首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Proliferation and differentiation of mammary epithelial cells are governed by hormonal stimuli, cell-cell, and cell-matrix interactions. Terminal differentiation of mammary epithelial cells depends upon the action of the lactogenic hormones, insulin, glucocorticoids, and prolactin that enable them to synthesize and secrete milk proteins. These differentiated cells are polarized and carry out vectorial transport of milk constituents across the apical plasma membrane. To gain additional insights into the mechanisms governing differentiation of mammary epithelial cells, we identified proteins whose expression distinguishes proliferating from differentiated mammary epithelial cells. For this purpose we made use of the HC11 mammary epithelial line, which is capable of differentiation in response to lactogenic hormones. Using two-dimensional gel electrophoresis and mass spectrometry, we found about 60 proteins whose expression levels changed in between these two differentiation states. Bioinformatic analysis revealed differential expression of cytoskeletal components, molecular chaperones and regulators of protein folding and stability, calcium-binding proteins, and components of RNA-processing pathways. The actin cytoskeleton is asymmetrically distributed in differentiated epithelial cells, and the identification of proteins involved in mRNA binding and localization suggests that asymmetry might in part be achieved by controlling cellular localization of mRNAs. The proteins identified provide insights into the differentiation of mammary epithelial cells and the regulation of this process.  相似文献   

11.
We have previously demonstrated that insulin-like growth factor binding protein-5 (IGFBP-5) is upregulated following treatment of the mouse mammary epithelial cell line HC11 with lactogenic hormones (dexamethasone, insulin, and prolactin-DIP). In addition, we have also shown that IGFBP-5 is upregulated in mammary epithelial cells in vivo during involution of the rodent mammary gland. We have, therefore, postulated that there may be a dual regulation of IGFBP-5 expression during the temporally separated processes of differentiation and apoptosis of mammary epithelial cells. To test this hypothesis further, we have used a phenotypically differentiated model, which comprises primary cultures of mouse mammary epithelial cells grown on a layer of EHS (Engelbreth-Holm-Swarm) extracellular matrix. We show that lactogenic hormone treatment (hydrocortisone, insulin, and prolactin-HIP) of these cultures induces the upregulation of IGFBP-5 thus replicating the results obtained with the HC11 cell line. In addition, following the induction of apoptosis in primary cultures of mammary epithelial cells by treatment with TGFbeta-3, IGFBP-5 expression is also upregulated. In parallel with this upregulation of IGFBP-5, there is also an increase in the levels of cleaved caspase-3, a well-characterized marker of cellular apoptosis. These findings confirm previous in vivo work demonstrating an increase in IGFBP-5 expression during involution of the mouse mammary gland. When HC11 cells are cultured under serum-free conditions (a well-characterized apoptotic insult in cell culture), there is also an increase in cleaved caspase-3 levels. Unexpectedly, in the presence of TGFbeta-3, caspase-3 levels are attenuated. In the presence of DIP, caspase-3 levels are also decreased in HC11 cells. As described previously, TGFbeta-3 inhibits beta-casein synthesis in HC11 cells. In the HC11 cell line (in contrast to primary cultures of mammary epithelial cells), there is no evidence for TGFbeta-3 induction of IGFBP-5 under either serum-free or DIP-supplemented conditions. We believe our data with primary cultures of mammary epithelial cells support the hypothesis of dual regulation of IGFBP-5 expression during both differentiation and apoptosis in the mammary gland and emphasizes the importance of using appropriate cell culture models to investigate such phenomena in this tissue. We discuss the possible implications of our observations in relation to the physiological processes of pregnancy, lactation, and involution in the mammary gland and the associated changes in mammary epithelial cell function.  相似文献   

12.
Three different receptor tyrosine kinases, epidermal growth factor (EGF), c-erbB-2/neu, and platelet-derived growth factor (PDGF) receptors, have been found to be present in the mouse mammary epithelial cell line HC11. We have investigated the consequences of receptor activation on the growth and differentiation of HC11 cells. HC11 cells are normal epithelial cells which maintain differentiation-specific functions. Treatment of the cells with the lactogenic hormones glucocorticoids and prolactin leads to the expression of the milk protein beta-casein. Activation of EGF receptor has a positive effect on cell growth and causes the cells to become competent for the lactogenic hormone response. HC11 cells respond optimally to the lactogenic hormone mixture and synthesize high levels of beta-casein only if they have been kept previously in a medium containing EGF. Transfection of HC11 cells with the activated rat neuT receptor results in the acquisition of competence to respond to the lactogenic hormones even if the cells are grown in the absence of EGF. The activation of PDGF receptor, through PDGF-BB, also stimulates the growth of HC11 cells. Cells kept only in PDGF do not become competent for lactogenic hormone induction. The results show that activation of the structurally related EGF and c-erbB-2/neu receptors, but not the PDGF receptor, allows the HC11 cells to subsequently respond optimally to lactogenic hormones.  相似文献   

