首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L Yin  X Hu  D Xu  J Ning  J Chen  X Wang 《Metabolic engineering》2012,14(5):542-550
Threonine dehydratase and acetohydroxy acid synthase are critical enzymes in the l-isoleucine biosynthesis pathway of Corynebacterium glutamicum, but their activities are usually feedback-inhibited. In this study, we characterized a feedback-resistant threonine dehydratase and an acetohydroxy acid synthase from an l-isoleucine producing strain C. glutamicum JHI3-156. Sequence analysis showed that there was only a single amino acid substitution (Phe383Val) in the feedback-resistant threonine dehydratase, and there were three mutated amino acids (Pro176Ser, Asp426Glu, and Leu575Trp) in the big subunit of feedback-resistant acetohydroxy acid synthase. The mutated threonine dehydratase over-expressed in E. coli not only showed completely resistance to l-isoleucine inhibition, but also showed enhanced activity. The mutated acetohydroxy acid synthase over-expressed in E. coli showed more resistance to l-isoleucine inhibition than the wild type. Over-expression of the feedback-resistant threonine dehydratase or acetohydroxy acid synthase in C. glutamicum JHI3-156 led to increase of l-isoleucine production; co-expression of them in C. glutamicum JHI3-156 led to 131.7% increase in flask cultivation, and could produce 30.7g/L l-isoleucine in 72-h fed-batch fermentation. These results would be useful to enhance l-isoleucine production in C. glutamicum.  相似文献   

2.
In Corynebacterium glutamicum, acetohydroxy acid synthase (AHAS, encoded by ilvBN) is regulated by the end products in biosynthesis pathway, which catalyzes the first common reaction in the biosynthesis of branched-chain amino acids (BCAAs). In this study, conserved A42, A89 and K136 residues in AHAS regulatory subunit were chosen for site-directed mutagenesis, and the resulting mutations A42V, A89V and K136E exhibited higher resistance to inhibition by BCAAs than wild type AHAS. Furthermore, double-mutation was carried out on A42V, A89V and K136E mutations. Expectedly, A42V-A89V mutation exhibited nearly complete resistance to inhibition by all three BCAAs, which retained above 93% enzyme activity even at 10 mM. Strains were further studied to investigate the effects of over-expressing different mutant ilvBN on the biosynthesis of BCAAs. It was found that production of BCAAs was increased with the increase of resistance to BCAAs. However, the increase of isoleucine and leucine was slower than valine which showed a significant increase (up to 86.30 mM). Furthermore, strains harboring plasmids with different mutant ilvBN could significantly decrease production of alanine (main byproduct). This work gives additional understanding of roles of A42, A89 and K136 residues and makes the A42V, A89V, K136E and A42V-A89V mutations a good starting point for further development by protein engineering.  相似文献   

3.
We have reported increased glutamate production by a mutant of Corynebacterium glutamicum ATCC14067 (strain F172-8) with reduced H(+)-ATPase activity under biotin-limiting culture conditions (Aoki et al. Biosci. Biotechnol. Biochem., 69, 1466-1472 (2005)). In the present study, we examined valine production by an H(+)-ATPase-defective mutant of C. glutamicum. Using the double-crossover chromosome replacement technique, we constructed a newly defined H(+)-ATPase-defective mutant from ATCC13032. After transforming the new strain (A-1) with a C-terminal truncation of acetohydroxyacid synthase gene (ilvBN), valine production increased from 21.7 mM for the wild-type strain to 46.7 mM for the A-1 in shaking flask cultures with 555 mM glucose. Increased production of the valine intermediate acetoin was also observed in A-1, and was reduced by inserting acetohydroxyacid isomeroreductase gene (ilvC) into the ilvBN plasmid. After transformation with this new construct, valine production increased from 38.3 mM for the wild-type strain to 95.7 mM for A-1 strain. To the best of our knowledge, this is the first report indicating that an H(+)-ATPase-defective mutant of C. glutamicum is capable of valine production. Our combined results with glutamate and valine suggest that the H(+)-ATPase defect is also effective in the fermentative production of other practical compounds.  相似文献   

