首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the effect of different concentrations of 2-deoxy-d-glucose on the l-[U-14C]leucine, l-[1-14C]leucine and [1-14C]glycine metabolism in slices of cerebral cortex of 10-day-old rats. 2-deoxy-d-glucose since 0.5 mM concentration has inhibited significantly the protein synthesis from l-[U-14C]leucine and from [1-14C]glycine in relation to the medium containing only Krebs Ringer bicarbonate. Potassium 8.0 mM in incubation medium did not stimulate the protein synthesis compared to the medium containing 2.7 mM, and at 50 mM diminishes more than 2.5 times the protein synthesis compared to the other concentration. Only at the concentration of 5.0 mM, 2-deoxy-d-glucose inhibited the CO2 production and lipid synthesis from l-[U-14C] leucine. This compound did not inhibit either CO2 production, or lipid synthesis from [1-14C]glycine. Lactate at 10 mM and glucose 5.0 mM did not revert the inhibitory effect of 2-deoxy-d-glucose on the protein synthesis from l-[U-14C]leucine. 2-deoxy-d-glucose at 2.0 mM did not show any effect either on CO2 production, or on lipid synthesis from l-[U-14C]lactate 10 mM and glucose 5.0 mM.  相似文献   

2.
Summary The reaction conditions for the enzymatic production of l-cystathionine were optimized, using the two kinds of cystathionine -synthase, types I and II, which are abundant in cell-free extracts of Erwinia carotovora (IFO 3830) and Bacillus sphaericus (IFO 3526), respectively. Under the optimal conditions, 178 and 184 mM l-cystathionine (40 and 41 g per liter of the reaction mixture) were synthesized with conversion ratios of 89 and 92% with the Erwinia and Bacillus enzymes, respectively.Recipient of a JSPS Fellowship for Japanese Junior Scientists  相似文献   

3.
Leucine dehydrogenase (l-leucine: NAD+ oxidoreductase, deaminating, EC 1.4.1.9) has been purified to homogeneity from a moderate thermophilic bacterium, Bacillus stearothermophilus. Am improved method of preparative slab gel electrophoresis was used effectively to purify it. The enzyme has a molecular mass of about 300,000 and consists of six subunits with identical molecular mass (Mr, 49,000). The enzyme does not lose its activity by heat treatment at 70° C for 20 min, and incubation in the pH range of 5.5–10.0 at 55° C for 5 min. It is stable in 10 mM phosphate buffer (pH 7.2) containing 0.01% 2-mercaptoethanol at over 1 month, and is resistant to detergent and ethanol treatment. The enzyme catalyzes the oxidative deamination of branched-chain l-amino acids and the reductive amination of their keto analogs in the presence of NAD+ and NADH, respectively, as the coenzymes. The pH optima are 11 for the deamination of l-leucine, and 9.7 and 8.8 for the amination of -ketoisocaproate and -ketoisovalerate, respectively. The Michaelis constants were determined: 4.4 mM for l-leucine, 3.3 mM for l-valine, 1.4 mM for l-isoleucine and 0.49 mM for NAD+ in the oxidative deamination. The B. stearothermophilus enzyme shows similar catalytic properties, but higher activities than that from Bacillus sphaericus.Dedicated to Prof. Dr. G. Drews on the occasion of his 60th birthday  相似文献   

4.
A bacterial strain of Acinetobacter sp., which was capable of enzymatic production of pyruvate from lactate, was cultured in a 5-l reactor with a basal salt medium. After 14 h of fed-batch fermentation, 9.56 g l–1 cell concentration in the broth was obtained with 20 g l–1 (178 mM) sodium lactate and 4 g l–1 NH4Cl in the medium; and the biotransformation ability was 2.51 units ml–1. The cells were harvested from one reactor and then used for pyruvate production from lactate in the same reactor. l-lactate at a concentration about 527 mM was almost stoichiometrically converted to pyruvate in 28 h. After a total 42 h of cell culture and biotransformation, the transformative yield was about 0.72 g g–1 pyruvate from lactate and the rate of pyruvate production was calculated as 1.33 g l–1 h–1 during the process. The results suggested this simple enzymatic production of pyruvate from lactate should be a promising process and may bring a yield higher than that by microbial fermentation. By this process, the recovery of pyruvate from such a simple reaction liquid is relatively easy and inexpensive to perform.  相似文献   