13.
14.
CCAAT/Enhancer binding proteins (C/EBPs) play important roles in the regulation of cell growth and differentiation. This study investigated the expression and function of C/EBPbeta isoforms in the mouse mammary gland, mammary tumors, and a nontransformed mouse mammary epithelial cell line (HC11). C/EBPbeta mRNA levels are 2-5-fold higher in mouse mammary tumors derived from MMTV/c-neu transgenic mice compared with lactating and involuting mouse mammary gland. The "full-length" 38 kd C/EBPbeta LAP ("Liver-enriched Activator Protein") isoform is the predominant C/EBPbeta protein isoform in mammary tumor whole cell lysates, however, the truncated 20 kd C/EBPbeta LIP ("Liver-enriched Inhibitory Protein") isoform is also present at detectable levels (mean LAP:LIP ratio 5.3:1). The mammary tumor C/EBPbeta LAP:LIP ratio decreases 70% (from 5.3:1 to 1.6:1) when lysate preparation is switched from a rapid whole cell lysis protocol to a multistep nuclear/cytoplasmic fractionation protocol. In contrast to mammary tumors, only the C/EBPbeta LAP isoform is detectable in the mammary gland whole cell and nuclear lysates; the truncated "LIP" isoform is undetectable regardless of isolation protocol. Ectopic over expression of C/EBPbeta LIP or C/EBPbeta LAP did not alter HC11 growth rates. However, C/EBPbeta LIP over expressing HC11 cells (LAP:LIP ratio of approximately 1:1) exhibited a consistent 2-4 h delay in G(0)/S phase transition. C/EBPbeta LIP overexpressing HC11 cells did not express beta-casein mRNA (mammary epithelial cell differentiation marker) in response to lactogenic hormones. This defect in beta-casein expression was not corrected by carrying out the differentiation protocol in the presence of an artificial extracellular matrix. These results demonstrate that the "full-length" C/EBPbeta LAP isoform is the predominant C/EBPbeta protein isoform expressed in mouse mammary gland in vivo and mouse mammary epithelial cell cultures in vitro. C/EBPbeta LIP detected in mammary tumor lysates may result from in vivo production or ex vivo isolation-induced proteolysis of C/EBPbeta LAP. Ectopic overexpression of C/EBPbeta LIP (LAP:LIP ratio of approximately 1:1) inhibits mammary epithelial cell differentiation (beta-casein expression).  相似文献   

15.
We have investigated the effect of basic fibroblast growth factor (bFGF) and the related int-2 gene on the growth, transformation, and differentiation of HC11 mouse mammary epithelial cells. We show that in HC11 cells infected with int-2 retroviral expression vectors, the int-2 protein can function as a bFGF-like growth factor in stimulating: (a) HC11 cell proliferation in monolayer, (b) anchorage-independent growth in soft agar, and (c) soft agar growth of the bFGF-responsive SW13 tumor cell line. These effects are observed irrespective of whether the int-2 protein is expressed in its wild-type form or is linked to a signal peptide. A candidate bFGF receptor, which is the product of the flg gene and which may recognize the int-2 protein, is expressed at high levels in HC11 cells. Following epidermal growth factor or bFGF priming and subsequent treatment with lactogenic hormones, all of the int-2 infected and the parental HC11 cells synthesize similar levels of beta-casein. However, the autocrine expression of int-2 in HC11 cells abrogates their requirement for either exogenous epidermal growth factor or bFGF priming. These data suggest that, in HC11 cells, the growth factor activity of the int-2 gene is indistinguishable from that of bFGF and does not interfere with the mammary cell differentiation program associated with lactogenesis.  相似文献   

16.

Background  

Connective Tissue Growth Factor (CTGF/CCN2), a known matrix-associated protein, is required for the lactogenic differentiation of mouse mammary epithelial cells. An HC11 mammary epithelial cell line expressing CTGF/CCN2 was constructed to dissect the cellular responses to CTGF/CCN2 that contribute to this differentiation program.  相似文献   

