusive. In this study, we demonstrate that CAP3 is an intermediate of procaspase-8 processing. CAP3 is generated within seconds of DISC formation and subsequently processed to the prodomain of procaspase-8a that is known as p26 (CAP5). These findings lead to new insights into the mechanism of procaspase-8 processing and apoptosis initiation.  相似文献   

12.
We have previously shown that procaspase-3 exists in a high molecular weight complex in neonatal rat brain. Here, we purify and identify the protein that interacts with procaspase-3 from rat neonatal cortex. We searched binding proteins to procaspase-3 from a cytosolic extract of neonatal rat brain using chromatogram, two-dimensional gel electrophoresis, and far Western immunoblot. Analysis by tandem mass spectrometry identified the protein as a regulatory subunit of calcineurin (calcineurin B). Overexpression of calcineurin B in HEK293 cells potentiated processing of caspase-3 and apoptosis triggered by tumor necrosis factor-alpha and cycloheximide treatment. In a cell-free system, overexpression of calcineurin B in HEK293 cells markedly increased processing of caspase-3 by cytochrome c. Immunodepletion of calcineurin B from cytosolic extracts from Jurkat cells decreased processing of caspase-3 by cytochrome c. Knockdown of calcineurin B by RNA interference resulted in reduced apoptosis in HEK293 cells but not in caspase-3-deficient MCF-7 cells. These results suggest that calcineurin B potentiates the activation of procaspase-3 by accelerating its proteolytic maturation.  相似文献   

13.
Activation of procaspase-9 on the apoptosome is a pivotal step in the intrinsic cell death pathway. We now provide further evidence that caspase recruitment domains of pc-9 and Apaf-1 form a CARD-CARD disk that is flexibly tethered to the apoptosome. In addition, a 3D reconstruction of the pc-9 apoptosome was calculated without symmetry restraints. In this structure, p20 and p10 catalytic domains of a single pc-9 interact with nucleotide binding domains of adjacent Apaf-1 subunits. Together, disk assembly and pc-9 binding create an asymmetric proteolysis machine. We also show that CARD-p20 and p20-p10 linkers play important roles in pc-9 activation. Based on the data, we propose a proximity-induced association model for pc-9 activation on the apoptosome. We also show that pc-9 and caspase-3 have overlapping binding sites on the central hub. These binding sites may play a role in pc-3 activation and could allow the formation of hybrid apoptosomes with pc-9 and caspase-3 proteolytic activities.  相似文献   

14.
Yin Q  Park HH  Chung JY  Lin SC  Lo YC  da Graca LS  Jiang X  Wu H 《Molecular cell》2006,22(2):259-268
Caspase-9 activation is critical for intrinsic cell death. The activity of caspase-9 is increased dramatically upon association with the apoptosome, and the apoptosome bound caspase-9 is the caspase-9 holoenzyme (C9Holo). In this study, we use quantitative enzymatic assays to fully characterize C9Holo and a leucine-zipper-linked dimeric caspase-9 (LZ-C9). We surprisingly show that LZ-C9 is more active than C9Holo for the optimal caspase-9 peptide substrate LEHD-AFC but is much less active than C9Holo for the physiological substrate procaspase-3. The measured Km values of C9Holo and LZ-C9 for LEHD-AFC are similar, demonstrating that dimerization is sufficient for catalytic activation of caspase-9. The lower activity of C9Holo against LEHD-AFC may be attributed to incomplete C9Holo assembly. However, the measured Km of C9Holo for procaspase-3 is much lower than that of LZ-C9. Therefore, in addition to dimerization, the apoptosome activates caspase-9 by enhancing its affinity for procaspase-3, which is important for procaspase-3 activation at the physiological concentration.  相似文献   

15.
Mutation and aberrant expression of apoptotic proteins are hallmarks of cancer. These changes prevent proapoptotic signals from being transmitted to executioner caspases, thereby averting apoptotic death and allowing cellular proliferation. Caspase-3 is the key executioner caspase, and it exists as an inactive zymogen that is activated by upstream signals. Notably, concentrations of procaspase-3 in certain cancerous cells are significantly higher than those in noncancerous controls. Here we report the identification of a small molecule (PAC-1) that directly activates procaspase-3 to caspase-3 in vitro and induces apoptosis in cancerous cells isolated from primary colon tumors in a manner directly proportional to the concentration of procaspase-3 inside these cells. We found that PAC-1 retarded the growth of tumors in three different mouse models of cancer, including two models in which PAC-1 was administered orally. PAC-1 is the first small molecule known to directly activate procaspase-3 to caspase-3, a transformation that allows induction of apoptosis even in cells that have defective apoptotic machinery. The direct activation of executioner caspases is an anticancer strategy that may prove beneficial in treating the many cancers in which procaspase-3 concentrations are elevated.  相似文献   

16.
Serpins are a superfamily of structurally conserved proteins. Inhibitory serpins use a suicide substrate-like mechanism. Some are able to inhibit cysteine proteases in cross-class inhibition. Here, we demonstrate for the first time the strong inhibition of initiator and effector caspases 3 and 8 by two purified bovine SERPINA3s. SERPINA 3-1 (uniprotkb:Q9TTE1) binds tighly to human CASP3 (uniprotkb:P42574) and CASP8 (uniprotkb:Q14790) with kass of 4.2 × 105 and 1.4 × 106 M−1 s−1, respectively. A wholly similar inhibition of human CASP3 and CASP8 by SERPINA3-3 (uniprotkb:Q3ZEJ6) was also observed with kass of 1.5 × 105 and 2.7 × 106 M−1 s−1, respectively and form SDS-stable complexes with both caspases. By site-directed mutagenesis of bovSERPINA3-3, we identified Asp371 as the potential P1 residue for caspases. The ability of other members of this family to inhibit trypsin and caspases was analysed and discussed.

