首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.

Objectives

To improve 1,3-propanediol (1,3-PD) production and reduce byproduct concentration during the fermentation of Klebsiella pneumonia.

Results

Klebsiella. pneumonia 2-1ΔldhA, K. pneumonia 2-1ΔaldH and K. pneumonia 2-1ΔldhaldH mutant strains were obtained through deletion of the ldhA gene encoding lactate dehydrogenase required for lactate synthesis and the aldH gene encoding acetaldehyde dehydrogenase involved in the synthesis of ethanol. After fed-batch fermentation, the production of 1,3-PD from glycerol was enhanced and the concentrations of byproducts were reduced compared with the original strain K. pneumonia 2-1. The maximum yields of 1,3-PD were 85.7, 82.5 and 87.5 g/l in the respective mutant strains.

Conclusion

Deletion of either aldH or ldhA promoted 1,3-PD production in K. pneumonia.
  相似文献   

2.

Objective

To investigate green synthesis of gold nanoparticles (AuNPs) by Trichosporon montevideense, and to study their reduction of nitroaromatics.

Results

AuNPs had a characteristic absorption maximum at 535 nm. Scanning electron microscopy images revealed that the biosynthesized nanoparticles were attached on the cell surface. X-ray diffraction analysis indicated that the particles formed as face-centered cubic (111)-oriented crystals. The average size of AuNPs decreased from 53 to 12 nm with increasing biomass concentration. The catalytic reduction of 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, o-nitrophenylamine and m-nitrophenylamine (0.1 mM) by NaBH4 had reaction rate constants of 0.32, 0.44, 0.09, 0.24 and 0.39 min?1 with addition of 1.45 × 10?2 mM AuNPs.

Conclusions

An eco-friendly approach for synthesis of AuNPs by T. montevideense is reported for the first time. The biogenic AuNPs could serve as efficient catalysts for hydrogenation of various nitroaromatics.
  相似文献   

3.

Objective

To improve the production of trans-10,cis-12-conjugated linoleic acid (t10,c12-CLA) from linoleic acid in recombinant Yarrowia lipolytica.

Results

Cells of the yeast were permeabilized by freeze/thawing. The optimal conditions for t10,c12-CLA production by the permeabilized cells were at 28 °C, pH 7, 200 rpm with 1.5 g sodium acetate l?1, 100 g wet cells l?1, and 25 g LA l?1. Under these conditions, the permeabilized cells produced 15.6 g t10,c12-CLA l?1 after 40 h, with a conversion yield of 62 %. The permeabilized cells could be used repeatedly for three cycles, with the t10,c12-CLA extracellular production remaining above 10 g l?1.

Conclusion

Synthesis of t10,c12-CLA was achieved using a novel method, and the production reported in this work is the highest value reported to date.
  相似文献   

4.

Objectives

To enhance acid tolerance of Candida glabrata for pyruvate production by engineering AMP metabolism.

Results

The physiological function of AMP deaminase in AMP metabolism from C. glabrata was investigated by deleting or overexpresseing the corresponding gene, CgAMD1. At pH 4, CgAMD1 overexpression resulted in 59 and 51% increases in biomass and cell viability compared to those of wild type strain, respectively. In addition, the intracellular ATP level of strain Cgamd1Δ/CgAMD1 was down-regulated by 22%, which led to a 94% increase in pyruvate production. Further, various strengths of CgAMD1 expression cassettes were designed, thus resulting in a 59% increase in pyruvate production at pH 4. Strain Cgamd1Δ/CgAMD1 (H) was grown in a 30 l batch bioreactor at pH 4, and pyruvate reached 46.1 g/l.

Conclusion

CgAMD1 overexpression plays an active role in improving acid tolerance and pyruvate fermentation performance of C. glabrata at pH 4.
  相似文献   

5.

Objectives

To develop a new vector for constitutive expression in Pichia pastoris based on the endogenous glycolytic PGK1 promoter.