5.
Corynebacterium glutamicum was genetically engineered to produce l-alanine from sugar under oxygen deprivation. The genes associated with production of organic acids in C. glutamicum were inactivated and the alanine dehydrogenase gene (alaD) from Lysinibacillus sphaericus was overexpressed to direct carbon flux from organic acids to alanine. Although the alaD-expressing strain produced alanine from glucose under oxygen deprivation, its productivity was relatively low due to retarded glucose consumption. Homologous overexpression of the gapA gene encoding glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in the alaD-expressing strain stimulated glucose consumption and consequently improved alanine productivity. In contrast gapA overexpression did not affect glucose consumption under aerobic conditions, indicating that oxygen deprivation engendered inefficient regeneration of NAD+ resulting in impaired GAPDH activity and reduced glucose consumption in the alanine-producing strains. Inactivation of the alanine racemase gene allowed production of l-alanine with optical purity greater than 99.5%. The resulting strain produced 98 g l−1 of l-alanine after 32 h in mineral salts medium. Our results show promise for amino acid production under oxygen deprivation.  相似文献   

6.
Glutaminase-free l-asparaginase is known to be an excellent anticancer agent. In the present study, statistically based experimental designs were applied to maximize the production of glutaminase-free l-asparaginase from Pectobacterium carotovorum MTCC 1428. Nine components of the medium were examined for their significance on the production of l-asparaginase using the Plackett–Burman experimental design. The medium components, viz., glucose, l-asparagine, KH2PO4, and MgSO4·7H2O, were screened based on their high confidence levels (P < 0.04). The optimum levels of glucose, l-asparagine, KH2PO4, and MgSO4·7H2O were found to be 2.076, 5.202, 1.773, and 0.373 g L−1, respectively, using the central composite experimental design. The maximum specific activity of l-asparaginase in the optimized medium was 27.88 U mg−1 of protein, resulting in an overall 8.3-fold increase in the production compared to the unoptimized medium.  相似文献   

7.
The use of a biological procedure for l-carnitine production as an alternative to chemical methods must be accompanied by an efficient and highly productive reaction system. Continuous l-carnitine production from crotonobetaine was studied in a cell-recycle reactor with Escherichia coli O44 K74 as biocatalyst. This bioreactor, running under the optimum medium composition (25 mM fumarate, 5 g/l peptone), was able to reach a high cell density (26 g dry weight/l) and therefore to obtain high productivity values (6.2 g l-carnitine l−1 h−1). This process showed its feasibility for industrial l-carnitine production. In addition, resting cells maintained in continuous operation, with crotonobetaine as the only medium component, kept their biocatalytic capacity for 4 days, but the biotransformation capacity decreased progressively when this particular method of cultivation was used. Received: 10 December 1998 / Received revision: 19 February 1999 / Accepted: 20 February 1999  相似文献   

8.
Individual nutrient salts were experimentally varied to determine the minimum requirements for efficient l(+)-lactate production by recombinant strains of Escherichia coli B. Based on these results, AM1 medium was formulated with low levels of alkali metals (4.5 mM and total salts (4.2 g l−1). This medium was equally effective for ethanol production from xylose and lactate production from glucose with average productivities of 18–19 mmol l−1 h−1 for both (initial 48 h of fermentation).  相似文献   

9.
The death rate ofMethanobacterium thermoautotrophicum strain Marburg upon exposure toN-methyl-N-nitro-N-nitrosoguanidine under anaerobic conditions was of the same order of magnitude as the death rates that have been reported forEscherichia coli. Cultures of the methanogenic bacterium, mutagenized by nitrosoguanidine-treatment and grown under non-selective conditions, yielded mutants resistant toDL-ethionine (30 mM) or to 2-bromoethane sulfonic acid (3.8 mM). No mutants were observed in untreated controls. Among 1500 clones obtained from nitrosoguanidine-treated cell suspensions there were 6 mutants requiring a single growth factor each, namelyl-leucine,l-phenylalanine, thiamine (2 mutants) or adenosine (2 mutants). Three mutant-strains were studied in more detail. They were genetically stable (no revertants among 109 cells), and wild type growth rates were restored by 5 mml-leucine, 0.4 mM adenosine and 0.03 mM thiamine, respectively.Abbreviations 2-BES 2-bromoethanesulfonic acid - MIC minimum inhibitory concentration  相似文献   