Structured summary

MINT-7234656: CASP8 (uniprotkb:Q14790) and SERPINA3-1 (uniprotkb:Q9TTE1) bind (MI:0407) by biochemical (MI:0401)MINT-7234634: SERPINA3-3 (uniprotkb:Q3ZEJ6) and CASP3 (uniprotkb:P42574) bind (MI:0407) by biochemical (MI:0401)MINT-7234663: CASP8 (uniprotkb:Q14790) and SERPINA3-3 (uniprotkb:Q3ZEJ6) bind (MI:0407) by biochemical (MI:0401)MINT-7234625: SERPINA3-1 (uniprotkb:Q9TTE1) and CASP3 (uniprotkb:P42574) bind (MI:0407) by biochemical (MI:0401)  相似文献   

17.
HSP27 inhibits cytochrome c-dependent activation of procaspase-9.   总被引:25,自引:0,他引:25  
We have previously shown that the small heat shock protein HSP27 inhibited apoptotic pathways triggered by a variety of stimuli in mammalian cells. The present study demonstrates that HSP27 overexpression decreases U937 human leukemic cell sensitivity to etoposide-induced cytotoxicity by preventing apoptosis. As observed for Bcl-2, HSP27 overexpression delays poly(ADP-ribose)polymerase cleavage and procaspase-3 activation. In contrast with Bcl-2, HSP27 overexpression does not prevent etoposide-induced cytochrome c release from the mitochondria. In a cell-free system, addition of cytochrome c and dATP to cytosolic extracts from untreated cells induces the proteolytic activation of procaspase-3 in both control and bcl-2-transfected U937 cells but fails to activate procaspase-3 in HSP27-overexpressing cells. Immunodepletion of HSP27 from cytosolic extracts increases cytochrome c/dATP-mediated activation of procaspase-3. Overexpression of HSP27 also prevents procaspase-9 activation. In the cell-free system, immunodepletion of HSP27 increases LEDH-AFC peptide cleavage activity triggered by cytochrome c/dATP treatment. We conclude that HSP27 inhibits etoposide-induced apoptosis by preventing cytochrome c and dATP-triggered activity of caspase-9, downstream of cytochrome c release.  相似文献   

18.
Generation of Interleukin (IL)-1beta via cleavage of its proform requires the activity of caspase-1 (and caspase-11 in mice), but the mechanism involved in the activation of the proinflammatory caspases remains elusive. Here we report the identification of a caspase-activating complex that we call the inflammasome. The inflammasome comprises caspase-1, caspase-5, Pycard/Asc, and NALP1, a Pyrin domain-containing protein sharing structural homology with NODs. Using a cell-free system, we show that proinflammatory caspase activation and proIL-1beta processing is lost upon prior immunodepletion of Pycard. Moreover, expression of a dominant-negative form of Pycard in differentiated THP-1 cells blocks proIL-1beta maturation and activation of inflammatory caspases induced by LPS in vivo. Thus, the inflammasome constitutes an important arm of the innate immunity.  相似文献   

19.
The mitochondria have been shown to play a key role in the initiation of caspase activation during apoptosis. Recently, some caspases have been shown to be associated with mitochondria. In this study, we used Jurkat T-lymphoblasts to show that caspases -2 and -3 are located in the mitochondrial intermembrane space, associated with the inner membrane. Caspase-9 is associated with the outer membrane and is exposed to the cytosolic compartment. Caspase activation took place predominantly in the cytosol in response to Fas ligation, but staurosporine treatment led to caspase activation in both cytosol and mitochondria. In response to both Fas and staurosporine treatment, caspase processing could be detected earlier in cytosol than in mitochondria, but this could reflect the limits of sensitive detection by immunoblotting. Only trace amounts of Apaf-1 were found in association with the mitochondria. However, staurosporine treatment led to preferential auto-processing of caspase-9 associated with mitochondria. These findings suggest that mitochondrial caspases are regulated independently of the cytosolic pool of caspases. The data are also consistent with the notion of a caspase nucleation site associated with mitochondria. Using a stable transfected CEM cell line, we show that Bcl-2 suppressed caspase processing in both cytosolic and mitochondrial compartments in response to both staurosporine and Fas ligation.  相似文献   

20.
Leishmania are obligate intracellular protozoa in mammalian hosts. They infect and replicate within macrophages. Antileishmanial host defense is largely cell mediated. We conducted studies in vitro to investigate the ability of lymphocytes to activate macrophages for antileishmanial effects. Draining lymph node lymphocytes from C57BL/6 mice with cutaneous Leishmania tropica major infection were co-cultured in suspension with syngeneic, starch-elicited peritoneal macrophages infected in vitro with homologous parasites. In the presence of these effector lymphocytes, parasite replication was inhibited, and in some cases intracellular parasites were destroyed. In contrast, control lymphocytes from complete Freund's adjuvant-treated or Listeria-infected mice exerted no antileishmanial effects. Antileishmanial effects were greatest when Leishmania-sensitized lymphocytes were in direct contact with parasitized macrophages. Effector lymphocytes did not cause detectable damage to infected macrophages. Lymphocytes that induced the most profound antileishmanial effects in vitro were those obtained from mice entering a phase of spontaneous clinical resolution of their infections. We conclude that macrophages can be activated for microbicidal effects by direct contact with appropriately sensitized lymphocytes. This antigen-specific, contact-mediated lymphocyte effector mechanism may be important in host defense against certain intracellular microorganisms such as Leishmania.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号