Results

P. pastoris plasmids bearing at least 415 bp of PGK1 promoter sequences can be used to drive plasmid integration by addition at this locus without affecting cell growth. Based on this result, a new P. pastoris integrative vector, pPICK2, was constructed bearing some features that facilitate protein production in this yeast: a ~620 bp PGK1 promoter fragment with three options of restriction sites for plasmid linearization prior to yeast transformation: a codon-optimized α-factor secretion signal, a new polylinker, and the kan marker for vector propagation in bacteria and selection of yeast transformants.

Conclusions

A new constitutive vector for P. pastoris represents an alternative platform for recombinant protein production and metabolic engineering purposes.
  相似文献   

6.

Objectives

N-Acetyl-d-neuraminic acid (Neu5Ac) is often synthesized from exogenous N-acetylglucosamine (GlcNAc) and excess pyruvate. We have previously constructed a recombinant Escherichia coli strain for Neu5Ac production using GlcNAc and intracellular phosphoenolpyruvate (PEP) as substrates (Zhu et al. Biotechnol Lett 38:1–9, 2016).

Results

PEP synthesis-related genes, pck and ppsA, were overexpressed within different modes to construct PEP-supply modules, and their effects on Neu5Ac production were investigated. All the PEP-supply modules enhanced Neu5Ac production. For the best module, pCDF-pck-ppsA increased Neu5Ac production to 8.6 ± 0.15 g l?1, compared with 3.6 ± 0.15 g l?1 of the original strain. Neu5Ac production was further increased to 15 ± 0.33 g l?1 in a 1 l fermenter.

Conclusions

The PEP-supply module can improve the intracellular PEP supply and enhance Neu5Ac production, which benefited industrial Neu5Ac production.
  相似文献   

7.

Aims

To identify Rhizobium strains’ ability to biocontrol Sclerotium rolfsii, a fungus that causes serious damage to the common bean and other important crops, 78 previously isolated rhizobia from common bean were assessed.

Methods

Dual cultures, volatiles, indole-acetic acid (IAA), siderophore production and 16S rRNA sequencing were employed to select strains for pot and field experiments.

Results

Thirty-three antagonistic strains were detected in dual cultures, 16 of which were able to inhibit ≥84% fungus mycelial growth. Antagonistic strains produced up to 36.5 μg mL?1 of IAA, and a direct correlation was verified between IAA production and mycelium inhibition. SEMIA 460 inhibited 45% of mycelial growth through volatile compounds. 16S rRNA sequences confirmed strains as Rhizobium species. In pot condition, common bean plants grown on S. rolfsii-infested soil and inoculated with SEMIA 4032, 4077, 4088, 4080, 4085, or 439 presented less or no disease symptoms. The most efficient strains under field conditions, SEMIA 439 and 4088, decreased disease incidence by 18.3 and 14.5% of the S. rolfsii-infested control.

Conclusions

Rhizobium strains could be strong antagonists towards S. rolfsii growth. SEMIA 4032, 4077, 4088, 4080, 4085, and 439 are effective in the biological control of the collar rot of the common bean.
  相似文献   

8.

Background and aims

Layered profiles of designed soils may provide long-term benefits for green roofs, provided the vegetation can exploit resources in the different layers. We aimed to quantify Sedum root foraging for water and nutrients in designed soils of different texture and layering.

Methods

In a controlled pot experiment we quantified the root foraging ability of the species Sedum album (L.) and S. rupestre (L.) in response to substrate structure (fine, coarse, layered or mixed), vertical fertiliser placement (top or bottom half of pot) and watering (5, 10 or 20 mm week?1).

Results

Water availability was the main driver of plant growth, followed by substrate structure, while fertiliser placement only had marginal effects on plant growth. Root foraging ability was low to moderate, as also reflected in the low proportion of biomass allocated to roots (5–13%). Increased watering reduced the proportion of root length and root biomass in deeper layers.