10.
Summary The effect of the herbicides MCPA, MCPB, mecoprop, dichlorprop, 2,4-D, 2,4-DB, and 2,4,5-T on l-lysine fermentation was investigated using a lysine-producing mutant of Corynebacterium glutamicum. Stimulation of l-lysine production by 6% to 36% was observed in shaken flask experiments when the test herbicides were added at a concentration of 5 · 10-4 M to growing cultures after 24 h of cultivation. The most effective stimulators were MCPA, mecoprop and dichlorprop.Detailed studies of the effect of MCPA (5 · 10-6 M to 5 · 10-3 M) showed that the degree of stimulation depended on medium composition and aeration. In the synthetic medium, maximum production of 50 g · l-1 lys · HCl occurred at 5 · 10-4 M MCPA and an oxygen transfer rate (OTR) of 1.97 g O2 · l-1 · h-1, while 61.7 g · l-1 of lys · HCL was formed at 5 · 10-3 M MCPA and an OTR of 3.75 g O2 · l-1 · h-1. In the amino-nitrogen rich medium, maximum production of 42 g · l-1 lys · HCl was observed at 5 · 10-6 M MCPA and an oxygen transfer rate of 1.5 g O2 · l-1 · h-1. Results from batch l-lysine fermentation in a fermenter showed similar stimulatory effects, with an optimal concentration of MCPA for l-lysine production of 5 · 10-5 M. Without herbicide addition, the test strain produced 16.25 g · l-1 of product and with addition of 5 · 10-5 M MCPA, the same strain produced 52.1 g · l-1 lys · HCl after 72 h of fermentation.Abbreviations MCPA 2-methyl-4-chlorophenoxyacetic acid - MCPB 2-methyl-4-chlorophenoxybutyric acid - mecoprop 2-methyl-4-chlorophenoxypropionic acid - dichlorprop 2,4-dichlorophenoxypropionic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - 2,4-DB 2,4-dichlorophenoxybutyric acid - 2,4,5-T 2,4,5-trichlorophenoxyacetic acid  相似文献   

11.
Mature zygotic embryos of Abies alba mull were placed on a modified MCM medium (basal medium-BM) with 2.2 M benzyladenine and 2.3 M kinetin to induce embryogenic suspensor masses (ESM). These ESM proliferated on induction medium supplemented with 0.2 M 2,4-dichlorophenoxyacetic acid. From 61 ESM lines induced, 36 are still in culture after 2 years, of which 18 show embryogenic potential indicated by spontaneous formation of globular somatic embryos on the proliferation medium supplemented with 500–1000 mg l-1 casein hydrolysate and 500 mg l-1 l-glutamine. ESMs from cell line 2/56 were conditioned 1 week on BM with 58 mM sucrose and 10 g l-1 activated charcoal for maturation of somatic embryos. Maturation was achieved on BM containing 20 M (±)cis-trans-abscisic acid in combination with 111 mM maltose. Organic nitrogen supplements improved the proliferation rate of cell line 2/56 as well as the maturation and vitality of the somatic embryos. Partial drying was necessary for subsequent root development. Plantlets with a root, primary needles and a terminal bud developed on BM when a combination of 30 mM sucrose and 50 mM maltose was provided as carbon source.Abbreviations BM basal medium - BA benzyladenine - ESM embryogenic suspensor mass - 2,4-d 2,4-dichlorophenoxyacetic acid - CH casein hydrolysate - l-gln l-glutamine - ABA (±) cis-trans-abscisic acid  相似文献   

12.
Summary Corynebacterium glutamicum ATCC 13 032 produces 13 g/l l-isoleucine from 200 mM -ketobutyrate as a synthetic precursor. In fed batch cultures up to 19 g/l l-isoleucine is formed. For optimal conversion the addition of 0.3 mM l-valine plus 0.3 mM l-leucine to the fermentation medium is required. The affinity constants for the acetohydroxy acid synthase (AHAS) were determined. (This enzyme directs the flow of -ketobutyrate plus pyruvate towards l-isoleucine and that of two moles of pyruvate to l-valine and l-leucine, respectively.) For -ketobutyrate the K m is 4.8×10-3 M, and V max 0.58 U/mg, for pyruvate the K m is 8.4×10-3 M, and V max 0.37 U/mg. Due to these characteristics the presence of high -ketobutyrate concentrations apparently results in a l-valine, l-leucine deficiency. This in turn leads to a derepression of the AHAS synthesis from 0.03 U/mg to 0.29 U/mg and high l-isoleucine production is favoured. The derepression of the AHAS synthesis induced by the l-valine, l-leucine shortage was directly proven with a l-valine, l-leucine, l-isoleucine auxotrophic mutant where the starvation of each amino acid resulted in an increased AHAS level. This is in accordance with the fact that only one AHAS enzyme could be verified by chromatographic and electrophoretic separations as being responsible for the synthesis of all three branched-chain amino-acids.  相似文献   