4.
Glutamic acid production with gel-entrapped Corynebacterium glutamicum   总被引:1,自引:0,他引:1  
A glutamic acid producing microorganism (Corynebacterium glutamicum) is entrapped in a polyacrylamide gel. These immobilized microorganisms were used to produce glutamic acid in successive batches of fresh medium. Free microorganisms similarly used produced much less glutamic acid under similar conditions.  相似文献   

5.
Corynebacterium glutamicum is well-known as an industrial workhorse, most notably for its use in the bulk production of amino acids in the feed and food sector. Previous studies of the effect of gradients in scale-down reactors with complex media disclosed an accumulation of several carboxylic acids and a parallel decrease of growth and product accumulation. This study, therefore, addresses the impact of carboxylic acids, for example, acetate and l -lactate, on the cultivation of the cadaverine producing strain C. glutamicum DM1945Δact3:Ptuf-ldcCopt and their potential role in scale up related performance losses. A fluctuating power input in shake flask and stirred tank cultivations with mineral salt was applied to mimic discontinuous oxygen availability. Results demonstrate, whenever sufficient oxygen was available, C. glutamicum recovered from previously occurring stressful conditions like an oxygen limiting phase. Reassimilation of acids was detected simultaneously. In cultures, which were supplemented with either acetate or l -lactate, a rapid cometabolization of both acids in presence of glucose was observed, showing conversion rates of 7.8 and 3.8 mmol gcell dry weight−1 hr−1, respectively. Uptake of these acids was accompanied by increased oxygen consumption. Proteins related to oxidative stress response, glycogen synthesis, and the main carbon metabolism were found in altered concentrations under oscillatory cultivation conditions. (Proteomics data are available via ProteomeXchange with identifier PXD012760). Virtually no impact on growth or product formation was observed. We conclude that the reduced growth and product formation in scale-down cultivations when complex media was used is not caused by the accumulation of carboxylic acids.  相似文献   

6.
7.
The production of L-glutamic acid with Corynebacterium glutamicum under biotin limitation was studied. Assuming a formal type of cell maturation, an adequate formal kinetic model was developed. This model includes growth, dependent on biotin, and uses the same retention term for describing the lag phase and cell maturation. Special attention was paid to the graphical interpretation of the performance between the variables, which is relevant for kinetics. Comparison between experiments and the model resulted in different degrees of agreement. However, the main trend of the experimental patterns of the complex bioprocess can clearly be mirrored in this model.  相似文献   

8.
The production of isobutanol in microorganisms has recently been achieved by harnessing the highly active 2-keto acid pathways. Since these 2-keto acids are precursors of amino acids, we aimed to construct an isobutanol production platform in Corynebacterium glutamicum, a well-known amino-acid-producing microorganism. Analysis of this host’s sensitivity to isobutanol toxicity revealed that C. glutamicum shows an increased tolerance to isobutanol relative to Escherichia coli. Overexpression of alsS of Bacillus subtilis, ilvC and ilvD of C. glutamicum, kivd of Lactococcus lactis, and a native alcohol dehydrogenase, adhA, led to the production of 2.6 g/L isobutanol and 0.4 g/L 3-methyl-1-butanol in 48 h. In addition, other higher chain alcohols such as 1-propanol, 2-methyl-1-butanol, 1-butanol, and 2-phenylethanol were also detected as byproducts. Using longer-term batch cultures, isobutanol titers reached 4.0 g/L after 96 h with wild-type C. glutamicum as a host. Upon the inactivation of several genes to direct more carbon through the isobutanol pathway, we increased production by ∼25% to 4.9 g/L isobutanol in a ∆pycldh background. These results show promise in engineering C. glutamicum for higher chain alcohol production using the 2-keto acid pathways.  相似文献   