Conclusions

Both S. album and S. rupestre had a low ability to exploit water and nutrients by precise root foraging in substrates of different texture and layering. Allocation of biomass to roots was low and showed limited flexibility even under water-deficient conditions.
  相似文献   

9.

Objective

To test the inactivation of the antibiotic, virginiamycin, by laccase-induced culture supernatants of Aureobasidium pullulans.

Results

Fourteen strains of A. pullulans from phylogenetic clade 7 were tested for laccase production. Three laccase-producing strains from this group and three previously identified strains from clade 5 were compared for inactivation of virginiamycin. Laccase-induced culture supernatants from clade 7 strains were more effective at inactivation of virginiamycin, particularly at 50 °C. Clade 7 strain NRRL Y-2567 inactivated 6 µg virginiamycin/ml within 24 h. HPLC analyses indicated that virginiamycin was degraded by A. pullulans.

Conclusions

A. pullulans has the potential for the bioremediation of virginiamycin-contaminated materials, such as distiller’s dry grains with solubles (DDGS) animal feed produced from corn-based fuel ethanol production.
  相似文献   

10.

Objective

To identify new enzymatic bottlenecks of l-tyrosine pathway for further improving the production of l-tyrosine and its derivatives.

Result

When ARO4 and ARO7 were deregulated by their feedback resistant derivatives in the host strains, the ARO2 and TYR1 genes, coding for chorismate synthase and prephenate dehydrogenase were further identified as new important rate-limiting steps. The yield of p-coumaric acid in the feedback-resistant strain overexpressing ARO2 or TYR1, was significantly increased from 6.4 to 16.2 and 15.3 mg l?1, respectively. Subsequently, we improved the strain by combinatorial engineering of pathway genes increasing the yield of p-coumaric acid by 12.5-fold (from 1.7 to 21.3 mg l?1) compared with the wild-type strain. Batch cultivations revealed that p-coumaric acid production was correlated with cell growth, and the formation of by-product acetate of the best producer NK-M6 increased to 31.1 mM whereas only 19.1 mM acetate was accumulated by the wild-type strain.

Conclusion

Combinatorial metabolic engineering provides a new strategy for further improvement of l-tyrosine or other metabolic biosynthesis pathways in S. cerevisiae.
  相似文献   

11.

Objectives

To evaluate different codon optimization parameters on the Saccharomyces cerevisiae-derived mating factor α prepro-leader sequence (MFLS) to improve Candida antarctica lipase B (CAL-B) secretory production in Pichia pastoris.

Results

Codon optimization based on the individual codon usage (ICU) and codon context (CC) design parameters enhanced secretory production of CAL-B to 7 U/ml and 12 U/ml, respectively. Only 3 U/ml was obtained with the wild type sequence while the sequence optimized using both ICU and CC objectives showed intermediate performance of 10 U/ml. These results clearly show that CC is the most relevant parameter for the codon optimization of MFLS in P. pastoris, and there is no synergistic effect achieved by considering both ICU and CC together.

Conclusion

The CC optimized MFLS increased secretory protein production of CAL-B in P. pastoris by fourfold.
  相似文献   

12.

Objective

To characterize a novel xanthine dehydrogenase (XDH) from Acinetobacter baumannii by recombinant expression in Escherichia coli and to assess its potential for industrial applications.

Results

The XDH gene cluster was cloned from A. baumannii CICC 10254, expressed heterologously in E. coli and purified to homogeneity. The purified recombinant XDH consisted of two subunits with the respective molecular weights of 87 kDa and 56 kDa according to SDS-PAGE. XDH catalysis was optimum at pH 8.5 and 40–45 °C, was stable under alkaline conditions (pH 7–11) and the half-inactivation temperature was 60 °C. The K m, turnover number and catalytic efficiency for xanthine were 25 μM, 69 s?1 and 2.7 μM?1 s?1, respectively, which is an improvement over XDHs characterized previously. A. baumannii XDH is less than 50 % identical to previously identified XDH orthologs from other species, and is the first from the Acinetobacter genus to be characterized.