17.
We have developed an image-based technique for signal pathway analysis, target validation, and compound screening related to mammary epithelial cell differentiation. This technique used the advantages of optical imaging and the HC11-Lux model system. The HC11-Lux cell line is a subclone of HC11 mammary epithelial cells transfected stably with a luciferase construct of the β-casein gene promoter (p-344/-1βc-Lux). The promoter activity was imaged optically in real time following lactogenic induction. The imaging signal intensity was closely correlated with that measured using a luminometer following protein extraction (R = 0.99, P < 0.0001) and consistent with the messenger RNA (mRNA) level of the endogenous β -casein gene. Using this technique, we examined the roles of JAK2/Stat5A, Raf-1/MEK/MAKP, and PI3K/Akt signal pathways with respect to differentiation. The imaging studies showed that treatment of the cells with epidermal growth factor (EGF), AG490 (JAK2-specific inhibitor), and LY294002 (PI3K-specific inhibitor) blocked lactogenic differentiation in a dose-dependent manner. PD98059 (MEK-specific inhibitor) could reverse EGF-mediated differentiation arrest. These results indicate that these pathways are essential in cell differentiation. This simple, sensitive, and reproducible technique permits visualization and real-time evaluation of the molecular events related to milk protein production. It can be adopted for high-throughput screening of small molecules for their effects on mammary epithelial cell growth, differentiation, and carcinogenesis.  相似文献   

18.
Mammary epithelial cells terminally differentiate in response to lactogenic hormones. We present evidence that oncoprotein overexpression is incompatible with this hormone-inducible differentiation and results in striking cellular morphological changes. In mammary epithelial cells in culture, lactogenic hormones (glucocorticoid and prolactin) activated a transfected beta-casein promoter and endogenous beta-casein gene expression. This response to lactogenic hormone treatment was paralleled by a decrease in cellular AP-1 DNA-binding activity. Expression of the mos, ras, or src (but not myc) oncogene blocked the activation of the beta-casein promoter induced by the lactogenic hormones and was associated with the maintenance of high levels of AP-1. Mos expression also increased c-fos and c-jun mRNA levels. Overexpression of Fos and Jun from transiently transfected constructs resulted in a functional inhibition of the glucocorticoid receptor in these mouse mammary epithelial cells. This finding clearly suggests that glucocorticoid receptor inhibition arising from oncogene expression will contribute to the block in hormonally induced mammary epithelial cell differentiation. Expression of Src resulted in the loss of the normal organization and morphological phenotype of mammary epithelial cells in the epithelial/fibroblastic line IM-2. Activation of a conditional c-fos/estrogen receptor gene encoding an estrogen-dependent Fos/estrogen receptor fusion protein also morphologically transformed mammary epithelial cells and inhibited initiation of mammary epithelial differentiation-associated expression of the beta-casein and WDNM 1 genes. In response to estrogen treatment, the cells displayed a high level of AP-1 DNA-binding activity. Our results demonstrate that high cellular AP-1 levels contribute to blocking the ability of mammary epithelial cells in culture to respond to lactogenic hormones. This and other studies indicate that the oncogene products Mos, Ras, and Src exert their effects, at least in part, by stimulating cellular Fos and probably cellular Jun activity.  相似文献   

19.
20.
The dynamic process of mammary ductal morphogenesis depends on regulated epithelial proliferation and extracellular matrix (ECM) turnover. Epithelial cell-matrix contact closely dictates epithelial proliferation, differentiation, and survival. Despite the fact that tissue inhibitors of metalloproteinases (Timps) regulate ECM turnover, their function in mammary morphogenesis is unknown. We have delineated the spatiotemporal expression of all Timps (Timp-1 to Timp-4) during discrete phases of murine mammary development. Timp mRNAs were abundant in mammary tissue, each displaying differential expression patterns with predominant localization in luminal epithelial cells. Timp-1 mRNA was unique in that its expression was limited to the stage at which epithelial proliferation was high. To assess whether Timp-1 promotes or inhibits epithelial cell proliferation we manipulated mammary Timp-1 levels, genetically and biochemically. Down-regulation of epithelial-derived Timp-1 in transgenic mice, by mouse mammary tumor virus promoter-directed Timp-1 antisense RNA expression, led to augmented ductal expansion and increased number of ducts (P < 0.004). In these transgenics the integrity of basement membrane surrounding epithelial ducts, as visualized by laminin-specific immunostaining, was breached. In contrast to these mice, ductal expansion was markedly attenuated in the proximity of implanted recombinant Timp-1-releasing pellets (rTIMP-1), without an increase in basement membrane deposition around migrating terminal end buds. Epithelial proliferation and apoptosis were measured to determine the basis of altered ductal expansion. Luminal epithelial proliferation was increased by 55% (P < 0.02) in Timp-1-reduced transgenic mammary tissue and, conversely, decreased by 38% (P < 0.02) in terminal end buds by implanted rTIMP-1. Epithelial apoptosis was minimal and remained unaffected by Timp-1 manipulations. We conclude that Timps have an integral function in mammary morphogenesis and that Timp-1 regulates mammary epithelial proliferation in vivo, at least in part by maintaining basement membrane integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号