9.
A spontaneous leu-linked mutation (ilvH2015) in Escherichia coli K-12 made the strain resistant to 1 mM valine and l mM glycylvaline (Val-r) and caused the isoleucine and valine biosynthetic enzyme, acetohydroxy acid synthase, to be less sensitive to feedback inhibition by valine than the wild-type enzyme. Transfer of the ilvDAC deletion into a strain carrying ilvH2015 abolished the effect of the marker on the acetohydroxy acid synthase and rendered it as sensitive to valine as the enzyme in the isogenic control strain without the Val-r marker under both repressing and limiting conditions. In contrast, auxotrophy caused by transfer of an ilvC lesion into the Val-r strain did not interfere with the effect of ilvH2015 on valine sensitivity of acetohydroxy acid synthase. In addition, the presence of the Val-r marker produced minor but significant pleiotropic effects on several other isoleucine and valine biosynthetic enzymes but did not cause derepression of the ilv gene cluster. These studies suggest some type of interaction between a product produced by a gene close to leu and the isoleucine and valine biosynthetic enzymes.  相似文献   

10.
Here, we report the engineering of the industrially relevant Corynebacterium glutamicum for putrescine production. C. glutamicum grew well in the presence of up to 500 mM of putrescine. A reduction of the growth rate by 34% and of biomass formation by 39% was observed at 750 mM of putrescine. C. glutamicum was enabled to produce putrescine by heterologous expression of genes encoding enzymes of the arginine- and ornithine decarboxylase pathways from Escherichia coli. The results showed that the putrescine yield by recombinant C. glutamicum strains provided with the arginine-decarboxylase pathway was 40 times lower than the yield by strains provided with the ornithine decarboxylase pathway. The highest production efficiency was reached by overexpression of speC, encoding the ornithine decarboxylase from E. coli, in combination with chromosomal deletion of genes encoding the arginine repressor ArgR and the ornithine carbamoyltransferase ArgF. In shake-flask batch cultures this strain produced putrescine up to 6 g/L with a space time yield of 0.1 g/L/h. The overall product yield was about 24 mol% (0.12 g/g of glucose).  相似文献   

11.
12.
A critical factor in the biotechnological production of succinic acid with Corynebacterium glutamicum is the sufficient supply of NADH. It is conceivable that cofactor availability and the proportion of cofactor in the active form may play an important role in dictating the succinic acid yield. PntAB genes from Escherichia coli can directly catalyze the reversible hydride transfer and adjust the dynamic balance between NADP(H) and NAD(H). Hence, we studied the physiological effect of coenzyme systems by expressing the membrane‐bound transhydrogenase pntAB genes. We have shown experimentally that the pntAB genes could function as an alternative source of NADH. In an anaerobic fermentation with C. glutamicum NC‐3‐pntAB, a 16% higher succinic acid yield and a 57% higher production from glucose were obtained by pntAB expression. Moreover, the formation of by‐products was significantly decreased. The concomitant increase in the consumption of intracellular NADPH from 0.6 to 1.2 mmol/g CDW and the increased NADH/NAD+ ratio resulted from introduction of pntAB, suggesting that the membrane‐bound transhydrogenase converted excess NADPH to NADH for succinic acid production. Finally, we explored whether the transhydrogenase had different effects on the succinic acid formation on different carbon sources. The succinic acid yield was increased in the presence of pntAB by 16% on glucose, 7% on sucrose, and without large influence on fructose and xylose. The results of this study demonstrated that the effectiveness of cofactor manipulation could be a promising strategy applied in metabolic engineering. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:12–19, 2015  相似文献   

13.
An aqueous polyethylene glycol/salt two-phase system was used to estimate the dissociation constant, Kdis, of the Escherichia coli isoenzyme AHAS III regulatory subunit, IlvH protein, from the feedback inhibitor valine. The amounts of the bound and free radioactive valine in the system were determined. A Scatchard plot of the data revealed a 1:1 valine–protein binding ratio and Kdis of 133±14 μM. The protein did not bind leucine, and the ilvH protein isolated from a valine resistant mutant showed no valine binding. This method is very simple, rapid and requires only a small amounts of protein compared to the presently used equilibrium dialysis method.  相似文献   