Conclusion

The novel A. baumannii enzyme was found to be among the most active, thermostable and alkaline-tolerant XDH enzymes reported to date and has potential for use in industrial applications.
  相似文献   

13.

Objective

To identify a novel gene responsible for organic solvent-tolerance by screening a transposon-mediated deletion mutant library based on Saccharomyces cerevisiae L3262.

Results

One strain tolerant of up to 0.5 % (v/v) n-hexane and cyclohexane was isolated. The determination of transposon insertion site identified one gene, YLR162W, and revealed disruption of the ORF of this gene, indicating that organic solvent tolerance can be conferred. Such a tolerant phenotype reverted to the sensitive phenotype on the autologous or overexpression of this gene. This transposon mutant grew faster than the control strain when cultured at 30 °C in YPD medium containing 0.5 % (v/v) n-hexane and cyclohexane respectively.

Conclusion

Disruption of YLR162W in S. cerevisiae results in increased tolerance to organic solvents.
  相似文献   

14.

Objectives

To establish a method for microbial transglutaminase (mTG)-mediated PEGylation of proteins at the level of lysine (Lys) residues.

Results

Carboxybenzyl-glutaminyl–glycinyl-methoxypolyethylene glycol (CBZ-QG-mPEG) was prepared by introducing carboxybenzyl-glutaminyl-glycine (CBZ-QG) to mPEG amine. The analysis by Fourier transform infrared spectroscopy and SDS-PAGE showed that CBZ-QG-mPEG was successfully synthesized and can be recognized by mTG as an acyl donor to modify therapeutic protein, cytochrome c (cyt c). Finally, under an optimized condition (cyt c 0.5 mg/ml, CBZ-QG-mPEG 11.25 mg/ml, mTG 0.5 mg/ml, 37 °C, 2 h), the PEGylation yield reached 76.5 %.

Conclusions

This is the first study regarding the PEGylation of protein at the level of Lys residues catalyzed by mTG. The novel method could be employed to immobilize active proteins and modify therapeutic proteins.
  相似文献   

15.

Background and aims

Common bean (Phaseolus vulgaris L.) nodulates with a wide range of rhizobia. Amongst these is Bradyrhizobium, which is inefficient but able to induce profuse nodulation on this crop. Based on this observation, we tested whether co-inoculating bradyrhizobia with a more standard common bean symbiont, Rhizobium tropici, could stimulate growth and nodulation of common bean, thus contributing to a more effective symbiosis.

Methods

Rhizobium tropici was co-inoculated with two Bradyrhizobium strains applied at three different doses (104, 106, and 108 CFU seed?1) under sterile conditions, and at a single dose (108 CFU seed?1) in non-sterile soil. Plant biomass, nodulation, and N accumulation in plant tissues were evaluated.

Results

Co-inoculated plants produced more nodules, and accumulated more shoot dry biomass and nitrogen than plants inoculated with R. tropici alone under gnotobiotic conditions. Significant responses were observed at the highest inoculum dose and a significant correlation between dose and shoot dry weight was observed. Co-inoculation increased biomass and N accumulation in non-sterile soil, although with a smaller magnitude.

Conclusions

Altogether, our findings suggest that the co-inoculation with bradyrhizobia contributed to an improved symbiotic interaction between R. tropici and common beans.
  相似文献   

16.

Background

Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum are able to infect horses. However, the extend to which Danish horses are infected and seroconvert due to these two bacteria is unknown. The aim of the present study was to evaluate the seroprevalence of B. burgdorferi sensu lato and A. phagocytophilum in Danish horses.

Methods

A total of 390 blood samples collected from all major regions of Denmark and with a geographical distribution corresponding to the density of the Danish horse population were analyzed. All samples were examined for the presence of antibodies against B. burgdorferi sensu lato and A. phagocytophilum by the use of the SNAP®4DX ® ELISA test.