13.
Summary The present study was designed to determine whether antitumor activity of macrophages induced with OK-432 and cyclophosphamide was mainly dependent on their ability to produce a soluble factor, that is,l-arginine-dependent nitric oxide as measured by nitrite concentration. Nitrite production by peritoneal macrophages from NIH Swiss mice pretreated with OK-432 (125 KE/kg) i.p. twice at 1-week intervals and with cyclophosphamide (200 mg/kg) i.p. 2 days before the second OK-432 treatment, increased with time for 24 h, and proportionally depended on macrophage numbers. Nitrite production was inhibited by actinomycin D and puromycin but not by mitomycin C.N G-Monomethyl-l-arginine, a specific competitive inhibitor ofl-arginine-dependent nitric oxide synthesis, also inhibited production. There was a close correlation between nitrite production and antitumor activity in macrophages from mice pretreated with either OK-432 and cyclophosphamide, OK-432, or thioglycolate broth. OK-432 increased both nitrite production and antitumor activities when added to the macrophage from mice pretreated with OK-432 but not with thioglycolate broth. Both activities of macrophages from mice pretreated with OK-432 and cyclophosphamide were enhanced with increasing concentrations ofl-arginine (0.125–1 mM) in the culture medium.d-Arginine, however, did not substitute forl-arginine. Neither activity was affected by contact between the macrophage and the EL4 cell. The macrophage showed antitumor activity through a membrane filter though the activity was greatly reduced. This antitumor activity of macrophages through a membrane was also inhibited byN G-Monomethyl-l-arginine, and increased by OK-432. However, conditioned media, obtained by culturing macrophages induced with OK-432 and cyclophosphamide, inhibited growth of EL4 cells. This activity was carried out by dialysable and non-dialysable factors. One of the dialysable factors was nitrite, an oxidized product of nitric oxide. The antitumor activity of non-dialysable factors was heat-stable and production of factors was increased byN G-Monomethyl-l-arginine and OK-432. Also, non-dialysable factors increased both antitumor and nitrite production activities of OK-432-elicited macrophages, when incubated with factors. Such activity of factors was also heat-stable. The production of factors increased with incubation time of macrophages, and was not inhibited byN G-Monomethyl-l-arginine. These results indicate that in vitro antitumor activity of macrophages induced with OK-432 and cyclophosphamide was mainly dependent onl-arginine-dependent nitric oxide, and that macrophageassociated soluble factors other than nitric oxide were also needed to inhibit fully tumor growth in vitro.  相似文献   

14.
Summary The effect of (aminooxy)acetate, an inhibitor of aminotransferases, on the sulfate formation froml-cysteine andl-cysteinesulfinate in rat liver mitochondria was studied. Incubation of 10 mMl-cysteine with rat liver mitochondria at 37°C in the presence of 10 mM 2-oxoglutarate and 10 mM glutathione resulted in the formation of 4.60 and 1.52µmol of sulfate and thiosulfate, respectively, per 60 min per mitochondria obtained from 1 g of liver. Under the same conditions sulfate formation froml-cysteinesulfinate was 24.96µmol, but thiosulfate was not formed. The addition of (aminooxy)acetate at 2 mM or more completely inhibited the sulfate and thiosulfate formation froml-cysteine and the sulfate formation froml-cysteinesulfinate. These findings support our previous conclusion that cysteine transamination and 3-mercaptopyruvate pathway (MP pathway) are involved in the sulfate formation froml-cysteine in rat liver mitochondria (Ubuka et al., 1992).  相似文献   