14.
Inhibition of acetohydroxy acid synthase by leucine   总被引:5,自引:0,他引:5  
The enzymatic reaction of acetohydroxy acid synthase in crude extracts of Escherichia coli K-12 is inhibited by leucine. Inhibition is most pronounced at low pH values and is low at pH values higher than 8.0. Both isoenzymes of acetohydroxy acid synthase present in E. coli K-12 (isoenzyme I and isoenzyme III) are inhibited by leucine. Isoenzyme I, which is responsible for the majority of acetohydroxy acid synthase activity in E. coli K-12 at physiological pH, is inhibited almost completely by 30 mM leucine at pH 6.25-7.0 and is not affected at all at pH values higher than 8.4. Inhibition of isoenzyme I by leucine is a mixed noncompetitive process. Leucine inhibition of isoenzyme III is pH-independent and reaches only 40% at 30 mM leucine. The inhibition of acetohydroxy acid synthase by leucine at physiological pH, observed in vitro in this study, correlates with the idea that acetohydroxy acid synthase is a target for the toxicity of the abnormally high concentrations of leucine in E. coli K-12.  相似文献   

15.
16.
ALA (5-aminolevulinic acid) is an important intermediate in the synthesis of tetrapyrroles and the use of ALA has been gradually increasing in many fields, including medicine and agriculture. In this study, improved biological production of ALA in Corynebacterium glutamicum was achieved by overexpressing glutamate-initiated C5 pathway. For this purpose, copies of the glutamyl t-RNA reductase HemA from several bacteria were mutated by site-directed mutagenesis of which a HemA version from Salmonella typhimurium exhibited the highest ALA production. Cultivation of the HemA-expressing strain produced approximately 204 mg/L of ALA, while co-expression with HemL (glutamate-1-semialdehyde aminotransferase) increased ALA concentration to 457 mg/L, representing 11.6- and 25.9-fold increases over the control strain (17 mg/L of ALA). Further effects of metabolic perturbation were investigated, leading to penicillin addition that further improves ALA production to 584 mg/L. In an optimized flask fermentation, engineered C. glutamicum strains expressing the HemA and hemAL operon produced up to 1.1 and 2.2 g/L ALA, respectively, under glutamate-producing conditions. The final yields represent 10.7- and 22.0-fold increases over the control strain (0.1 g/L of ALA). From these findings, ALA biosynthesis from glucose was successfully demonstrated and this study is the first to report ALA overproduction in C. glutamicum via metabolic engineering.  相似文献   

17.
Production of L-glutamic acid with Corynebacterium glutamicum, under biotin limitation was studied. On the base of formal kinetic approach, a mathematical model was developed, which included formal growth inhibition with product, and production repression with substrate. For the testing of computer simulations experiments were carried out and the results have been compared.  相似文献   

18.
We recently engineered Corynebacterium glutamicum for aerobic production of 2-ketoisovalerate by inactivation of the pyruvate dehydrogenase complex, pyruvate:quinone oxidoreductase, transaminase B, and additional overexpression of the ilvBNCD genes, encoding acetohydroxyacid synthase, acetohydroxyacid isomeroreductase, and dihydroxyacid dehydratase. Based on this strain, we engineered C. glutamicum for the production of isobutanol from glucose under oxygen deprivation conditions by inactivation of l-lactate and malate dehydrogenases, implementation of ketoacid decarboxylase from Lactococcus lactis, alcohol dehydrogenase 2 (ADH2) from Saccharomyces cerevisiae, and expression of the pntAB transhydrogenase genes from Escherichia coli. The resulting strain produced isobutanol with a substrate-specific yield (YP/S) of 0.60 ± 0.02 mol per mol of glucose. Interestingly, a chromosomally encoded alcohol dehydrogenase rather than the plasmid-encoded ADH2 from S. cerevisiae was involved in isobutanol formation with C. glutamicum, and overexpression of the corresponding adhA gene increased the YP/S to 0.77 ± 0.01 mol of isobutanol per mol of glucose. Inactivation of the malic enzyme significantly reduced the YP/S, indicating that the metabolic cycle consisting of pyruvate and/or phosphoenolpyruvate carboxylase, malate dehydrogenase, and malic enzyme is responsible for the conversion of NADH+H+ to NADPH+H+. In fed-batch fermentations with an aerobic growth phase and an oxygen-depleted production phase, the most promising strain, C. glutamicum ΔaceE Δpqo ΔilvE ΔldhA Δmdh(pJC4ilvBNCD-pntAB)(pBB1kivd-adhA), produced about 175 mM isobutanol, with a volumetric productivity of 4.4 mM h−1, and showed an overall YP/S of about 0.48 mol per mol of glucose in the production phase.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号