Results

Overall, 29.0% of the horses were seropositive for B. burgdorferi sensu lato whereas 22.3% were seropositive for A. phagocytophilum.

Conclusions

Antibodies against B burgdorferi sensu lato and A. phagocytophilum are commonly found among Danish horses thus showing that Danish horses are frequently infected by these organisms.
  相似文献   

17.

Background

Streptococcus gordonii is an infrequent cause of infective endocarditis (IE); associated spondylodiskitis has not yet been described in the literature.

Purpose

We describe 2 patients who presented with new-onset, severe back pain; blood cultures revealed S. gordonii bacteremia, which led to the diagnosis of spondylodiskitis and IE. We review our 2-decade experience with S. gordonii bacteremia to describe the clinical and epidemiological characteristics of these patients.

Results

In our hospital over the last 20 years (1998–2017), a total of 15 patients with S. gordonii bacteremia were diagnosed, including 11 men and 4 women, and the mean age was 65 ± 22 (range 23–95). The most common diagnosis was IE (9 patients), spondylodiskitis (the presented 2 patients, who in addition were diagnosed with endocarditis), necrotizing fasciitis (1), sternitis (1), septic arthritis (1) and pneumonia (1). The 11 patients with IE were treated with penicillin ± gentamicin, or ceftriaxone for 6 weeks, 5 required valve surgery and 10/11 (91%) attained complete cure. The 2 patients with diskitis required 2–3 months of intravenous antibiotics to achieve complete cure.

Conclusion

Spondylodiskitis was the presenting symptom of 2/11 (18%) patients with S. gordonii endocarditis. Spondylodiskitis should probably be looked for in patients diagnosed with S. gordonii endocarditis and back pain as duration of antibiotic treatment to achieve complete cure may be considerably longer.
  相似文献   

18.
19.

Objective

To investigate the biocatalytic potential of Colletotrichum acutatum and Colletotrichum nymphaeae for monoterpene biotransformation.

Results

C. acutatum and C. nymphaeae used limonene, α-pinene, β-pinene, farnesene, citronellol, linalool, geraniol, perillyl alcohol, and carveol as sole carbon and energy sources. Both species biotransformed limonene and linalool, accumulating limonene-1,2-diol and linalool oxides, respectively. α-Pinene was only biotransformed by C. nymphaeae producing campholenic aldehyde, pinanone and verbenone. The biotransformation of limonene by C. nymphaeae yielded 3.34–4.01 g limonene-1,2-diol l?1, depending on the substrate (R-(+)-limonene, S-(?)-limonene or citrus terpene (an agro-industrial by-product). This is among the highest concentrations already reported for this product.

Conclusions

This is the first report on the biotransformation of these terpenes by Colletotrichum spp. and the biotransformation of limonene to limonene-1,2-diol possibly involves enzymes similar to those found in Grosmannia clavigera.
  相似文献   

20.

Objective

To develop a safe and effective oral vaccine against Helicobacter pylori using its HpaA protein expressed in Lactococcus lactis.

Results

The gene encoding HpaA was obtained by PCR and ligated to pNZ8110-lysM following digestion with NaeI + SphI. The recombinant plasmid was transferred into E. coli for multiplication, and then into L. lactis. The recombinant L. lactis was induced to express HpaA, resulting in two products of 29 and 25 kDa, both of which yielded positive immunoreaction with mouse antisera against H. pylori, as confirmed by immunoblot assays. The 29 kDa product constituted 12% of the cell lysates. Oral inoculation with the engineered L. lactis evoked significantly elevated serum IgG level in mice (P < 0.05).

Conclusions

A novel engineered L. lactis strain was developed that efficiently produces whole HpaA protein with desired antigenicity and potent immunogenicity. It provides a basis for approaches to L. lactis-delivered anti-H. pylori vaccination.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号