15.
Three tryptophan-plus-tyrosine double auxotrophic mutants were isolated from a biotin-requiring glutamate-producingArthrobacter globiformis. The mutants were found to producel-phenylalanine in a mineral salt medium. Further improvement ofl-phenylalanine production was achieved by isolation of mutants resistant to β-2-thienylalanine from these double auxotrophs. Temperature of 30 °C and a 4% inoculum dose were found to be optimum for phenylalanine production. Addition of some trace salts does not enhance phenylalanine yield. Under optimal cultural conditions one mutant yielded 6.8 g phenylalanine per L medium in flask culture.  相似文献   

16.
A Corynebacterium glutamicum strain with inactivated pyruvate dehydrogenase complex and a deletion of the gene encoding the pyruvate:quinone oxidoreductase produces about 19 mM l-valine, 28 mM l-alanine and about 55 mM pyruvate from 150 mM glucose. Based on this double mutant C. glutamicumaceEpqo, we engineered C. glutamicum for efficient production of pyruvate from glucose by additional deletion of the ldhA gene encoding NAD+-dependent l-lactate dehydrogenase (LdhA) and introduction of a attenuated variant of the acetohydroxyacid synthase (△C–T IlvN). The latter modification abolished overflow metabolism towards l-valine and shifted the product spectrum to pyruvate production. In shake flasks, the resulting strain C. glutamicumaceEpqoldhA △C–T ilvN produced about 190 mM pyruvate with a Y P/S of 1.36 mol per mol of glucose; however, it still secreted significant amounts of l-alanine. Additional deletion of genes encoding the transaminases AlaT and AvtA reduced l-alanine formation by about 50%. In fed-batch fermentations at high cell densities with adjusted oxygen supply during growth and production (0–5% dissolved oxygen), the newly constructed strain C. glutamicumaceEpqoldhA △C–T ilvNalaTavtA produced more than 500 mM pyruvate with a maximum yield of 0.97 mol per mole of glucose and a productivity of 0.92 mmol g(CDW)−1 h−1 (i.e., 0.08 g g(CDW) −1 h−1) in the production phase.  相似文献   

17.
l-aspartate dehydrogenase (EC 1.4.1.21; l-AspDH) is a rare member of amino acid dehydrogenase superfamily and so far, two thermophilic enzymes have been reported. In our study, an ORF PA3505 encoding for a putative l-AspDH in the mesophilic bacterium Pseudomonas aeruginosa PAO1 was identified, cloned, and overexpressed in Escherichia coli. The homogeneously purified enzyme (PaeAspDH) was a dimeric protein with a molecular mass of about 28 kDa exhibiting a very high specific activity for l-aspartate (l-Asp) and oxaloacetate (OAA) of 127 and 147 U mg−1, respectively. The enzyme was capable of utilizing both nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) as coenzyme. PaeAspDH showed a T m value of 48°C for 20 min that was improved to approximately 60°C by the addition of 0.4 M NaCl or 30% glycerol. The apparent K m values for OAA, NADH, and ammonia were 2.12, 0.045, and 10.1 mM, respectively; comparable results were observed with NADPH. The l-Asp production system B consisting of PaeAspDH, Bacillus subtilis malate dehydrogenase and E. coli fumarase, achieved a high level of l-Asp production (625 mM) from fumarate in fed-batch process with a molar conversion yield of 89.4%. Furthermore, the fermentative production system C released 33 mM of l-Asp after 50 h by using succinate as carbon source. This study represented an extensive characterization of the mesophilic AspDH and its potential applicability for efficient and attractive production of l-Asp. Our novel production systems are also hopeful for developing the new processes for other compounds production.  相似文献   

18.
Plants were obtained via somatic embryogenesis in callus derived from in vitro raised leaf and petiole explants of Aconitum heterophyllum Wall. Callus was induced on a Murashige-Skoog medium supplemented with either 2,4-dichlorophenoxy acetic acid (2,4-d 1 mg l-1) and kinetin (KN 0.5 mg l-1) with coconut water (CW 10% v/v) or naphthalene acetic acid (NAA 5 mg l-1) and benzylaminopurine (BAP 1 mg l-1). Somatic embryos appeared after 2–3 months or 2 subculture passages when 2,4-d or NAA induced source of the callus was transferred to a MS medium containing BAP (1 mg l-1) and NAA (0.1 mg l-1). For successful plantlet formation, the somatic embryos were transferred to a medium containing 1/4 strength MS nutrient with indole-3-butyric acid (IBA 1 mg l-1). Alternatively, the somatic embryos were dipped in a concentrated solution of IBA for 5 min and placed on a hormone free medium. Complete plantlets were formed after 4 weeks and were transferred successfully to soil.CIMAP Publication No. 1020.  相似文献   

19.
Summary Dissected ampullae of Lorenzini of the skate (Raja clavata) were studied with the aim of determining the synaptic transmitter between electroreceptor cell and afferent fibre. Resting activity and stimulus-evoked activity in response to electrical pulses were recorded in single afferent units at constant perfusion with normal and test solutions containing different putative neurotransmitters. Presynaptic transmitter release was blocked by Mg2+ (up to 50 mM) to investigate the effects of the test substances upon the postsynaptic membrane. l-Glutamate (l-GLU) and l-aspartate (l-ASP), both at concentrations between 10-7 and 10-3 M, enlarged strongly resting and stimulus-evoked discharge frequency in the afferent fibre. If transmission was blocked by high Mg2+, resting discharge frequency could be restored by l-GLU or l-ASP. The glutamate agonists quisqualate (10-8–105 M) and N-methyl-D-aspartate (10-5–10-3 M) enlarged spontaneous activity in the afferent fiber. The same was found for kainic acid (10-9–10-5 M). Taurine at concentrations between 10-5 and 10-3 M caused a concentration-dependent decrease in afferent activity. The same was found for gammaaminobutyric acid (GABA; 10-5–10-4 M), and for the catecholamines adrenaline and noradrenaline, both in concentrations between 10-5 and 10-3 M. Serotonine (10-5–10-3 M) and dopamine (10-5-10-3 M) had no effect on resting or evoked activity in the Lorenzinian ampulla afferents. Acetylcholine (ACh; 10-4 M) enlarged discharge frequency in those units with initial rates lower than 22–25 Hz, but diminished discharge frequency in fibres with initial activity higher than 25 Hz. When synaptic transmission was blocked by high Mg2+ solution, perfusion with additional ACh did not restore resting activity in the afferent fibre. The results suggest that the most probable transmitter in the afferent synapse of the ampullae of Lorenzini is l-GLU or l-ASP, or a substance of similar nature.Abbreviations ACh acetylcholine - GABA gamma aminobutyric acid - KA kainic acid - l-ASP l-aspartate - l-GLU l-glutamate - NMDA N-methyl-D-aspartate - Q quisqualate - n.s. normal solution  相似文献   

20.
l-3,4-dihydroxyphenylalanine (l-DOPA) is an aromatic compound employed for the treatment of Parkinson's disease. Metabolic engineering was applied to generate Escherichia coli strains for the production of l-DOPA from glucose by modifying the phosphoenolpyruvate:sugar phosphotransferase system (PTS) and aromatic biosynthetic pathways. Carbon flow was directed to the biosynthesis of l-tyrosine (l-Tyr), an l-DOPA precursor, by transforming strains with compatible plasmids carrying genes encoding a feedback-inhibition resistant version of 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase, transketolase, the chorismate mutase domain from chorismate mutase-prephenate dehydratase from E. coli and cyclohexadienyl dehydrogenase from Zymomonas mobilis. The effects on l-Tyr production of PTS inactivation (PTS gluc+ phenotype), as well as inactivation of the regulatory protein TyrR, were evaluated. PTS inactivation caused a threefold increase in the specific rate of l-Tyr production (q l-Tyr), whereas inactivation of TyrR caused 1.7- and 1.9-fold increases in q l-Tyr in the PTS+ and the PTS gluc+ strains, respectively. An 8.6-fold increase in l-Tyr yield from glucose was observed in the PTS gluc+ tyrR strain. Expression of hpaBC genes encoding the enzyme 4-hydroxyphenylacetate 3-hydroxylase from E. coli W in the strains modified for l-Tyr production caused the synthesis of l-DOPA. One of such strains, having the PTS gluc+ tyrR phenotype, displayed the best production parameters in minimal medium, with a specific rate of l-DOPA production of 13.6 mg/g/h, l-DOPA yield from glucose of 51.7 mg/g and a final l-DOPA titer of 320 mg/l. In a batch fermentor culture in rich medium this strain produced 1.51 g/l of l-DOPA in 50 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号